Boise State University

ScholarWorks

Mechanical and Biomedical Engineering Faculty Department of Mechanical and Biomedical
Publications and Presentations Engineering
7-2022

Processing Time, Temperature, and Initial Chemical Composition
Prediction from Materials Microstructure by Deep Network for
Multiple Inputs and Fused Data

Amir Abbas Kazemzadeh Farizhandi
Boise State University

Mahmood Mamivand
Boise State University

Publication Information

Farizhandi, Amir Abbas Kazemzadeh and Mamivand, Mahmood. (2022). "Processing Time, Temperature,
and Initial Chemical Composition Prediction from Materials Microstructure by Deep Network for Multiple
Inputs and Fused Data". Materials & Design, 219, 110799. https://doi.org/10.1016/j.matdes.2022.110799


https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng
https://scholarworks.boisestate.edu/mecheng
https://doi.org/10.1016/j.matdes.2022.110799

Materials & Design 219 (2022) 110799

journal homepage: www.elsevier.com/locate/matdes

Contents lists available at ScienceDirect

materials
BIESIEIN

Materials & Design

materiaktoday

Processing time, temperature, and initial chemical composition

prediction from materials microstructure by deep network for multiple | %

inputs and fused data

Amir Abbas Kazemzadeh Farizhandi?, Mahmood Mamivand >*

2 Computer Science Department, Boise State University, United States
b Department of Mechanical and Biomedical Engineering, Boise State University, United States

HIGHLIGHTS

« The possibility of inverse design in
material design by artificial
intelligence has been demonstrated.

« The chemical composition and
processing history were predicted
from materials microstructure
morphology.
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framework has been trained to
predict the chemical compositions,
temperature and time processing of a
microstructure.

« The error analysis shows that the
majority of the wrong predictions are
indeed not wrong, but the other right
answers.

« The trained network was successfully
validated with an experimental Fe-
Cr-Co transmission electron
microscopy micrograph.
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ABSTRACT

Prediction of the chemical composition and processing history from microstructure morphology can help
in material inverse design. In this work, we propose a fused-data deep learning framework that can pre-
dict the processing history of a microstructure. We used the Fe-Cr-Co alloys as a model material. The
developed framework is able to predict the heat treatment time, temperature, and initial chemical com-
positions by reading the morphology of Fe distribution and its concentration. The results show that the
trained deep neural network has the highest accuracy for chemistry and then time and temperature. We
identified two scenarios for inaccurate predictions; 1) There are several paths for an identical microstruc-
ture, 2) Microstructures reach steady-state morphologies after a long time of aging. The error analysis
shows that the majority of the wrong predictions are indeed not wrong, but the other right answers.
We validated the model successfully with an experimental Fe-Cr-Co transmission electron microscopy
micrograph.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Accelerating the speed of materials development and discovery
has been the focus of intensive research in the last two decades, in
particular after the lunch of the US Materials Genome Initiative [1-
6]. In this regard, multi-scale modeling and simulation along with
limited informed experiments, have been identified as key factors,
as they can significantly reduce the time and effort required for
high throughput exploration in materials space [7-11]. However,
in the meantime, there is growing recognition that simulations
alone will not provide the desired acceleration in materials devel-
opment. Developing and deploying an appropriate support data
infrastructure that efficiently integrates closed-loop iterations
between experimentation and multi-scale modeling/simulation
efforts is climacteric. This need is addressed by a new interdisci-
plinary field called Materials Data Science and Informatics [12-18].

A fundamental element of the data science approach is a multi-
faceted framework that enables the research community to collect,
aggregate, nurture, disseminate, and reuse valuable knowledge. In
materials innovation efforts, this knowledge is primarily desired in
the form of length and time scale process-structure-property (PSP)
linkages associated with the material system of interest [19-24]. In
a multi-scale materials modeling effort, this means developing a
formal data science approach to extract reusable PSP linkages from
an ensemble of simulation and experiment datasets, as depicted in
Fig. 1. The top arrow in Fig. 1, forward design philosophy, shows a
typical workflow that materials scientists historically have used in
developing PSP linkages. In forward design philosophy, we loop
through the ordered connection of process-structure-property.
Forward design usually involves the use of experiments and
advanced physics in combination with numerical algorithms. Gen-
erally, since material discovery requires exploration of big space,
the forward design is prone to result in high costs and time. This
cost can be a significant obstacle to materials innovation efforts,
even in the realm of simulations, as these simulations are often
expensive and the design space is huge. This is precisely where
the data science approaches offer many benefits. As shown in

