
Boise State University Boise State University

ScholarWorks ScholarWorks

Computer Science Faculty Publications and
Presentations Department of Computer Science

2018

Structurally Defined Conditional Data-Flow Static Analysis Structurally Defined Conditional Data-Flow Static Analysis

Elena Sherman
Boise State University

Matthew B. Dwyer
University of Nebraska - Lincoln

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs

Structurally Defined Conditional
Data-Flow Static Analysis

Elena Sherman1(B) and Matthew B. Dwyer2

1 Boise State University, Boise, ID 83706, USA
elenasherman@boisestate.edu

2 University of Nebraska - Lincoln, Lincoln, NE 68588, USA
matthewbdwyer@unl.edu

Abstract. Data flow analysis (DFA) is an important verification tech-
nique that computes the effect of data values propagating over program
paths. While more precise than flow-insensitive analyses, such an analy-
sis is time-consuming.

This paper investigates the acceleration of DFA by structural decom-
position of the underlying control flow graph. Specifically, we explore the
cost and effectiveness of dividing program paths into subsets by parti-
tioning path suffixes at conditional statements, applying a DFA on each
subset, and then combining the resulting invariants. This yields a family
of independent DFA problems that are solved in parallel and where the
partial results of each problem represent safe program invariants.

Empirical evaluations reveal that depending on the DFA type and
its conditional implementation the invariants for a large fraction of pro-
gram points can be computed in less time than traditional DFA. This
work suggests a strategy for an “anytime DFA” algorithm: computing
safe program invariants as the analysis proceeds.

1 Introduction

Software developers use static analyses as a supplement to traditional dynamic
testing approaches. Tools such as AbsInt Astrée [1], Facebook Infer [2], and
MathWorks Polyspace1 are becoming standard parts of development workflows.
Advances in program analysis and theorem proving have helped static program
analysis become more feasible for verification of general-purpose software.

The power of static analysis to consider all program behaviors follows from its
ability to safely over-approximate program behaviors by abstracting the concrete
domain of program variables and the programming language semantics. But at
the same time its over-approximating nature causes static analysis to identify
some property violations as uncertain. The reason for this uncertainty is that
a static analysis cannot tell if a violation happens on a feasible or an infeasi-
ble, i.e., strictly over-approximating, program behavior. This inconclusiveness is

1 http://www.mathworks.com/products/polyspace.html.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 249–265, 2018.
https://doi.org/10.1007/978-3-319-89963-3_15

250 E. Sherman and M. B. Dwyer

unacceptable since each potential violation must be examined further. An auto-
matic solution to the elimination of false positive violations is to increase the
precision of a static analysis, i.e., improve the analysis so it considers fewer
infeasible behaviors.

However, improving analysis precision generally increases analysis cost in
terms of running time and memory consumption. A common approach to address
this problem is to decompose the program’s state space into several subspaces
and perform analysis on each separately. What distinguishes those techniques
are the underlying decomposition methods.

One approach focuses on making a precise static analysis scalable by decom-
posing a large program into modules like procedures and classes, and allowing
the analysis to examine each partition independently. Next, the analyzed infor-
mation of each module is composed together to obtain the result of the whole
program analysis. In the literature [3,4] this method is referred to as partial
static analysis.

Another approach aims to improve the scalability of precise analysis by per-
mitting the analysis to explore only those program states for which it is ade-
quately precise, i.e., able to provide definitive result. In the literature [5–7] this
approach is called conditional static analysis (CSA) since the permitted states
are described by a condition θ expressed as a logical formula. In such a frame-
work an analysis verifies a program under some assumptions, i.e., there are no
null pointer exceptions or a pre-condition on input values is assumed to hold.
Next, another analysis attempts to prove these assumptions by showing that the
states, which do not satisfy θ are either not reachable or do not lead to property
violations. In prior work the condition θ is either determined from the analysis
design [5,6], where θ is applicable to all program states, or determined during
program analysis execution [7], where θ is composed of the conditions assumed
to hold for a certain set of states.

