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[1] Remote sensing of fractures with elastic waves is important in fields ranging from
seismology to nondestructive testing. In many geophysical applications, fractures control
the flow of fluids such as water, hydrocarbons or magma. While previous analytic
descriptions of scattering mostly deal with very large or very small fractures (compared to
the dominant wavelength), we present an analytic solution for the scattering of elastic
waves from a fracture of arbitrary size. Based on the linear slip model for a dry fracture, we
derive the scattering amplitude in the frequency domain under the Born approximation
for all combinations of incident and scattered wave modes. Our analytic results match
laser‐based ultrasonic laboratory measurements of a single fracture in clear plastic,
allowing us to quantify the compliance of a fracture.

Citation: Blum, T. E., R. Snieder, K. van Wijk, and M. E. Willis (2011), Theory and laboratory experiments of elastic wave
scattering by dry planar fractures, J. Geophys. Res., 116, B08218, doi:10.1029/2011JB008295.

1. Introduction

[2] Faults and fractures in the subsurface can act as con-
duits or barriers to fluid flow of hydrocarbons, water and
magma [Haney et al., 2005; Brandsdóttir and Einarsson,
1979]. Changes in fracturing lead to changes in coda
waves as well as attenuation and seismic anisotropy.
Collettini et al. [2009] show that the mechanical properties
of fractures and fault zones are related to the fabric and
microstructure of these features. Understanding the inter-
action of fractures with elastic waves is crucial in order to
characterize fracture properties remotely. In hydrocarbon
reservoirs, hydraulic fractures are generated to stimulate
production and can be monitored with active or passive
sources [Wills et al., 1992;Meadows and Winterstein, 1994].
Moreover, scattered waves can be used as a tool for moni-
toring fracture growth and fracture evolution [Groenenboom
and Fokkema, 1998; Groenenboom and van Dam, 2000;
Pyrak‐Nolte, 2000]. Besides geophysical applications, scat-
tering from fractures is important in nondestructive testing
applications [Langenberg et al., 2002].
[3] Gubernatis et al. [1977a] derive the general integral

equation for an elastic scatterer, which they solve using the
Born approximation [Gubernatis et al., 1977b; Wu and Aki,
1985]. Their work is based on a volumetric flaw with speci-
fied contrast in density and elastic properties. In contrast, the
linear slip model handles planar fractures of negligible
aperture by linking the discontinuity of the displacement

field at the fracture plane to the traction at the slip interface
[Schoenberg, 1980]. This model can be directly applied to
fractures with a size comparable to the wavelength. The
extreme case where the fracture plane is infinite leads to
frequency dependent reflection and transmission coeffi-
cients [Pyrak‐Nolte et al., 1990; Pyrak‐Nolte and Nolte,
1992; Zhu and Snieder, 2002]. The linear slip model is
often used to describe dry fractures [Coates and Schoenberg,
1995], and can also be used for fluid‐filled fractures [Wu
et al., 2005; Groenenboom and Falk, 2000]. It was also
investigated experimentally [Pyrak‐Nolte et al., 1992,
1996]. In addition, Sánchez‐Sesma and Iturrarán‐Viveros
[2001] use the Sommerfeld optical diffraction theory to
derive an approximate analytic expression for the scat-
tering of SH waves by a planar fracture of finite width
and infinite length. Fang et al. [2010] present finite dif-
ference numerical simulations of the scattering of P waves
by a finite circular fracture.
[4] For multiple sets of parallel fractures of a small size

compared to the dominant wavelength, wave propagation
can be expressed in terms of effective medium theory
[Crampin, 1981;Hudson, 1981; Schoenberg and Sayers, 1995;
Schoenberg and Douma, 1988; Kachanov and Sevostianov,
2005]. This theory accounts for an effective velocity and
attenuation across many parallel slip interfaces. Pyrak‐Nolte
et al. [1990] show that waves in such a medium are dis-
persive in nature and present laboratory anisotropy mea-
surements in agreement with effective medium theory.
[5] Here, we apply the linear slip model to a single finite

planar fracture under the Born approximation. From this, we
develop an analytic expression for the general scattering
amplitude without making assumptions about the fracture
size or wavelength, and therefore are not restricted to small
scatterers as used in earlier studies [e.g., Gubernatis et al.,
1977b; Smyshlyaev and Willis, 1994]. We derive expres-
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sions for the scattering amplitude in the frequency domain
for every combination of incoming and scattered body wave
modes. We illustrate this theoretical work with a novel
laboratory experiment by estimating the components of the
compliance for a single crack generated in a clear plastic
sample, and show that the measured scattering amplitude is
explained by values of the compliance that are consistent
with values reported in other studies.

2. General Expressions for Scattering
by a Fracture

[6] We present the derivation in this paper in a frequency
domain formulation based on the following Fourier con-
vention: f(t) =

R
F(w) e−iwt dw. For brevity, we do not make

the frequency dependence explicit, and use the Einstein
summation convention. We first derive a general expression
of the wave scattered by a fracture of arbitrary size. The
stress across the fracture is continuous, but the displacement
across the fracture is not necessarily continuous. We denote
the discontinuity in the displacement by [u]. According to
Aki and Richards [2002, equation (3.2)], the displacement at
location x due to the discontinuity of the displacement at the
fracture S is given by

un xð Þ ¼
ZZ

S
ui sð Þ½ �cijkl fjGnk;l x; sð Þd2s; ð1Þ

where
RR

S
(� � �) d2s denotes the integration over the surface

of the fracture, f̂ is the normal vector to the fracture as
shown in Figure 1, cijkl is the elasticity tensor, and Gnk,l is
the gradient of the displacement Green’s function defined as