Process-Structure-Property (PSP) Linkages

Forward Design
(by experiments, simulation, and data science)

U\
e

Inverse Design
(by data science)

Fig. 1. Schematic of materials design workflow by forward and inverse design using
PSP linkages.
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Fig. 1, the data science tools and algorithms can enable us to per-
form inverse design, i.e., start from the desired properties and find
the required processing. The data science with taking full advan-
tage of advanced statistics and machine learning techniques can
provide a mathematically rigorous framework for PSP linkage in
multi-scale material design. As depicted in Fig. 1, one of the main
benefits of adding data science components to the entire workflow
is that it is very practical to solve the inverse problem, which is the
ultimate goal of materials innovation efforts. In fact, materials
informatics provides a low computational approach for materials
design. This is mainly because the PSP linkages are cast as meta-
models or surrogate models. These models can be easily used to
find the optimum conditions for making materials with desired
properties.

Artificial intelligence (Al), machine learning (ML), and data
science can help speed up and simplify the process of discovering
new materials [25]. In recent years, the use of data science in var-
ious areas of materials science has increased significantly [26-31].
For example, data science is applied to assist in calculating density
functional theory and to correlate atomic interactions with materi-
als properties based on quantum mechanics [32-35]. Al is also used
to create PSP linkages in the context of the materials design. In this
case, one can use ML to design new materials with the desired
properties or optimize the existing materials’ manufacturing pro-
cesses to improve their properties. Researchers can study/identify
the complex and non-linear link between the materials manufac-
turing processes and properties through data science. For instance,
in the context of forward design, several works attempted to pre-
dict the materials’ structure from the process parameters or the
material properties from the microstructure and manufacturing
history [26,36-44].

The main obstacle in implementing the (micro)structure — pro
cess — chemistry approach is the lack of a validated and widely
accepted framework for rigorously quantifying hierarchical mate-
rials microstructures. The microstructure plays a central role in
forming the PSP linkages and is often a vital input and output. In
addition, microstructures often require a higher dimensional rep-
resentation compared to other variables related to PSP linkages.
From a practical point of view, it is essential to find suitable low-
dimensional representations for the materials’ microstructure to
be able to use them in PSP linkages construction. While this is a
crucial factor in developing a high-quality, reusable materials
knowledge system [45], traditionally, this dimensionality reduc-
tion has been carried out by materials scientists based on intuition
or insight into the material phenomenon being studied. As a con-
crete example, when looking at plastic responses, particle size or
shape distributions and possibly orientation and misalignment dis-
tributions can be used to quantify polycrystalline microstructures
[46]. However, such an approach has not yet identified a broad
set of low-dimensional metrics that can be universally applied to
different materials systems to identify most materials’ properties.

In recent years, deep learning (DL) techniques have been suc-
cessfully used in the areas such as computer vision. Their recent
use in materials science has also proved to be a reliable and
promising method [39]. The main advantages of the DL method
are its simplicity, flexibility, and applicability to all types of mate-
rials structures. All these advantages increased the application of
DL in materials science noticeably [35,40-44,47-49]. One form of
DL model that is widely used for feature extraction in various
applications such as image, video, audio, and natural language pro-
cessing is a convolutional neural network (CNN) [50-53]. In mate-
rials science, CNN has been used for various image-related
problems [54]. Cang et al. [54] used CNN to achieve a dimensional-
ity reduction of 1/1000 from the microstructure space. In DeCost
et al. [55] work, CNN was applied to microstructure segmentation.
Xie and Grossman [56] used CNN to quantify crystal diagrams and
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predict materials’ properties, including accurately predicting eight
different material properties such as formation energy, bandgap,
and shear modulus. CNNs were also used to index electron
backscatter diffraction patterns and determine the crystal orienta-
tion of crystalline materials [57]. Yang et al. [58] predicted the stiff-
ness of two-phase composites by deep learning approaches that
included both convolutions and fully-connected layers. Also, in
comparison to the other microstructural quantification techniques,
such as the n-point correlation methods, the features extracted by
CNN can provide more accurate predictions [20,59-64].