While previous work on CSA focuses on finding values of θ that ensure an
increase in analysis precision, in this paper we explore the decomposition of
the program’s state space in order to improve the efficiency of the analysis. We
decompose the program’s state space based on the program’s control flow graph
(CFG), i.e., on the program’s structural information. Each partition corresponds
to a set of paths expressed as a set of CFG branches π. This permits a path, or
π, defined CSA to compute invariants for each π independently and in parallel.
While one can use a logical formula θ as a precondition to restrict program
input values to those that follow a particular path, we conjecture two primary
advantages of structural decomposition. First, π is expressed directly as a subset
of CFG branches and computing an equivalent θ, expressing constraints on input
values, would require complex value propagating analyses. Second, because π
is structural its effect on the analysis is independent of the abstract domain,
whereas even an equivalent θ may not be effective in preventing values from
flowing along a branch due to over-approximation by the abstract domain.

Conditional Data-Flow Analysis 251

The contributions of this paper are presentation of:

1. A formalization of the path-define CSA as a data-flow framework.
2. Two algorithms for implementing CSA in existing analysis frameworks.
3. An approach to efficiently partition CFG paths for path-defined CSA.

In the next section, we provide an overview of the structural CSA approach
and pose our research questions. After that we formalize CSA in Sect. 3 and
demonstrate in Sect. 4 two different ways of implementing CSA in an existing
program analysis framework. In Sect. 5 we present our approach to partitioning
a CFG. Then we present our experiments and discuss related work.

2 Overview

We begin with an example of a traditional data-flow analysis. Data-flow analysis
calculates some information for each point in a program based on the program
structure and the language semantics. The calculated facts, i.e., program invari-
ants, are then later used to reason about program properties, usually safety prop-
erties, which must hold on all feasible program executions. Data-flow analyses
that compute invariants that are satisfied by all paths are called must analyses.
In our example we show how a data-flow analysis computes invariants for each
program statement.

Consider a program and its corresponding CFG in Fig. 1(a). In this example x
is an integer variable. The edges of the CFG are labeled with T for true branches
and F for false branches of the conditional statement.

In order to calculate invariants static analysis (SA) works with abstract val-
ues of x, which are composed of the elements of an abstract domain. For example,
the signs abstract domain has three elements {+, 0,−}. 0 denotes the singleton
set {0} of concrete values, + denotes positive values, and − denotes negative val-
ues. If SA employs the signs abstract domain then the values of x are expressed
as a set containing any of those three elements, including special cases {} ≡ ⊥
for no values and {+, 0,−} ≡ � for all values

SA starts by assigning x to � at the CFG’s entry point, since x can have
any concrete value. Upon encountering the conditional statement SA computes
invariants for x along the true branch, then along the false branch, and then
merges these values before the return statement. The left CFG in Fig. 1 shows
the result of the analysis where the CFG’s edges are annotated with computed
invariants for x. Clearly, the computations along these two branches are inde-
pendent of each other and could be done simultaneously, thus reducing the com-
putational time. This observation is the main idea behind our approach.

In other parallel SA approaches that we discuss in Sect. 7, the parallel com-
putation is done inside a full SA. During the computation a parallel SA waits
at the merge point, where the analysis combines the results of the two branches,
on the completion of each branch before proceeding further thereby reducing
parallelism.

252 E. Sherman and M. B. Dwyer

i f (x >= 0){
x = 0 ;

} e l s e {
x = −2∗x ;

}
re turn x ;

x≥0

x=0x=-2*x

return x

TF

(a)

x≥0

x=0x=-2*x

return x

�

{0,+}{−}

{0}{+}

{0,+}

(b)

x≥0

x=0x=-2*x

return x

�

{0,+}⊥

{0}⊥

{0}

(c)

x≥0

x=0x=-2*x

return x

�

⊥{−}

⊥{+}

{+}

(d)

Fig. 1. Source code and its CFG (a); analysis examples: signs analysis result (b), CSA
sign analysis result for set paths with 1t prefix (c) and 1f prefix (d)

Moreover, if we can analyze the true and the false branches independently
then the invariants computed along the true branch could be accessed even
sooner for a user to process. This observation is another inspiration for design-
ing “anytime DFA”, which provides a sound information about some program’s
invariants.