Gnk;l x; sð Þ ¼ @Gnk x; sð Þ
@sl

: ð2Þ

[7] We next relate the discontinuity in the displacement to
the stress field. We follow Schoenberg [1980] and assume
that the slip discontinuity is related to the traction T at the
fracture by a compliance matrix h:

ui½ � ¼ �irTr: ð3Þ

Although this approximation may break down toward the
edges of the fracture, it is commonly used in geophysics and

considered accurate in far field [Wu et al., 2005]. Expressing
the traction in the stress sij and the normal vector to the
fracture yields

ui½ � ¼ �ir�rs fs; ð4Þ

hence

ui½ �cijkl fj ¼ �ir fs fjcijkl�rs: ð5Þ

Renaming the indices (r → i, s → j, i → p, j → q) and
inserting this result in equation (1) gives

un xð Þ ¼
ZZ

S
�ijNijklGnk;l x; sð Þd2s; ð6Þ

with

Nijkl ¼ �pifj fqcpqkl: ð7Þ

[8] We assume that the properties of the fracture can be
characterized by a normal compliance hN and a shear
compliance hT. In that case, one can use a dyadic decom-
position to write the compliance matrix as h = hNf̂ f̂

T +
hT (I − f̂ f̂T), where I is the identity matrix. This identity is,
in component form, given by

�ij ¼ �N fi fj þ �T �ij � fi fj
� �

; ð8Þ

where dij is the Kronecker delta. We show in Appendix A
that this compliance matrix in an isotropic medium gives

Nijkl ¼ ��N fi fj�kl þ 2� �N � �Tð Þ fi fj fk fl þ ��T �ik fj fl þ �il fj fk
� �

;

ð9Þ

wherel andm are the Lamé parameters. Inserting equation (9)
into equation (6) does not give the scattered waves because
expression (6) constitutes an integral equation for the scat-
tered field. (The stress sij in the integrand of equation (6)
depends on the displacement field that we aim to compute.)
We solve this integral equation in the Born approximation
by replacing the stress in the right hand side of equation (6)
by the stress sij

(0) for a P or S wave propagating through a
homogeneous medium, depending on the type of incident
wave. In that case the scattered wave is given by

un xð Þ ¼
ZZ

S
�

0ð Þ
ij NijklGnk;l x; sð Þd2s: ð10Þ

Since Nijkl is known we can solve the scattering problem
using the Born approximation. Replacing the stress field sij
by the stress field sij

(0) of the incident wave is only valid
when the perturbation of the stress state by the fracture is
small. This is certainly not valid in the case of fluid‐filled
fractures, because for such fractures the shear traction van-
ishes at the fracture surface. For this reason the theory
presented here is only applicable to dry fractures.
[9] Consider first an incoming plane P wave that propa-

gates in the n̂ direction (Figure 1). Since such a wave is
polarized in the longitudinal direction,

u Pð Þ sð Þ ¼ n̂eik� n̂�sð Þ; ð11Þ

Figure 1. Definition of the normal vector f̂ to the fracture
(shaded), the directions n̂ and m̂ of the incoming wave and
outgoing waves, respectively. These vectors are also the
polarization vectors in case of P waves. For S waves the
polarization vectors of incoming and outgoing waves are
p̂ and q̂, respectively.
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where

k� ¼ !=�; ð12Þ

with a the P wave velocity and w the angular frequency. For
an isotropic medium sij = ldij∂kuk + m(∂iuj + ∂jui) and the
stress associated with this plane P wave is

�
Pð Þ
ij ¼ ik� ��ij þ 2�ninj

� �
eik� n̂�sð Þ: ð13Þ

For a plane S wave arriving from the n̂ direction and
polarized in the p̂ direction (Figure 1), the displacement is
given by

u Sð Þ sð Þ ¼ p̂eik� n̂�sð Þ; ð14Þ

where

k� ¼ !=�; ð15Þ

and b is the S wave velocity. The shear wave is transversely
polarized, hence (p̂ · n̂) = 0. For an isotropic medium the
associated stress is given by

�
Sð Þ
ij ¼ ik�� nipj þ njpi

� �
eik� n̂�sð Þ: ð16Þ

Inserting the stress (13) or (16) into expression (10) gives
the scattered field for incoming P and S waves, respectively.

3. Scattering Amplitudes

[10] The scattered field can effectively be expressed by a
scattering amplitude [Merzbacher, 1970]. According to
expression (10), the scattered field depends on Gnk,l, which
is the gradient of the Green’s function. Aki and Richards
[2002, expression (4.29)] give the gradient of the Green’s
function in the time domain for a homogeneous, isotropic
infinite space. Retaining the far field terms only and repla-
cing the time derivative with −iw gives, in the frequency
domain

Gnk;l x; sð Þ ¼ �i!mkmnml

4	
�3r
eik�r þ�i! �nk � mkmnð Þml

4	
�3r
eik�r ; ð17Þ

where the unit vector m̂ defines the direction of the outgoing
wave (Figure 1) and r = ∣x − s∣ denotes the distance between
the observation point x and the integration point s on the
fracture (Figure 2). In dyadic form, the term (dnk − mkmn)
can be written as I − m̂m̂T = Spolq̂q̂

T, where q̂ is the
polarization of the outgoing S wave (Figure 1), and Spol

represents the sum over the two orthogonal shear wave
polarizations perpendicular to the direction of the outgoing
wave. With this replacement, expression (17) can be written
as

Gnk;l x; sð Þ ¼ �i!mkmnml

4	
�3r
eik�r þ�i!