One drawback of deep CNN is the need for a large training data-
set, which is not always available in many applications. To alleviate
this problem, feature extraction can be performed by transfer
learning methods using the pre-trained networks. Though pre-
trained networks have been trained by non-domain specific image
databases, such ImageNet [65], it has been shown that transfer
learning can be useful, especially in materials science, where
image-based data is generally not very abundant. DeCost et al.
[66] used the pre-trained VGG16 to classify the steel microstruc-
tures based on the annealing conditions. VGG16 was also applied
to extract and classify the features from scanning electron micro-
scope (SEM) images [26]. Lubbers et al. [67] adopted the VGG19
to identify the physically important descriptors within the
microstructures. VGG19 has also been used to develop a frame-
work for materials structure reconstruction and property predic-
tion [68].

The above overview shows that the majority of ML
microstructure-related works in the materials science community
have been focused on microstructure classification [69-71], detec-
tion [72], and reconstruction [68,73] or finding a relationship
between materials morphologies and properties [37,58,74]. How-
ever, the process and chemistry predictions from microstructure
morphology images have received limited attention. This is an
important knowledge gap for considerable materials systems that
we have some knowledge on the ideal morphologies, either from
theories or simulations. However, the chemistry and processing
routes that guide us to the goal morphology are not known. A crit-
ical challenge to address this knowledge gap is the inverse design
based on the microstructure morphology. This design especially
gets more challenging for multi-component/multi-phase materials.
Recently, Kautz et al. [37] have used the CNN for microstructure
classification and segmentation of uranium alloyed with 10 wt%
molybdenum (U-10Mo). They used a segmentation algorithm to
calculate the area fraction of the lamellar transformation product
of aU + YUMo and inserted the total area fraction into the
Johnson-Mehl-Avrami-Kolmogorov equation to predict the anneal-
ing parameters. Some limitations of their work are the missing
information about the morphology and particle distribution and
the absence of chemistry for aging time prediction.

In our prior work [75], we proposed a framework based on deep
learning to predict the process parameters and chemical composi-
tions from materials micrographs in a steady-state condition.
Therefore, the developed model did not have the processing time
as an important processing parameter. Consequently, the materi-
als’ microstructure evolution over time was missing. In this study,
we will propose a model based on a deep neural network to predict
a complete set of processing parameters, including temperature,
time, and chemistry from a microstructure micrograph. As a case
study, we focused on the spinodal decomposition process, and to
prove the model applicability for realistic alloys, we picked the
Fe-Cr-Co permanent magnets as the model alloy. We used the
phase-field (PF) method to create the training and test datasets
for the deep network training. A fused dataset including material
microstructure as well as minimum and maximum iron concentra-
tion in the microstructure is used as the input data. We quantified
the generated microstructures with the CNN and then combined
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the extracted salient features from the microstructures with iron
composition to predict the processing history, i.e., annealing time
and temperature, and chemical compositions of the micrograph.

2. Methods
2.1. Phase-field modeling

In this study, we used the phase-field (PF) method to generate
the training and test dataset. In the past two decades, the PF
method has gained considerable attention as a powerful tool for
simulating a wide range of moving boundary problems, including
solidification, solid-state phase transformation, crack growth, etc
[76]. To simulate the process of phase separation in Fe-Cr-Co alloy
we have used the standard PF model for conserved parameters, i.e.,
the Cahn-Hilliard (CH) equations. Since the diffusion of constituent
elements controls the process of phase separation, the PF parame-
ters in this study are the concentration of Fe, Cr, and Co. Therefore,
the governing equations for Fe-Cr-Co spinodal decomposition are,

OCer OF o OF o
=V -M -M 1
Df V Cr,CrV 5CCr + V Cr,CoV (SCCo ( )
JCco OF o OF o
8[ - V : IVICO.Crv 5(:0 + V . MCO,COVYCD (2)

where ¢, and ¢, are concentrations of Chromium and Cobalt, t is
time, Fy, is total free energy, and M is mobility function. The
microstructure evolution is primarily driven by the minimization
of the total free energy F;, of the system. We parametrized the
model with the calculation of phase diagram (CALPHAD) data
[77]. To solve the non-linear CH partial differential equations
(PDEs), we used the Multi-physics Object-Oriented Simulation Envi-
ronment (MOOSE). MOOSE is an open-source finite element pack-
age developed at Idaho National Laboratory and efficient for
parallel computation on supercomputers [78]. The coupled CH
equations were solved with the help of MOOSE’s prebuilt series of
weak form residuals of CH PDEs with the input parameters given
in Table S1 in Supplementary Materials.