As mentioned, in general, it would be difficult to compute a precondition
θ that restricts the input values of x to only those that would take the CSA
computation to a particular set of branches. However, in path-defined CSA those
branches can be stated explicitly. In our example we can have two set of paths:
one defined by π1 = {1t}, i.e., take the true branch of the first conditional
statement only, and π2 = {1f}, i.e., take the false branch of the first conditional
statement. The results of these two path-defined CSA are in (c) and (d) in Fig. 1,
respectively. We can see that the union of the abstract element sets for π1 CSA
and π2 CSA on the corresponding edges results in the same invariants of the full
analysis, that is CSA produces sound results. Section 3 formalizes the conditions
under which soundness holds in CSA. Overall CSA can potentially provide two
main benefits to a user: (1) the speedup of the analysis using parallelism and (2)
delivering fast useful feedback to users.

One of the objectives of our work is to investigate the efficiency of two π-
defined CSA implementations in an existing data-flow framework and its ability
to compute sound invariants at intermediate points in the analysis.

To evaluate efficiency improvements we consider a traditional reaching def-
initions (RD) analysis and value-based data flow analysis (VB) for disjoint
domains [8] similar to one used in the above example. Our approach automati-
cally generates a set of π for each method based on heuristics discussed in Sect. 5.
Then based on π it recombines CSA in the order of its completion and then com-
pares the result of each combination step to the results of the full SA. Through
our experiments we aim to answer the following research questions:

1. Does path-defined CSA compute sound invariants faster than SA?
2. At what rate does CSA compute sound invariants?
3. How efficient are the two implementations of CSA?

Conditional Data-Flow Analysis 253

We answer these research questions through an extensive empirical evaluation
on real-world programs.

3 Conditional Analysis

In this section we first present the traditional monotone framework for data flow
analysis followed by the discussion of the necessary changes that extend it to
a conditional data flow framework. This section also outlines the approach of
composing the unconditional result from conditional ones.

We use the data flow analysis framework similar to one presented in [9] for
an analysis A, only we extended it to express branch-sensitive analysis, where
the outgoing flow of a statement l ∈ CFGP is defined for each of its outgoing
edges (l, l′) ∈ CFGP . Thus, the following parameters define A.

– The complete lattice DA that describes the abstract domain of A.
– CFGP for a program P .
– A set of monotone transfer functions FA for each statement (l, l′) ∈ CFGP

that maps an element of DA to itself, i.e., fll′ ∈ FA : DA �→ DA.
– Entry statements E in CFGP .
– An initial value ι ∈ DA for statements in E.

Then the set of equations for forward A is defined as follows on entry and
exit of each statement l ∈ CFGP :

Ain(l) =
⊔

{Aout(l′, l) | (l′, l) ∈ CFGP } � ιlE (1)

where ιlE =
{

ι if l ∈ E
⊥ if l 	∈ E

Aout(l, l′) = fll′(Ain(l)), (l, l′) ∈ CFGP

where � is the least upper bound operator, ⊥ is the bottom element of DA for
which ∀d ∈ DA : ⊥ � d = d and ∀(l, l′) ∈ CFGP : fll′(⊥) = ⊥. For safety, ⊥
corresponds to the empty set of concrete values and � to the set containing all
concrete values. The value of ι is assigned to �, i.e., the analysis considers all
possible input values for a program. The solution of the above set of equations
provides the result of the analysis for P .

In our work we express a condition for DFA as a condition that identifies
the set of paths to be analyzed π, which defines a CFG partition. We describe
CSA as a special case of A, which we denote as Aπ. Thus, a traditional data
flow analysis A = A(∅); unspecified branches in π are explored fully. For our
formulation of CSA, the edges in π are not nested inside a loop.

We have chosen π to be represented by the set of branch edges in CFGP ,
at most one for each conditional statement l, which the analysis must include
while excluding their counterparts. If l has l′ and l′′ as its true and false targets,
respectively, then π can contain the edge (l, l′), or the edge (l, l′′), or none of
them. To capture the relation between the opposite branches of l we designate

254 E. Sherman and M. B. Dwyer

(l, l′) = ¬(l, l′′) and vice versa (l, l′′) = ¬(l, l′). If (l, l′) ∈ π then the values of all
variables xi incoming to the target of its opposite edge l′′, i.e., along edge ¬(l, l′),
are set to ⊥. For brevity, we denote such case, i.e., when ∀i : xi = ⊥, as ⊥ state.
Those ⊥ values of the infeasible edges are propagated further to its children
making them excluded from the analysis. The same principle applies when the
opposite target (l, l′′) ∈ π. When none of the edges are present in π then the
analysis treats them in its usual manner, i.e., propagates the information through
both branches.