P
pol qnqkml

4	
�3r
eik�r : ð18Þ

[11] We choose the origin of our coordinate system near
the center of the fracture, and denote the distance from the
origin to the observation point by R (Figure 2). When this
distance is large compared to the size of the fracture, we can
approximate

r ¼ R� m̂ � sð Þ ; ð19Þ

where m̂ is the unit vector from the center of the fracture to
the observation point x (Figure 1), and s the location of the
integration point on the fracture. Equation (18) varies most
rapidly with r through the exponents eikr. For this reason we
replace r by equation (19) in the exponents, and replace r
in the denominator by R. Inserting these results into
equation (10) gives the following expressions for the radi-
ated P and S waves

u Pð Þ
n xð Þ ¼

ZZ
S
�

0ð Þ
ij Nijkle

�ik� m̂�sð Þd2s
�i!mnmkml

4	
�3

� �
eik�R

R
; ð20Þ

u Sð Þ
n xð Þ ¼

ZZ
S
�

0ð Þ
ij Nijkle

�ik� m̂�sð Þd2s
�i!

P
pol qnqkml

4	
�3

� �
eik�R

R
:

ð21Þ

In these expressions sij
(0) is given by equations (13) or (16)

depending on whether the incoming wave is a P wave or S
wave. We next define the scattering amplitude f for outgoing
P and S waves by

u Pð Þ
n xð Þ ¼ f�P

eik�R

R
mn ; ð22Þ

u Sð Þ
n xð Þ ¼

X
pol

f�S
eik�R

R
qn : ð23Þ

These equations are similar to the general expression of the
scattering pattern in the far field for an heterogeneous
inclusion, such as Martin [2006, equation (6.72)], see also
Gubernatis et al. [1977a]. Note the presence of the polari-
zation vectors for both types of waves (mn and qn, respec-
tively). In the following fP,P is the scattering amplitude
from a P wave into a P wave, fS,P is an S to P conversion,
etc. Since the incoming wave in equations (22) and (23) can
still be either a P wave or an S wave, we used the dot (·) in
the first argument of the scattering amplitudes. A compari-

Figure 2. Definition of distance R between the observation
point x and the center of the fracture, and the distance r
between the observation point x and the integration point
s on the fracture.
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son with equations (20) and (21) shows that the scattering
amplitude is given by

f�P ¼
ZZ

S
�

0ð Þ
ij Nijkle

�ik� m̂�sð Þd2s
�i!mkml

4	
�3

� �
; ð24Þ

f�S ¼
ZZ

S
�

0ð Þ
ij Nijkle

�ik� m̂�sð Þd2s
�i!qkml

4	
�3

� �
: ð25Þ

[12] In the following expressions it is convenient to use a
form factor F(k) that is defined as

F kð Þ ¼
RR

S ei k�sð Þd2sRR
S d2s

¼ A�1

ZZ
S
ei k�sð Þd2s ; ð26Þ

where A is the surface area of the fracture. Explicit
expressions for the scattering amplitude follow by inserting
expressions (9) and (13) or (16) into the equations above.
From here on the polarization of the outgoing S wave is
explicitly defined along q̂, as shown in Figure 1. As shown
in Appendix B this gives the following scattering amplitudes
for the different types of scattering

fP;P n̂; m̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þð Þ

� �2�N þ 2���N n̂ � f̂� �2 þ m̂ � f̂� �2� �n

þ 4�2 �N � �Tð Þ n̂ � f̂� �2
m̂ � f̂� �2

þ 4�2�T n̂ � m̂ð Þ n̂ � f̂� �
m̂ � f̂� �o

; ð27Þ

fP;S n̂; m̂; q̂ð Þ ¼ !2

4	
��3
�AF k�n̂� k�m̂

� �n
2��N m̂ � f̂� �

q̂ � f̂� �

þ 4� �N � �Tð Þ n̂ � f̂� �2
q̂ � f̂� �

m̂ � f̂� �
þ 2��T n̂ � f̂� �

n̂ � q̂ð Þ m̂ � f̂� �þ n̂ � m̂ð Þ q̂ � f̂� �� �o
;

ð28Þ

fS;P n̂; p̂; m̂ð Þ ¼ !2

4	
�3�
�AF k�n̂� k�m̂

� �n
2��N n̂ � f̂� �

p̂ � f̂� �
:

þ 4� �N � �Tð Þ n̂ � f̂� �
p̂ � f̂� �

m̂ � f̂� �2
þ 2��T m̂ � f̂� �

p̂ � m̂ð Þ n̂ � f̂� �þ n̂ � m̂ð Þ p̂ � f̂� �� �o
;

ð29Þ

fS;S n̂; p̂; m̂; q̂ð Þ ¼ !2

4	
�4
�2AF k� n̂� m̂ð Þ� �

�
n
4 �N � �Tð Þ n̂ � f̂� �

p̂ � f̂� �
m̂ � f̂� �

q̂ � f̂� �
þ �T n̂ � q̂ð Þ p̂ � f̂� �

m̂ � f̂� �þ �T n̂ � f̂� �
p̂ � q̂ð Þ m̂ � f̂� �

þ �T n̂ � m̂ð Þ p̂ � f̂� �
q̂ � f̂� �þ �T n̂ � f̂� �

p̂ � m̂ð Þ q̂ � f̂� �o
:

ð30Þ

Note that the P to P scattering amplitude fP,P(n̂; m̂) depends
only on the directions of incoming and outgoing waves,
respectively, because these directions determine the polari-

zation of the incoming and outgoing P waves. In contrast,
the P to S scattering amplitude fP,S(n̂; m̂, q̂) depends
explicitly on the polarization of the outgoing S wave as well.
This dependence of the S wave polarization appears when-
ever an S wave is involved, either as incoming or outgoing
wave. Expressions (27) through (30) do not change when
f̂ is replaced by −f̂ . This reflects the fact that both f̂ and
−f̂ are normal to the fracture, and reversing the direction of
the normal vector should not change the scattering of waves.
[13] For all incoming and outgoing waves in equations