2.2. Training and test dataset

The goal of the presented work in this study is to develop a
framework that is able to predict the processing history and chem-
istry of a micrograph just by reading one element’s morphological
distribution. For the specific case study of spinodal decomposition
in this work, the processing parameters are annealing temperature
and time. Therefore, to develop proper training and test datasets,
we need to span the possible ranges of input variables, i.e., time,
temperature, and chemical compositions. For the temperature,
we are bonded to the range of 850-970 K, as spinodal decomposi-
tion in Fe-Cr-Co happens in this window. For chemistry, we explore
the range of 0.05-0.9 at. % for both Cr and Co. Since the chemistry is
subjected to the conservation of mass constrain, i.e., Cre + Cc + Cco = 1,
we used the Simplex-Lattice [79] as a mixture design method to
generate the chemistry space to explore. Finally, we bounded the
dataset to 300 h for the time, as our study showed most
microstructures would reach equilibrium to some extent by this
time. Unlike temperature and chemistry, we did not grid the time
domain linearly because the microstructure is very sensitive to
aging time in the early stages of annealing, but this sensitivity
drops dramatically as time passes. Therefore, we picked a fine grid
at the beginning, 50 s, and increased it exponentially, to 100000 s,
with time. The variables and their ranges are given in Table 1. To
cover all the range of input variables, the dataset was generated
based on the design of the experiment (DOE). We generated the
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Table 1
Simulation variables and their range of values for database generation.
Simulation variable Range of values Grid
Time (S) 10-1080000 10-3600 50
3600-36000 500
36000-360000 5000
360000-1080000 100,000
Temperature (K) 850-970 10
Chromium composition 0.05-0.9 0.05
Cobalt composition 0.05-0.9 0.05

microstructures by solving the CH PDEs using the MOOSE frame-
work [78] on Boise State University R2 cluster computers [80].
We note that because of the deterministic nature of the PF tech-
nique, i.e., not being stochastic, and the physics of the spinodal
decomposition, we only need to run each condition once.

After simulations, we collected the morphology of Fe distribu-
tion, which represents the Fe-rich and Fe-depleted, i.e., Cr-rich,
regions, as image data. In addition, we used the minimum and
maximum compositions of Fe in each microstructure as numeric
data. The deep network uses the image and numeric data as input
to predict the time, temperature, and chemical compositions.
Therefore, different types of deep networks like convolutional
and fully-connected layers are required to process the input data.

We note that the accuracy of the model will increase for real
materials if some experimental data is added to the training data-
set. However, even having the experimental dataset to be just a
few percent of the whole dataset, requires hundreds of tailored
transmission electron microscopy (TEM) images. Generating such
a big experimental dataset is time-consuming and costly. There-
fore, in this work, we limit the model to synthetic data. However,
as we will show in the validation part, Section 4, the model pre-
dicts the history of an experimental TEM image pretty well,
because we are using a CALPHAD-informed phase field model to
generate the training and test dataset and CALPHAD inherently is
informed by some experimental data.

2.3. Deep learning methodology

Big data allows the use of deep neural networks for different
applications like supervised learning, e.g., classification and regres-
sion tasks, and unsupervised learning, e.g., clustering [52,81]. Due
to fused input data in this study, i.e., image and numeric data, two
different layers, including convolutional and fully-connected lay-
ers, are needed to ingest the data. The image features are extracted

Data production

Mix input
data
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through convolutional layers or transfer learning, and fully con-
nected layers handle the numeric data. For transfer learning, we
used the pretrained convolutional layers of the EfficientNet-B7 net-
work for image feature extraction. After passing through a number
of fully-connected layers, the numeric data will be combined with
image extracted features by other fully-connected layers. The last
layer will predict the time, temperature, and chemical composi-
tions with four neurons with a linear activation function.

Two types of deep neural network layers are applied in the
framework, fully-connected and convolutional layers. Fully-
connected layers consist of neurons and activation functions [82]
and convolutional layers use hidden layers consisting of convolu-
tional, activation functions, pooling, and fully-connected layers
that follow each other [52]. In the network configuration, the num-
ber of neurons is usually determined by trial and error. To enable
the network to capture non-linear problems, the non-linearity is
injected into the neural networks through the activation functions.
There are several well-established activation functions such as lin-
ear, sigmoid, rectified linear (ReLU), leaky rectified linear, hyper-
bolic tangent (Tanh), Swish, and softmax that each of them is
useful for specific applications [83]. Among all, the RelLU (f
(x) = max (0, x)) and Swish (f(x) = x sigmoid(x)) have shown con-
sistent robustness in a wide range of problems [84].