With these path-based conditions we can now write the set of equations for
conditional data flow framework for an analysis Aπ:

Aπ
in(l) =

⊔
{Aπ

out(l
′, l) | (l′, l) ∈ CFGP } � ιlE (2)

where ιlE =
{� if l ∈ E

⊥ if l 	∈ E

Aπ
out(l, l

′) =
{

fll′(Aπ
in(l)) if (l, l′) ∈ CFGP and ¬(l, l′) 	∈ π

⊥ if (l, l′) ∈ CFGP and ¬(l, l′) ∈ π

Let Π be the set of path-based conditions for an analysis A. Executing A
with different conditions πj ∈ Π produces a set of conditional analysis Aπj . The
solution for an l ∈ CFGP over Π can be expressed as the meet over all maximal
fixed point computations (MFP) produced by each Aπj , which, when equal to
the MFP for A, means that SA and CSA produce the same results.

⊔

πj∈Π

MFPAπj (l) = MFPA(l) (3)

Since SA performs the computation over all program execution paths then
in order for CSA to be sound it must ensure the same. For example consider
two conditions {(l, l′)} and {¬(l, l′)}. The conditional analysis A{(l,l′)} analyzes
all possible input values for the set of paths containing the true branch of l
while A{¬(l,l′)} does it for the set of paths containing the false branch of l.
Thus, together A{(l,l′)} and A{¬(l,l′)} analyze all program paths. To formalize
the soundness of CSA, we express π as a boolean function gπ as follows.

Each true edge in CFGP is mapped to a boolean variable xi and each false
edge is mapped to ¬xi. Then edges in π are mapped to a set of literals and gπ is
expressed as a conjunction of those literals. In our example if (l, l′) is mapped to
x1 then g{(l,l′)} := x1 and g{¬(l,l′)} := ¬x1. The union of these two sets of paths
is equivalent to the disjunction of g(l,l′) and g¬(l,l′). Thus, the combination of
arbitrary π1 and π2 is given as gπ1 ∨ gπ2 ≡ π1 ∪ π2.

Π yields a sound CSA if
∨

πj∈Π gπj
is a tautology. To maximize efficiency of

CSA π should be pairwise disjoint – thereby eliminating duplicate computation.

∀πi, πj ∈ Π and πi 	= πj : gπi
∧ gπj

= false

Therefore in order for the analysis to be sound and efficient the partition algo-
rithm should generate partitions of Π that satisfy these two constraints. We
discuss our partitioning algorithm in Sect. 5.

Conditional Data-Flow Analysis 255

Algorithm 1. A branch-sensitive
work-list algorithm for a CFG

1: w ← quasiTopOrder(CFG)
2: while ¬w.isEmpty() do
3: l ← w.removeNext()
4: in = ⊥
5: for p ∈ pred(l) do
6: in ← merge(in, out[p][l])
7: end for
8: outNew = f(in, l)
9: for s ∈ succ(l) do

10: if outNew[s] �= out[l][s] then
11: out[l][s] = outNew[s]
12: if ¬w.contains(s) then
13: w.insert(s)
14: end if
15: end if
16: end for
17: end while

Algorithm 2. A quasi-topological
order for a CFG
1: quasiTopOrder(CFG)
2: N ← |CFG|
3: for i ∈ (1, . . . , N) do
4: marked[i] ← false
5: end for
6: indx ← 0
7: DFS(CFG.entry())
8: return ordered

1: DFS(l)
2: if ¬mark[i] then
3: mark[i] ← true
4: for s ∈ succ(l) do
5: DFS(s)
6: end for
7: ordered[indx] ← l
8: indx ← indx + 1
9: end if

4 Implementations of Conditional Analysis

Static analysis developers commonly solve Eq. 1 using an iterative work-list
algorithm that propagates the abstract values from the entry nodes l ∈ E, usually
the single entry node of a program, to the rest of the nodes while computing
Ain and Aout flow values. The algorithm terminates when for each node in the
CFG its Ain and Aout are unchanged.