(27)–(30), the form factor (26) is evaluated at wave num-
ber kin − kout, where kin is the wave number of the incoming
wave and kout that of the outgoing wave. It may appear that
F(kin − kout) violates reciprocity because it turns into its
complex conjugate upon interchanging kin and kout. Reci-
procity is, however, not violated for the expressions of the
scattered waves in expressions (22) and (23). The exponential
in these expressions is given by exp(ikoutR), and the form
factor contains another exponential exp(i(kin − kout) · s). The
combination of the exponentials gives a total contribution
exp(ikoutR + i(kin − kout) · s). Using expression (19), and
using that kout = koutm̂, the phase is given by koutr + kout ·
s + (kin − kout) · s = koutr + kin · s. This expression is the
sum of the phase of the incident plane wave and the out-
going spherical wave for every integration point on the
fracture, and the total scattered field obeys reciprocity.

4. Scattering by a Plane Crack

[14] We next derive explicit expressions for the scattering
amplitudes in terms of the directions of the incoming and
scattered waves for the special case of a plane crack that is
either small or circular. We define a crack to be “small”
when the argument (k · s) in expression (26) is much smaller
than 1. This is the case when

kka � 1 ; ð31Þ

where kk is the absolute value of the component of k parallel
to the crack, and a is the size of the crack. In equation (28)
the form factor is given by F(kan̂ − kbm̂). The incoming
P wave has wave number kan̂, while the outgoing scattered
S wave has wave number kbm̂. The difference kan̂ − kbm̂
thus denotes the change in the wave number during the
scattering. In expressions (27)–(30) the form factor F(k) is
always evaluated at the wave number change during the
scattering. Therefore, condition (31) does not necessarily
imply that the fracture must be small compared to a wave-
length. For example, for forward scattering of P waves, kk =
ka(n̂ − m̂) = 0 in expression (27), and condition (31) is
satisfied for a fracture of any size. When condition (31) is
satisfied, the exponent in equation (26) can be ignored and

F kð Þ ¼ 1 small fractureð Þ: ð32Þ

We show in Appendix C that for a circular fracture with
radius a

F kð Þ ¼ 2

kka
J1 kka
� �

circular fractureð Þ; ð33Þ

where J1 is the Bessel function of order 1. In the following
we retain F(k), but expressions (32) and (33) can be inserted
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for small cracks and circular cracks, respectively. According
to Arfken and Weber [2001, expression (11.5)], J1(x) = x/2 +
O(x2), hence expression (33) reduces to equation (32) for a
small crack as kka → 0, and this holds independently of the
incidence and scattering angles.
[15] In order to express the scattering amplitude in the

angles that define the incoming and outgoing waves, we
must define these angles and the orientation of the fracture.
We use a coordinate system where the z axis is perpendic-
ular to the fracture, and the x axis is chosen in such a way
that the incoming wave propagates in the (x, z) plane coming
from the −x direction (Figure 3). The direction of the
incoming wave makes an angle y with the z axis, while the
direction of the outgoing wave is defined by the angles �
and ’ that are commonly used in a spherical coordinate
system. Referring to Figure 3 this means that the vector
normal to the fracture and the directions of incoming and
outgoing waves are given by

f̂ ¼
0
0
1

0
@

1
A; n̂ ¼

sin 
0

cos 

0
@

1
A; m̂ ¼

cos’ sin �
sin’ sin �
cos �

0
@

1
A : ð34Þ

For a circular crack, these angles determine kk. For example,
for P to S scattering it follows from expression (28), the
definition of kk, and equation (34) that

kk P;S ¼ k�n̂� k�m̂
� �

k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� sin � k� cos’ sin �
� �2 þ k� sin’ sin �

� �2q
: ð35Þ

In the following we do not make this dependence on the
angles explicit, but it should be kept in mind that for a
circular crack one needs to account for the directions of
incoming and outgoing waves in F(k).
[16] We next specify the polarization vectors for shear

waves. Using the terminology for layered media, we define
a polarization vector q̂SH to be parallel to the fracture
(Figure 4). Following Figures 3 and 4 the polarization vector
for the SH wave satisfies

q̂SH ¼
� sin’
cos’
0

0
@

1
A : ð36Þ

The other S wave polarization (q̂SV) is oriented in the plane
spanned by the normal vector f̂ and the propagation direc-
tion m̂ (Figure 4), and is given by

q̂SV ¼ m̂� q̂SH ¼
� cos’ cos �
� sin’ cos �

sin �

0
@

1
A : ð37Þ

Since the fracture is finite, the label SH should not be taken
to mean that the shear wave with this polarization is
decoupled from the SV polarization and the P waves.
Indeed, the diffraction from the edges of the fracture con-
tributes to nonzero scattering amplitudes fSH,P and fSH,SV.
The polarization vectors from incoming shear waves fol-
low from expressions (36) and (37) by replacing ’→ 0 and
� → y, this gives

p̂SH ¼
0
1
0

0
@

1
A; p̂SV ¼

� cos 
0

sin 

0
@

1
A: ð38Þ

[17] Inserting the direction vectors (34) and polarization
vectors (36) and (37) into expressions (27) through (30)
gives the angular dependence of the scattering amplitude.
The scattering amplitude, which is different for the two S
polarizations, is given by

fP;P n̂; m̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þð Þ

� �þ �ð Þ2�N þ �þ �ð Þ��N cos 2 þ cos 2�ð Þ
n

þ �2�N cos 2 cos 2�þ �2�T sin 2 sin 2� cos’
o
;

ð39Þ

fP;SH n̂; m̂; q̂ð Þ ¼ !2

4	
��3
AF k�n̂� k�m̂

� �
� ��2�T
� �

sin 2 cos � sin’ ; ð40Þ

fP;SV n̂; m̂; q̂ð Þ ¼ !2

4	
��3
AF k�n̂� k�m̂

� �
� �þ �ð Þ��N sin 2�þ �2�N cos 2 sin 2�
	

� �2�T sin 2 cos 2� cos’


; ð41Þ

Figure 3. Definition of angles for incoming and outgoing
waves from a fracture (shaded area).