Using the convolutional neural networks (CNNs) for image pro-
cessing and computer vision tasks was originally proposed by
LeCun et al. [85]. CNNs have hidden layers consisting of convolu-
tional, pooling, and fully-connected layers that follow each other.
There are various types of CNNs based on the convolutional and
pooling layers layout. Convolutional layers extract the salient fea-
tures of images while the dimensionality of the data gets reduced
through the fully-connected layers. In convolutional layers, a fea-
ture map is generated by passing filters over the images and scan-
ning the pixel values. Then, the non-linearity property gets added
to the system by passing the data through the activation function.
The feature map size reduces by pooling operations, like maximum
or average pooling, through the pooling layers. The image
extracted features will be trained by adding fully-connected layers
for specific tasks like classification, regression, and clustering. A
cost function will train the CNN through the backpropagation.
The number of filters, size, regularization values, dropout values,
optimizer parameters, initial weights, and biases are updated dur-
ing training. Since deep CNN training requires a large dataset,
transfer learning is usually applied in many cases. In transfer learn-
ing, the target images, in our case, microstructure morphologies,
are passed through a pretrained network that has been trained
on the big image datasets such as ImageNet and can be used for
another domain with domain adoption. Several pretrained net-

Proposed model

A

Temperaturej— SR

Simulation
Chemical

composition

PF: Phase-field
FC: Fully connected
CNN: Convolutional Neural Network

Fig. 2. The flowchart of the developed model for chemistry and processing history prediction from microstructure images (FC: fully-connected layer).
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works have been used for materials microstructure quantification
[26,66,68]. In this work, we will use the EfficientNet [86] network.
Former study [75] demonstrated that convolutional layers of Effi-
cientNet [86], as a fast and efficient pretrained network, can be
applied for materials microstructures feature extraction. In this
study, different in-house CNNs or different layers of pretrained
convolutional layers of EfficientNet have been adopted to extract
microstructures features.

PF simulations generate the training and test datasets in the
framework. The proposed deep network in the framework includes
different in-house CNNs or pretrained convolutional layers from
EfficientNet-B7 (transfer learning) for microstructure feature
extraction and fully-connected layers for processing of the
extracted features and numeric data (iron minimum and maxi-
mum composition in the micrographs). CNNs with different convo-
lutional layers are applied for microstructure feature extraction in
the in-house CNNs. In transfer learning, different layers of pre-
trained convolutional network are tested to find the optimum
number of layers based on the overall accuracy. The architecture
of the proposed network is found by testing different combinations
of convolutional, fully-connected layers and their parameters
based on the best accuracy. A schematic flowchart of the proposed
framework is given in Fig. 2. The extracted features of microstruc-
tures are passed through fully-connected layers to get combined
with the output of the fully-connected layers that proceed the
numeric data. The network is trained by the end-to-end method

Table 2
Parameters selected for model specification, compilation, and cross-validation.

Parameter Selected value or option
Model Specification Optimizer Adam
Learning Rate 1.00E-0.3
Body activation ReLU
Output activation Linear
Input dimension (224, 224,1)
Output dimension (4)
Compilation Loss Mean absolute
percentage error
Optimizer Adam
Metric Root Mean square
error (RMSE), R squared
Cross-Validation Fold 5
Training data 80%
Testing data 20%
Batch size 8
Epochs 750

Time in second 25000 35000

Cr-40%, Co-30%
at 920 K

Cr-40%, Co-30%
at 970 K

Cr-35%, Co-25%
at 920 K

0,
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to find the optimum hyperparameters. The model parameters
and specifications are listed in Table 2.

3. Results and discussion
3.1. Phase-field modeling and dataset generation

We ran the PF model for the different combinations of time,
temperature, and chemical compositions informed by the
Simplex-Lattice design. Within the ranges given in Table 1,
125,233 different samples were simulated by the PF method, and
the microstructures were extracted for different chemical compo-
sitions, temperatures, and time. Fig. 3 depicts the sample results
of the PF simulation. MOOSE simulations of the 2D domains take
approximately 120 service units (SU) per run on a 24 Core CPU.
Therefore, screening the proposed range of different temperatures
and chemical compositions for microstructure evolution required
approximately 505 k SU to complete.

Since decomposition does not occur for all proposed operating
conditions and chemistries, the microstructures showing the 0.1
difference in Fe composition between Cr-rich and Fe-rich phases
and at least 15 % volume fraction for each phase were considered
as spinodally decomposed results. Hence, only 14,376 samples in
which decomposition has taken place are used to create the data-
base. 80% of samples were used for training and 20% for testing.
The training was validated by 5-fold cross-validation. The Fe-
based composition microstructure morphologies, as well as mini-
mum and maximum of Fe compositions in the microstructure
along with corresponding time, temperature, and chemical compo-
sitions, form the dataset. A sample workflow of the dataset con-
struction is given in Fig. 4.