Algorithm 1 sketches a basic work-list algorithm for a branch-sensitive data-
flow analysis where for brevity Ain and Aout are denoted as in and out, respec-
tively. A work-list data structure w keeps track of CFG nodes for which in val-
ues are changed in the previous iteration and, thus, require recalculation. The
computation reaches a fixed-point when no changes in in are detected which
corresponds to w becoming empty. At each iteration a new node l is removed
from work-list w, its incoming flows are calculated (lines 4 - 7), and its new
outgoing flow is recalculated using the transfer function f (line 8) for each of its
successors. That is outNew is an array where each element contains an outgoing
flow to each of l’s successors. For example, a conditional statement would have
its first elements associated with the true branch and the second elements asso-
ciated with the false branch. Lines 9 - 16 determine the changes in the outgoing
flows for each of l’s successors by comparing the new and old values of out and
insert the affected successors back to w.

In order to further improve the efficiency of the work-list algorithm, an anal-
ysis framework takes into the consideration the ordering of nodes in the CFG.
It ensures that the nodes in w appearing topologically before a given node are
processed first. Since, the CFG can be a cyclic graph, the framework populates w

256 E. Sherman and M. B. Dwyer

Algorithm 3. CFA1 implementa-
tion of a CFA
1: f(in, l)
2: for s ∈ succ(l) do
3: if in = ⊥ ∨ ¬(l, s) ∈ π then
4: outNew[s] ← ⊥
5: else
6: outNew[s] ← f(in, l, s)
7: end if
8: end for
9: return outNew

Algorithm 4. CFA2 implementa-
tion of CFA
1: CDFS(l)
2: if ¬mark[i] then
3: mark[i] ← true
4: for s ∈ succ(l) do
5: if ¬(l, s) �∈ π then
6: DFS(s)
7: end if
8: end for
9: ordered[indx] ← l

10: indx ← indx + 1
11: end if

using a quasi-topological ordering algorithm similar to one presented in
Algorithm 2. The node removal and insertion operations on w preserve the CFG’s
quasi-topological ordering.

A program analysis framework provides analysis developers with implemen-
tations of these work-list and ordering algorithms. The developers instantiate
their analyses by providing implementations for merge and f functions, as well
as an abstract domain and initial flow values. We present two approaches for
implementing CSA in such analysis framework.

The first approach CSA1 uses the transfer function f to set the outgoing
flows to the infeasible branches and its successors to ⊥. Algorithm 3 details that
approach. Here π is a global variable which in line 3 determines whether the
outgoing flow for a successor should be set to ⊥, or computed using f(in, l, s)
of the full SA. Extending an analysis framework to implement CSA in f is
straightforward and does not require analysis developers to further understand
the framework’s implementation. However, CSA1 does perform extra computa-
tions along infeasible program paths.

The second approach CSA2 addresses this potential performance drawback
by modifying the quasi-topological DFS search as shown in Algorithm4. The
algorithm does not traverse CFG down the paths of the excluded branches

c1

c2c3

b1b2b3b4

TF

TFTF

c1

c2

T

F TF

Fig. 2. Combining selected conditional statement c2 and CFG (left) to produce an
abstract graph (right) encoding Π = {c1f}, {c1t, c2f}, {c1t, c2t}

Conditional Data-Flow Analysis 257

(line 5), thus assigning w only those nodes that are in π. When a node is
inserted back to w (Algorithm 1 line 13) only the nodes in π are inserted in
w at their proper positions. CSA2 implementation requires that analysis devel-
opers an advanced understanding of the analysis framework, i.e., the algorithms
and data-structures used in the quasi-topological ordering. However, this app-
roach only iterates over the nodes that are defined in π. We have implemented
two approaches and in Sect. 6 we empirically compare them. In the next section
we present our approach on partitioning a CFG into a set of partitions Π.

5 Partitioning CFG

A program can have many branches and if we decide to use each of them to
partition CFG then the size of Π could become prohibitively large, thus we need
to determine which branches should be used to generate Π. The goal of our
selection heuristic is to chose those branches that might reduce the computa-
tional time. We explore three main characteristics of a conditional statement:
(a) whether it has non-empty blocks of code b1 and b2 on both true and false
branches respectively, (b) the size of b1 and b2 in relation to the entire method
and (c) the difference between the sizes of b1 and b2.