Figure 4. Polarization vectors for outgoing shear waves.
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fSH ;P n̂; p̂; m̂ð Þ ¼ !2

4	
�3�
AF k�n̂� k�m̂

� �
�2�T cos sin 2� sin’ ;

ð42Þ

fSV ;P n̂; p̂; m̂ð Þ ¼ !2

4	
�3�
AF k�n̂� k�m̂

� �
� �þ �ð Þ��N sin 2 þ �2�N sin 2 cos 2�
	

� �2�T cos 2 sin 2� cos’


; ð43Þ

fSH ;SH n̂; p̂; m̂; q̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þ� �

�2�T cos cos � cos’ ;

ð44Þ

fSH ;SV n̂; p̂; m̂; q̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þ� �

� ��2�T
� �

cos cos 2� sin’ ; ð45Þ

fSV ;SH n̂; p̂; m̂; q̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þ� �

�2�T cos 2 cos � sin’ ;

ð46Þ

fSV ;SV n̂; p̂; m̂; q̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þ� �

�2�N sin 2 sin 2�
	

þ �2�T cos 2 cos 2� cos’


: ð47Þ

Expressions (27) through (30) each contain a contribution
4(hN − hT). In the derivation of equations (39) through (47)
the contribution from the terms proportional to 4(hN − hT)
is canceled by other terms containing hT, which results in a
considerable simplification of the resulting expressions.
[18] Note that any scattering coefficient with an SH wave

as incoming or outgoing wave depends on m and hT, but not
on l and hN, which reflects that SH waves do not depend on
the compressive response of the medium. As a result, only

the shear properties of the fracture influence the scattering to
and from SH waves.

5. Laboratory Experiments

[19] We carry out laboratory experiments in order to
measure P to P scattering and test our theoretical model. We
use ultrasonic frequencies in plastic samples. The samples
are Poly(methyl methacrylate) (PMMA) cylinders with a
diameter of 50.8 mm and a height of 150 mm (Figure 5).
Elastic waves are generated with a 5 MHz disk‐shaped
piezoelectric transducer (PZT) with a diameter of 7.5 mm,
attached to the curved surface of the cylinder using phenyl
salicylate as a glue. Because this glue has a melting point of
41.5°C, slight heating is enough to melt it and use it to
attach the transducer to a curved surface. The PZT is
driven by a 400 V pulse with maximum energy at its natural
frequency.
[20] We measure the elastic displacement with a laser

interferometer. Our adaptive laser ultrasonic receiver is
based on a doubled Nd:YAG laser, generating a Constant
Wave (CW) 250 mW beam at a wavelength of 532 nm. The
receiver uses two‐wave mixing in a photorefractive crystal
to deliver the displacement of the sample surface. This
receiver measures the out‐of‐plane (vertical) displacement
field. It is calibrated to output the absolute displacement
field in nanometers (see Blum et al. [2010] for a complete
description). The frequency response is flat between 20 kHz
and 20 MHz, and it can accurately detect displacements of
the order of parts of Ångstroms. Since the sample material is
transparent for green light, we apply a reflective tape to the
surface to reflect light back to the laser receiver.

5.1. Measurements on a Blank Sample

[21] We first carry an experiment out on a blank cylinder.
This measurement is used as a reference of the background
field propagating in the absence of a scatterer. The sample is
mounted on a computer‐controlled rotational stage. We
focus the laser receiver beam on the sample in a plane
normal to the cylinder axis (taken as the y axis). This plane

Figure 5. Geometry of the experimental setup with the angles as defined in Figure 3.
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also contains the PZT source, the source and receiver are
thus located in the (x, z) plane. By computer‐controlled
rotation of the stage, we measure the elastic field in this
plane every degree with respect to the center of the cylinder,
except for a small range of angles blocked by the PZT
source. The signal is digitized with 16‐bit precision and a
sampling rate of 100 MS/s (mega samples per second) and
recorded on a computer acquisition board. For each receiver
location, 256 waveforms are acquired and averaged after
digitization.
[22] Figure 6 shows the raw ultrasonic displacement field

for all recorded azimuths. The horizontal axis represents
the angle d between the source and the receiver directions,
d = � + 180° (for � defined in Figure 3, see also Figure 5).
The main events on this scan are the direct P wave dis-

placement with a curved moveout and the Rayleigh wave
traveling around the sample with a linear moveout. Some
ringing of the source is present after the direct arrival and
strongest for d angles close to 180°. The frequency content
of these data ranges from 250 kHz to 1.2 MHz. In order to
remove the high‐amplitude Rayleigh wave arrival, we apply
an f‐k filter to the data. The resulting displacement field is
presented in Figure 7. All measurements following these are
performed in the (x, z) plane and f‐k filtered.
[23] From these data we find the P and S wave velocities

of the material to be respectively a = 2600 m/s and b =
1400 m/s. For a PMMA density of r = 1190 kg/m3, these
values correspond to Lamé coefficients l = 3.4 GPa and m =
2.3 GPa, respectively.