3.2. Deep network training

First, the in-house CNNs with different convolutional layers
have been tested to find the best architecture. The results are given
in Table S2. The results indicate that the CNNs can predict the
chemistry reasonably well. The accuracy of time prediction
increases proportionally with the number of filters. However, the
temperature accuracy is poor for all networks. According to previ-
ous study findings [75], the temperature is related to complicated
microstructure features that can only be extracted by deep convo-
lutional layers. Training such a deep network needs a very large
training dataset, which is not available. Therefore, we adopted
the transfer learning method to check the network accuracy. We
used the EfficientNet-B7 convolutional layers to extract the salient

.,200000 360000 1080000

A O (L LS
3 24

Fig. 3. The phase-field method generates Fe-Cr-Co alloy microstructures (Compositions are in atomic percent).
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Fe-30%, Cr-40%,
Co-30% at 920K
after 720000 sec.
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Microstructure
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Fe maximum
concentration
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%

Temperature Time

0.3 920 720000

Fig. 4. A sample workflow of dataset construction.

Fully connected
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Feature

Flatten
Swish

Activation +
Dropout (0.5)

™ .’ISW Q¢ EfficientNet-B7
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Fully connected
layer with 128
neurons + Batch
Normalization +
Swish

Activation
Fully connected

layer with 32
neurons + ReLU
Activation
Fully connected
layer with 16
neurons + ReLU
Activation

Fully connected

layer with 3
neurons +
Linear
Activation

| Processing Time

Processing Temperature
Chemical Compositions

Fully connected
layer with 4
neurons + ReLU

Fully connected Activation
layer with 8

neurons + ReLU
Activation

Fig. 5. The architecture of the proposed model (input image size is 224 x 224 pixels).

features of the produced microstructure by the PF method as trans-
fer learning. The EfficientNet-B7 has 66 million parameters which
are less than other networks with similar accuracies, such as
VGG16, etc. Similar to other studies [87-89], the first layers capture
simple features like edges, colors, and orientations. In contrast, the
deeper layers extract more complicated, less visually interpretable
features (see Fig. S1). The fused data, including microstructure
morphology and Fe minimum and maximum concentration in
morphology, are used for network training. Different pretrained
convolutional layers of EfficientNet-B7 are applied to extract
microstructures salient features while numeric data is proceeded
by fully-connected layers. After passing fully-connected layers,
the extracted features by convolutional layers are combined with
the numeric data through the fully-connected layers to predict

the outputs by linear activation function in the last layer, see
Fig. 5. Convolutional layers 25, 108, 212, 286, 346, 406, 464, 509,
613, 673, 806, and 810 from EfficientNet-B7 are used to extract
the microstructures features. For different convolutional layers,
the model is trained based on the given parameters in Table 2.
The model training is based on 5-fold cross-validation and dividing
the dataset into training (80%) and testing (20%) datasets. The aver-
age R Squares and mean square error (MSE) for cross-validation
and test set that the model never sees in the training process are
given in Table S3. According to the results, the prediction of time
and temperature is more challenging than compositions. Almost
all the models can predict the compositions very well. The whole
training process was repeated three times to check the models’ sta-
bility. Finally, the most accurate prediction belongs to the model
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that uses up to layer 286 of the EfficientNet-B7 for microstructures’
quantification. The error distribution of this model, which shows a
normal distribution, is given in Fig. S2.

In addition to cross-validation, testing data has also been used
for overfitting detection. The training and validation losses dimin-
ish smoothly with epoch, as shown in Fig. 6a, and it is an indication
that the model parameters converge to the global optimum with-
out overfitting. A sample from the test set is given in Fig. Gb to
show the developed model performance. The presented
microstructure is for 15% Fe, 25% Cr, and 60% Co (all in atomic per-
cent) after 195,000 s of heat treatment at 950 K. The model’s pre-
dictions have good agreement with ground truth values for time,
temperature, and chemical compositions. The parity plots with
accuracy metrics for comparing the model prediction with ground
truth for all testing data are shown in Fig. 6¢. The results show that
the model can predict the chemical compositions with the highest
accuracy. The prediction accuracy for time and temperature is not
as good as chemical compositions. But the model can still predict
them reasonably well.

