
Nicole Nimlos
Boise State University

Stephen Novak
Boise State University
We predict that Sagebrush Populations (*Artemesia tridentata*) exhibit primarily wind pollination, suggesting a heterozygous level of genetic diversity and high evolutionary (adaptive) potential through diversification and speciation processes.

Conservation Implications
Total land use and demands on sagebrush lands for all purposes have increased since Euro-American settlement. Holistic consideration of all human-associated disturbances is required to address the complexity of multiple, interacting, or additive factors if sagebrush areas are to be effectively maintained or restored (Knick et al., 2011). As a major keystone species in the northwest of the United States, further conservation is necessary to effectively maintain and restore the species.

Future Research
The inherent resistance and resiliency of sagebrush communities to land use varies considerably. We cannot fully appreciate how the cumulative effects of these unprecedented intensities and current trajectories of land use will influence long-term conservation of sagebrush landscapes and sage-grouse populations (Knick et al., 2011). This research has been temporarily halted due to COVID-19 and should continue to further analyze the significance of the bands on the gel runs to investigate the heterozygosity levels.

References

My Goals
- Determine level & structure of genetic diversity
- Estimate mating systems (amount of outcrossing vs. self-pollination)
- Assess evolutionary potential & fitness of sagebrush populations

Methods
1. Grind tissues with buffer
2. Prepare Gels
3. Submerge wicks in individual tissues
4. Electrophoresis
5. Put wicks in gels
6. Score Bands

Results
We predict that Sagebrush Populations (*Artemesia tridentata*) exhibit primarily wind pollination, suggesting a heterozygous level of genetic diversity and high evolutionary (adaptive) potential through diversification and speciation processes.

Conservation Implications
Total land use and demands on sagebrush lands for all purposes have increased since Euro-American settlement. Holistic consideration of all human-associated disturbances is required to address the complexity of multiple, interacting, or additive factors if sagebrush areas are to be effectively maintained or restored (Knick et al., 2011). As a major keystone species in the northwest of the United States, further conservation is necessary to effectively maintain and restore the species.