5.2. Fractured Sample

[24] We create a single fracture in a different cylinder of
PMMA by focusing a high power Q‐switched Nd:YAG laser
in the sample. The laser generates a short pulse (∼20 ns) of
infrared (IR) light that is absorbed by the sample material at
the focal point and is converted into heat. The sudden
thermal expansion generates stress and forms a fracture
parallel to the cylindrical axis. Zadler and Scales [2008]
give a more extensive description of the fracture generation
process. The laser‐generated fracture, shown in Figure 8,
has a roughly circular shape and a radius of approximately
5 mm. Figure 5 shows a diagram of the fractured sample and
the geometry of the experimental setup.
[25] We show in Figure 9 the ultrasonic displacement after

f‐k filtering, measured with the PZT source at location S1
normal to the fracture plane (Figure 10). This source loca-
tion corresponds to an angle y = 0°. In addition to the events
present with the blank sample, Figure 9 shows a wave
arriving at about 20 ms, this arrival corresponds to the P‐P

Figure 6. Displacement field for a homogeneous PMMA
sample.

Figure 7. Displacement field for the homogeneous PMMA
sample after f‐k filtering of the Rayleigh wave, highlighting
the direct P wave arrival.

Figure 8. Photograph of the disk‐shaped fracture in our
laboratory sample. Ruler units are cm. The diameter of the
fracture is approximately 10 mm, and the diameter of the
cylinder is 50.8 mm.
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scattered field from the crack. The amplitude of this event is
maximum for d = 180° (forward scattering), and d = 0°
(backscattering), corresponding to the specular reflection
(Figure 10). Note that this event is slightly asymmetric: for
receiver angles d < 180°, the scattering arrival is earlier than
20 ms, whereas for angles d > 180°, the wave arrives slightly
later than 20 ms. This is due to the fact that the fracture is not
perfectly centered on the y axis. For forward scattering the
scattered wave interferes with the direct wave (Figure 9),
and the scattering amplitude cannot be measured accurately.
The presence of the source transducer makes it difficult to
measure the backscattered waves. For this reason Figure 12
does not show the scattering amplitude for scattering angles
near forward and backward scattering.
[26] As we show in the next section, for this source

position the scattering amplitude is a function of hN only. In
an attempt to estimate hT, we perform a last experiment with
the PZT source at location S2, making an angle y ≈ 50° to

the normal to the fracture plane, but still in the (x, z) plane
(see Figure 9). The corresponding ultrasonic displacement
field after f‐k filtering is shown in Figure 11. Note that, as
shown in Figure 10, the scattering amplitude is largest for
angles slightly larger than the specular reflection angle
(corresponding to d = 310°).

5.3. Scattering Amplitudes

[27] The theoretical scattering amplitudes for all combi-
nations of waves are given by expressions (39) through (47).
Here the source is at a fixed angle y to the normal of the
fracture, hence n̂ = sin y x̂ + cos y ẑ. The receiver is always
in the (x, z) plane, therefore � = 0° and m̂ = sin � x̂ + cos � ẑ.
[28] For the case of both incoming and scattered P wave,

equation (39) simplifies to

fP;P n̂; m̂ð Þ ¼ !2

4	
�4
AF k� n̂� m̂ð Þð Þ

� �N �þ �ð Þ2þ cos 2 þ cos 2�ð Þ �þ �ð Þ�
�h

þ �2 cos 2 cos 2�ð Þ
�
þ �T�

2 sin 2 sin 2�ð Þ
i
: ð48Þ

Moreover, for a circular fracture, equation (33) reduces for
this geometry to

F k� n̂� m̂ð Þð Þ � 2�

a! sin � sin �ð Þ J1
!a

�
sin � sin �ð Þ

� �
: ð49Þ

[29] For the experimental case, the scattering amplitude is
thus given by

fP;P  ; �ð Þ ¼ !a

2
�3 sin � sin �ð Þ J1
!a

�
sin � sin �ð Þ

� �

� �Nf �þ �ð Þ2 þ cos 2 þ cos 2�ð Þ �þ �ð Þ�
h

þ �2 cos 2 cos 2�ð Þg þ �T�
2 sin 2 sin 2�ð Þ

i
: ð50Þ

Figure 9. Displacement field for the fractured PMMA
sample, with the source at normal incidence (after f‐k
filtering).

Figure 10. Schematic of the experimental setup with direc-
tions of maximum specular reflection for the two source
positions.

Figure 11. Displacement field for the fractured PMMA
sample, where the source is at y = 50° incidence (after f‐k
filtering).
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Note that for a source at normal incidence, y = 0° and
therefore the term containing hT vanishes. In this case, the
scattering amplitude fP,P(y = 0°, �) depends only on the
normal component hN of the compliance tensor. On the other
hand, for a nonnormal incidence y, the scattering amplitude
fP,P is a function of both hN and hT.
[30] To compare the experimental results with the analytic

expression, we measure the scattering amplitude. We apply
a narrow band‐pass filter centered around f0 = 1 MHz,
corresponding to the dominant frequency of the scattered
event. We then pick the amplitude of the scattered arrival at
its maximum for a range of angles excluding traces close to
the source, and for receivers facing the source, where the
incident and scattered field overlap. We normalize the
scattering amplitude by the amplitude of the direct P arrival
at normal incidence, in order to compensate for differences
in source coupling and strength between the two source
locations. The experimental amplitudes for the valid range
of angles are plotted in blue in Figures 12 and 13.
[31] We compute the corresponding theoretical ampli-

tudes for f0 = 1 MHz, and use the Lamé coefficients com-
puted from the measurement in the sample without fracture.
We assume the created fracture behaves as a circular frac-
ture with radius a = 5 mm, estimated visually. We first
optimize the fit with the theoretical amplitude (displayed in
red) for the normal incidence data since for this angle of
incidence the scattering amplitude depends only on normal
component of the compliance hN, but not on hT. The best fit
is obtained for hN ≈ 10−11 m/Pa, corresponding to the thick
dashed red curve in Figure 12. We also display the com-
puted scattering amplitude for hN = 2 · 10−11 m/Pa (dotted
purple line) and hN = 0.5 · 10−11 m/Pa (dotted orange line),
to show that the hN = 10−11 m/Pa value is a robust fit. Note
that the fit with hN only calibrates the overall amplitude of
the scattering amplitude, but that the dependence of the
scattering amplitude on the scattering angle is completely
determined by the theory.