The first heuristic ensures that there is an opportunity for a parallel execution
of two branches b1 and b2. The next two heuristics quantify that opportunity.
Among b1 and b2, we select the one with the maximum block size and calculate
its ratio to the number of statement in the method. We call this value rt. Then
we calculate another ratio rd which is the ratio between the difference in block
sizes to the number of statements in the method. If we use |bi| to denote the size
of bi block and |m| the number of statements in method m, then

rt =
max(|b1|, |b2|)

|m| , rd =
abs(|b1| − |b2|)

|m|
The larger the rt and the smaller the rd, the higher the chances that CSA has
better performance if those branches are used to partition CFG. After selecting
a set of branches, we first ensure, for sound CSA analysis, that they do not
appear inside loops. Next, we combine the selected conditional statements ci

with structural information about the CFG to generate an efficient set of Π.
For example, consider the CFG on the left of Fig. 2 where ci are conditional

statement and bi are blocks of code. If the heuristic determines that the branches
of c2 are suitable for the CFG partition then simply expressing the set of par-
titions Π as {{c2f}, {c2t}} would result in both CSA computing the invariants
along c1’s false branch, that is performing the computation twice. In order to
avoid this redundancy our partition algorithm traverses the CFG and finds all
branches of the conditional statements through which the original conditional
statements are reachable and store it as an “abstracted” graph similar to one
shown on the left of Fig. 2. Next, using the abstracted graph we generate Π for
CSA which in this case are {c1f}, {c1t, c2f}, {c1t, c2t}.

258 E. Sherman and M. B. Dwyer

Such post-processing also handles cases when both c2 and c3 are marked
for partition. A simplistic approach is to create all possible combinations of
their branches, but that results in identical partition that compute the same
invariants, for example, {c3t, c4f} and {c3t,c4f} compute the true branch of c3
both times. In contrast, our partition generation detects that c3 and c4 are
independent. In our evaluation section we describe the threshold values we used
for rd and rt parameters.

6 Evaluation

We evaluate our implementations of the path-defined conditional analysis using
two distinct analyses: intra-procedural value-based analysis (VB) and an intra-
procedural reaching definitions analysis (RD). For VB analysis we used imple-
mentation and abstract domains that we developed in our previous work [8]. For
RD we used the implementation provided with Soot framework distribution. RD
is a relatively fast analysis with an easily computable transfer function, while VA
takes longer to complete due to its complex transfer function evaluations. For
each of the analysis we performed experiments with their full versions SA, i.e.,
VB and RD, their CSA1 versions implemented with Algorithm 3, which we name
CVB1 and CRD1, and their CSA2 versions implemented with Algorithm 4, which
we name CVB2 and CRD2 respectively. The source code, program subjects and
instructions on replicating the experiment are available on GitHub2.

Program Subjects. In order to perform our evaluations we first analyzed 105
methods in 19 Java classes across 10 open-source projects that we used in our
previous work [8] where we employed Boa [10] to mine methods of open-source
programs from GitHub, count the number of operations in each method and
then we randomly selected those methods that contain at least 180 of integer
operations. Among those 105 methods we selected methods with conditional
statements that meet the first requirement of our partitioning algorithm to have
a non-trivial conditional statement where both true and false branches have non-
empty blocks of code. This step reduced the number of methods to 68. Among
them 53 methods have at least one non-trivial condition statement outside of
loops, which allows for computing sound CSA. Those methods have on average
177 statements and 19 simple conditional statements.

Abstract Domain Subjects for VB Analysis. VB analysis uses atomic ele-
ments of its abstract domain to express the computed program invariants. To
determine whether the size of the disjoint abstract domain influences the effi-
ciency of VB analysis we used three disjoint abstract domains of small (8 atomic
elements), medium (10 atomic elements) and large (12 atomic elements) sizes.
We randomly chose those abstract domains among available disjoint domains
with the same number of atomic elements. Our preliminary experiments have
shown that there is no difference in the evaluation data between the domain
sizes, so we present the data only for the medium size domain.
2 https://github.com/BoiseState/Conditional-DFA.