The results indicate that the time and temperature prediction is
more challenging than chemical compositions, which is explain-
able by physical concepts. According to our simulation results
(see Fig. S3) and reported studies [90,91], a slight change in initial
chemical compositions can lead to a sensible change in microstruc-
ture morphology which is even recognizable by human eyes.
Therefore, it will be uncomplicated for the model to realize the
chemical composition changes. However, small changes in temper-
ature will hardly lead to noticeable changes in the microstructure
morphologies when the time and chemical composition are fixed.
Therefore, finding these differences is hard and makes temperature
prediction challenging. In the case of time, there are two different
conditions. The morphology changes rapidly with time at the early
stages of heat treatment, but the rate of change drops dramatically
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after some time, i.e., when the morphology reaches some stability,
and changes will be minimal over time. This insensitivity will make
the identification strenuous for the model. According to Table S3,
the models can predict the chemical composition, temperature,
and time in order of maximum to least accuracy. However, as we
will discuss in the next section, most errors in time and tempera-
tures, are not actually real errors, but just other right answers.

3.3. Model performance analysis

The R-square and RSME results for testing points show that the
model can predict time, temperature, and chemical compositions
well. However, the model’s reliability depends on knowing the
sources of the errors. Therefore, in this section, we will do a more
in-depth study on some low-accuracy cases to find out the source
of errors. As was mentioned earlier and according to the parity
plots in Fig. 6¢, the lowest accuracy belongs to time and tempera-
ture predictions. Some worst cases in time and temperature pre-
diction are given in Fig. 7.

After studying some random cases, among the predictions with
high errors, we concluded that two scenarios are possible for the
sources of errors. One is achieving stability in the microstructure
morphology after a certain time, and the second is achieving an
identical microstructure from two different paths. Based on the
observations and physical concepts, the microstructure morpholo-
gies change very sluggishly with time after passing the early stages
of separation and coarsening, and reach some sort of stability. As
mentioned earlier, once the stability is achieved, it is hard for the
model to distinguish the differences between the microstructures
due to the subtle or no changes between two considerable time
steps. Therefore, we hypothesize that the errors that we observe
in time predictions for high heat treatment times, i.e., times above
100 hrs, are associated with morphology stability. To test this

100
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Fig. 6. a) Training and validation loss per each epoch, b) prediction of time, temperature, and chemical compositions for a random test dataset, and c) the parity plots for time,
temperature, and chemical compositions for the testing dataset based on the transfer learning model when the first 286 layers of EfficientNetB7 are used for microstructures’
feature extraction (The size of the input images are 224 x 224 pixels).
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Fig. 7. Some worst cases for time (first row of images) and temperature (second row of images) predictions.

hypothesis, we compared the simulated microstructures based on
the model’s predictions with the microstructure given as the input,
i.e., ground truth, to the modal. Quantitative comparison of differ-
ent images can be made either by evaluating specific metrics or by
observing the distribution of defined parameters in the images. We
adopted some evaluation metrics that were widely used in the
computer vision community including the Root Mean Squared
Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) [92,93], the Struc-
tural Similarity Index Measure (SSIM) [94], and the Learned Per-
ceptual Image Patch Similarity (LPIPS) [95]. In these metrics,
smaller RMSE and LPIPS, and higher PSNR and SSIM indicate more
similarity between images. For distributions comparison between
two images, two-point correlation function [96] and chord length
[97] are standard techniques and we used them in this study.
Fig. 8 shows the comparison between the ground truth and simu-
lated microstructure for the first row of Fig. 7. We note that the
simulated microstructures in Fig. 8 are informed by the DL-
predicted chemistry, temperature, and time, i.e., the prediction val-
ues in Fig. 7. The evaluation metrics and distributions demonstrate
that the two microstructures are similar, while there is about 70
hrs differences in their heat treatment times. These quantitative
comparisons endorsed our hypothesis that the errors that we
observe in time predictions for high heat treatment times are asso-
ciated with the morphology stability.

Another source of error that we observed in predictions stems
from the interplay between time and temperature. For these types
of errors, we hypothesize that the predicted processing conditions,
while being different from the ground truth, are indeed another
path to reach a similar microstructure. To test this hypothesis,
we ran the PF model with the predicted chemistry and processing
parameters and compared quantitatively the simulated
microstructures with the ground truth microstructures in Fig. 9.
Again, the metrics and distributions show that the microstructures
are very similar, and in fact, we can generate similar microstruc-
tures from two separate paths, i.e., higher time/lower temperature
and lower time/higher temperature. Therefore, in these cases, the
model does not predict wrong processing but just discovers a
new path. Therefore, according to the model review results, the
primary sources of errors, primarily in heat treatment time and
temperature, root in the physical concepts behind the spinodal

decomposition and are not inherently wrong predictions but just
another right answer.