[32] We then use this value for hN to optimize the fit of
the second dataset by changing the shear compliance hT.
Figure 13 is a comparison between data and theoretical
curves for hN = 10−11 m/Pa and three different values of the
shear compliance: hT = 10−12 m/Pa (thick dashed red line)
and hT = 10−11 m/Pa (dotted purple line) and hT = 10−13 m/Pa
(dotted orange line). While according to equation (50) the
scattering amplitude depends on the shear compliance hT,
this dependence is weak. The best fitting shear compliance
hT = 10−12 m/Pa is an order of magnitude smaller than the
estimated normal compliance, and the uncertainty in the
estimate of the shear compliance ranges from 10−13 m/Pa to
10−11 m/Pa. These values of compliances are, however, in
the same range as h ∼ 10−13 − 10−9 m/Pa found in the lit-
erature for the case of a single fracture in steel [Pyrak‐Nolte
et al., 1990] and natural rocks [Worthington, 2007].

6. Conclusions

[33] Because fractures play a key role in processes going
from seismic activity to fluid flow, fracture characterization
is a critical step in time lapse monitoring of fluid flow in
reservoirs. Based on a linear slip model, we derive the
analytic expression of the scattered amplitude of a plane
fracture of arbitrary size under the Born approximation. Of
particular interest are the results for fractures of comparable
size to the elastic wavelength. The theory provides scatter-
ing amplitudes for every combination of incident and scat-
tered wave mode, which are expressed as a product of a
Bessel function and trigonometric functions in the case of a
circular fracture. Noncontacting ultrasonic data acquired on
a plastic laboratory sample for P wave to P wave scattering
from a circular fracture is in qualitative agreement with the
theory, and the estimated compliance of the fracture agrees
with the range of values reported in the literature. The theory
presented here is not applicable to fluid‐filled fractures,
because the Born approximation used in equation (10) and

Figure 12. Scattering amplitude for the source at normal
incidence in blue (y = 0°). The best theoretical fit corre-
sponding to hN = 10−11 m/Pa is plotted in thick dashed
red. We also show the theoretical amplitudes corresponding
to half (dotted orange) and twice (dotted purple) this value
of hN. The vertical black lines indicate the boundaries
between regions where the scattered field is and is not
measured.

Figure 13. Scattering amplitude for the source at y = 50°
incidence in blue. The theoretical curve for hN = 10−11 m/Pa
and hT = 10−12 m/Pa is plotted with a thick dashed red line.
We also show the theoretical amplitudes corresponding to
one tenth (dotted orange) and ten times (dotted purple) this
value of hT. We see here that the value of hT is not well con-
strained for this experimental configuration. The vertical
black lines indicate the boundaries between regions where
the scattered field is and is not measured.
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subsequent expressions break down when the fluid in the
fracture causes the shear traction at the fracture to vanish.

Appendix A: Derivation of Nijkl for an Isotropic
Medium

[34] Inserting the expression for the elasticity tensor for an
isotropic medium and equation (8) into definition (7) of Nijkl

gives

Nijkl ¼ �N fp fi þ �T �pi � fp fi
� �	 


fj fq ��pq�kl þ ��pk�ql þ ��pl�qk
	 


:

ðA1Þ

Carrying out the multiplication and summing over the vari-
ables of the delta functions gives

Nijkl ¼ ��kl �N fp fi fj fp þ �T fj fi � �T fp fi fj fp
	 


þ � �N fk fi fj fl þ �T �ik fj fl � �T fk fi fj fl
	 


þ � �N fl fi fj fk þ �T �il fj fk � �T fl fi fj fk
	 


:

ðA2Þ

Since the vectors f̂ , n̂, p̂, m̂ and q̂ are unit vectors

fj fj ¼ njnj ¼ pjpj ¼ mjmj ¼ qjqj ¼ 1 : ðA3Þ

Using this in equation (A2), and combining terms, leads to
expression (9).

Appendix B: Derivation of the Scattering
Amplitude

[35] In this appendix we show how to derive the scattering
amplitudes in expressions (27)–(30). In order to derive fPP,
the stress (13) of an incoming P wave and equation (9)
combine to give

�
Pð Þ
ij Nijklmkml ¼ ik�e

ik� n̂�sð Þ

� �2�N fi fimkmk þ 2�� �N � �Tð Þfi fi fk flmkml

	
þ ���T fi flmiml þ ���T fi fkmkmi

þ 2���Nninj fi fjmkmk

þ 4�2 �N � �Tð Þninj fi fj fk flmkml

þ 2�2�Tninjfjflmiml þ 2�2�Tninjfjfkmimk



: ðB1Þ

Combinations, such as ni fi, are dot products and reduce to
(n̂ · f̂). Using this, and the normalization (A3) in expression
(B1), gives after combining terms

�
Pð Þ
ij Nijklmkml ¼ ik�e

ik� n̂�sð Þ � �2�N þ 2���N n̂ � f̂� �2þ m̂ � f̂� �2� �n

þ 4�2 �N � �Tð Þ n̂ � f̂� �2
m̂ � f̂� �2

þ 4�2�T n̂ � m̂ð Þ n̂ � f̂� �
m̂ � f̂� �o

: ðB2Þ
Inserting this in equation (24), using that ka = w/a and
definition (26) for F(k), gives expression (27).
[36] Similar steps for P to S scattering give