4. Validation of the proposed model with the experimental data

The main motivation of the proposed model is to enable the
chemistry and processing history prediction of a micrograph. This
makes the model a unique tool that enables, for the first-time,
microstructure inverse design possible with no lost information,
i.e., reducing the complexity of microstructure to just average grain
size, etc. Since ultimately, the predicted chemistry and processing
parameters are going to feed into the experiment, the model vali-
dation is crucial. In this section, we validate the model’s pre-
dictability against an experimental transmission electron
microscopy (TEM) image for spinodal decomposition of Fe-Cr-Co
with the initial composition of 46% Fe, 31% Cr, and 23% Co after
100 hrs of heat treatment at 873 K from Okada et al. [91]. The orig-
inal TEM image was larger than the model’s required input size, so
it was cropped to meet the 224x224 pixels size. Also, the Fe com-
position minimum and maximum in the micrograph were not
given, and we selected these values by interpolating between the
adjacent simulation points in the database. Fig. 10 shows the pre-
dictions of the model for the experimental TEM microstructure
along with the ground truth.

Comparison between the predicted and ground truth shows
that the model performs very well in terms of Co composition
and temperature predictions with just 0.6% and 0.9% error, respec-
tively. The predictions show 10% and 15% errors for annealing time
and Cr composition, respectively. While all computational models
naturally have some errors, we identify five key sources for the
uncertainties in using the model for experimental micrographs,
1) the TEM micrograph does not have the image quality of the sim-
ulation microstructures, i.e., the training data, 2) the TEM image
size was larger than the model’s input, and we cropped it to
224x224 pixels, 3) the Fe composition was not reported for the
TEM image and we used the PF input, 4) the model was trained
with synthetic data and not TEM micrographs, 5) the PF model
was parameterized with CALPHAD, and some errors correlate with
uncertainty in CALPHAD data. These uncertainties can be reduced
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Fig. 8. Comparison of the ground truth microstructures with the simulated microstructures from model predictions for four random cases with high errors in time.
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Fig. 10. Prediction of processing time, temperature, and chemistry for an experimental TEM image adopted from Okada et al. [91]. The original image was cropped to be in the

desired size of 224 x 224 pixels.

if there are enough experimental images to be used in the training
dataset. Despite all these shortcomings, the model’s predictions for
chemistry and processing history for the TEM micrograph were
reasonably well.

5. Conclusion

In this work, we have developed a computational framework
that enables the microstructure inverse design. As a model mate-
rial, we studied the Fe-Cr-Co based permanent magnet alloys.
The developed deep neural network is able to read a micrograph
of one element distribution and predicts the chemistry and pro-
cessing parameters that would lead to that micrograph. The model
integrates the physics-based and data-driven modeling. The train-
ing and testing data were generated from the phase-field modeling
of the spinodal decomposition process in Fe-Cr-Co alloys. The fused
input data, including the microstructure morphologies and the
associated minimum and maximum Fe composition, were used
to train the proposed network to predict the heat treatment time
and temperature as well as the initial chemical composition, i.e.,
the Cr and Co. We used different CNN layers as well as different
convolutional layers of EfficientNet-B7 pretrained networks to
quantify the microstructure morphologies. The accuracy metrics,
parity plots, and error distribution demonstrate that the model
with the EfficientNet-B7 pretrained network performs well on
the training data. We found that temperature is the most challeng-
ing parameter to predict and it requires deeper layers and more
complicated extracted features from microstructures. The error
analysis showed that some wrong predictions, in particular the
ones with high errors in time and temperature predictions, are
not actually wrong but just other correct answers. We identified
that the errors are associated with either the microstructure mor-
phology stability or the possibility of having one microstructure
with two processing paths. Finally, we validated the model with
an experimental TEM microstructure and the model was able to
predict the processing history and chemistry of the TEM micro-
graph reasonably well. The process parameters and chemistry pre-
diction for experimental micrographs can improve significantly if
we have the right size, and high-resolution microstructures, and
also add some experimental data to the training dataset.

6. Data availability

The raw/processed data and codes required to reproduce these
findings are available at https://github.com/Amir1361/time_tem-
perature_composition_predictionhttps://github.com/Amir1361/
Materials_Design_by_ML_DL.
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