�
Pð Þ
ij Nijklqkml ¼ ik�e

ik� n̂�sð Þ � �2�N fi fiqkmk þ 2���N fi fjninjqkmk

	
þ 2�� �N � �Tð Þ fi fi fk flqkml

þ 4�2 �N � �Tð Þninj fi fj fk flqkml

þ ���T fi flqiml þ 2�2�Tninj fj flqiml

þ ���T fi fkqkmi þ 2�2�Tninj fj fkqkmi



: ðB3Þ

The polarization of the outgoing S wave is perpendicular to
the direction of propagation, hence

qkmk ¼ q̂ � m̂ð Þ ¼ 0 ; ðB4Þ

hence the first two terms in the right hand side of expression
(B3) vanish. Using this, and the normalization (A3), gives

�
Pð Þ
ij Nijklqkml ¼ ik�e

ik� n̂�sð Þ � 2���N m̂ � f̂� �
q̂ � f̂� �	

þ 4�2 �N � �Tð Þ n̂ � f̂� �2
m̂ � f̂� �

q̂ � f̂� �
þ 2�2�T n̂ � f̂� �

m̂ � f̂� �
n̂ � q̂ð Þ þ n̂ � m̂ð Þð Þ
 : ðB5Þ

Using this in expression (25) leads, with definition (26), to
equation (28).
[37] For S to P scattering we use expression (16) for the

stress, hence

�
Sð Þ
ij Nijklmkml ¼ ik�e

ik� n̂�sð Þ

� ���Nnipj fi fjmkmk þ ���Nnjpi fi fjmkmk

	
þ 2�2 �N � �Tð Þnipj fi fj fk flmkml

þ 2�2 �N � �Tð Þnjpi fi fj fk flmkml

þ �2�Tnipj fj flmiml þ �2�Tnjpi fj flmiml

þ �2�Tnipj fj fkmimk þ �2�Tnjpi fj fkmimk



: ðB6Þ

Using expression (A3) this can be reorganized as

�
Sð Þ
ij Nijklmkml ¼ ik�e

ik� n̂�sð Þ � 2���N n̂ � f̂� �
p̂ � f̂� �	

þ 4�2 �N � �Tð Þ n̂ � f̂� �
p̂ � f̂� �

m̂ � f̂� �2
þ 2�2�T m̂ � f̂� �

n̂ � m̂ð Þ p̂ � f̂� �þ p̂ � m̂ð Þ n̂ � f̂� �� �

:

ðB7Þ

Inserting this in equation (24) leads with expression (26) to
the S to P scattering amplitude (29).
[38] Finally the S to S scattering amplitude follows from

the same steps:

�
Sð Þ
ij Nijklqkml ¼ ik�e

ik� n̂�sð Þ

� �2��Nnipj fi fjqkmk þ �2��Nnjpi fi fjqkmk

	
þ 2�2 �N � �Tð Þ nipj fi fj fk flqkml þ njpi fi fj fk flqkml

� �
þ �2�Tnipj fj flqiml þ �2�Tnjpi fj flqiml

þ �2�Tnipj fj fkqkmi þ �2�Tnjpi fj fkqkmi



: ðB8Þ

The polarization vector q̂ of the outgoing S wave is
perpendicular to the direction of propagation, hence qkmk =
(m̂ · q̂) = 0, and the terms proportional to l vanish. The
remaining terms are, in vector notation, given by

�
Sð Þ
ij Nijklqkml ¼ ik�e

ik� n̂�sð Þ�2

� 4 �N � �Tð Þ n̂ � f̂� �
p̂ � f̂� �

m̂ � f̂� �
q̂ � f̂� �	

þ �T n̂ � q̂ð Þ p̂ � f̂� �
m̂ � f̂� �þ �T n̂ � f̂� �

p̂ � q̂ð Þ m̂ � f̂� �
þ �T n̂ � m̂ð Þ p̂ � f̂� �

q̂ � f̂� �þ �T n̂ � f̂� �
p̂ �m̂ð Þ q̂ � f̂� �


:

ðB9Þ
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Using this, and definition (26), in expression (25) gives
equation (30).

Appendix C: F(k) for a Circular Crack

[39] Following definition (26), the form factor for a cir-
cular crack with radius a is given by

F kð Þ ¼ A�1

ZZ
S
ei k�sð Þd2s ¼ A�1

Z a

0

Z 2	

0
eikks cos dsds ; ðC1Þ

where x is the angle between the projection of k on the
fracture and the integration variable s. The integral repre-
sentation of the Bessel function as given byArfken andWeber
[2001, expression (11.30c)] (2p J0(x) =

R
0
2p eix cos x dx)

reduces expression (C1) to

F kð Þ ¼ A�1

ZZ
S
ei k�sð Þd2s ¼ 2	

A

Z a

0
sJ0 kks

� �
ds ; ðC2Þ

where J0 is the Bessel function of order zero. We next use
the recursive relation d(xn Jn(x))/dx = xn Jn−1(x) [Arfken and
Weber, 2001, equation (11.15)]. Setting n = 1 and x = kks
gives

sJ0 kks
� � ¼ k�1

k
d

ds
sJ1 kks

� �� �
: ðC3Þ

Inserting this in expression (C2) yields

F kð Þ ¼ 2	

kkA

Z a

0

d

ds
sJ1 kks

� �� �
ds ¼ 2	

kkA
aJ1 kka

� �
: ðC4Þ

Using that A = pa2 gives equation (33).
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