Conditional Data-Flow Analysis 259

0.0 0.5 1.0 1.5 2.0 2.5

0 1 3 1 3
7
11

8 7 6
2 2 2

RD/CRD1 ratio

0.0 0.5 1.0 1.5 2.0 2.5

0
5 5

11
16

9
5

2 0 0 0 0 0

RD/CRD2 ratio

0.0 0.5 1.0 1.5 2.0 2.5

0
4

9 7

22

11

0 0 0 0 0 0 0

VB/CVB1 ratio

0.0 0.5 1.0 1.5 2.0 2.5

0
4

9 7

25

7
1 0 0 0 0 0 0

VB/CVB2 ratio

Fig. 3. Histograms of ratios between runtimes of full and conditional analyses.

6.1 Experiment Description

First we analyze 53 methods using full SA, recording its run time and computed
invariants after each statement. The CSA evaluation consists of three main steps:
(1) generating a set of partitions Π for each method, (2) running CSA1 and
CSA2 analyses on the partitions and recoding run time and invariants, and (3)
aggregating the computed invariants for partitions of the same method. We run
experiments on a 2.9 GHz Intel Core i5 processor with 8 GB of memory running
OS X operating system with the analysis running on Java RE 1.8.

Step 1. We implemented the partition algorithm from Sect. 5 in the Soot Java
Optimization framework to take advantages Soot’s CFG and other related data
structures. The partition algorithm takes as input a class and its method to be
partitioned, and parameters rt̄ that determine the minimum value for rt, and rd

that determines the maximum value for rd. In our evaluations we set rt̄ = 3%
and rd = 60% for the majority of the methods and increased rt̄ and decreased
rd values when the number of partitions became greater than 45. This resulted
in the increase of rt̄ to 15% for two methods and the following (rt̄, rd) values for
three methods: (15%, 30%), (20%, 15%) and (20%, 30%).

This step produced the total of 472 partitions for 53 methods, with the mini-
mum of two partitions and maximum of 32 partitions per method. A partition π
is encoded as a set of branches that CSA should take defined by the conditional
statement id and the branch’s outcomes: either true of false. As defined in our
CSA framework, if a conditional statement is not present in π then CSA explores
both of its branches.

Step 2. We implemented VB, CVB1 and CVB2 in the Soot Java Optimization
framework and used Z3 version 4.3.2 as the constraint solver. CVB takes the
following input parameters: a class name and its method to be analyzed, an
abstract domain and a partition π. We executed VB1 and VB2, for each partition
π and the full VB analysis. We implement RD, CRD1 and CRD2 also in the Soot
framework. CRD takes three input parameters: a class name and its method to
be analyzed and a partition π.

We recorded two sets of data that CSA produces: the running time of the
analysis and the computed invariants for the corresponding analysis: set of reach-
ing definition elements for CRD and abstract values for variables expressed as
SMT constraints for CVB. We execute each experiment three times and use their

260 E. Sherman and M. B. Dwyer

Table 1. CRD Cost vs. Precision

t, ratio of RD % sound invariants of RD

0 0–25 25–50 50–75 75–100 100

CRD1 analysis

≤0.2 45 8 0 0 0 0

≤0.4 43 6 1 2 0 1

≤0.6 32 11 3 1 0 6

≤0.8 26 11 5 1 0 10

≤1.0 19 9 7 1 3 14

CRD2 analysis

≤0.2 31 18 1 2 0 1

≤0.4 21 16 4 4 2 6

≤0.6 13 10 9 3 5 13

≤0.8 10 8 5 2 5 23

≤1.0 1 2 2 2 6 40

Table 2. CVB Cost vs. Precision

t, ratio of VA % sound invariants of VB

0 0–25 25–50 50–75 75–100 100

CVB1 analysis

≤0.2 23 21 5 3 1 0

≤0.4 15 18 7 5 4 4

≤0.6 13 11 7 6 3 13

≤0.8 7 7 5 5 8 21

≤1.0 1 0 2 0 5 45

CVB2 analysis

≤0.2 23 20 6 3 1 0

≤0.4 16 17 7 5 4 4

≤0.6 13 11 7 6 3 13

≤0.8 7 7 5 5 8 21

≤1.0 1 0 1 1 3 47

average to assess CSAs performances. We do not report the time for partition-
ing since the partitioning is performed once and its running time is negligible
compared to the analysis time. For the same reason we do not report the time
for combining the analysis described in the next step.

Step 3. In the last step we combine invariants of CSA in a way that allows us
to answer our research questions. First we order the method partitions based on
their average execution time. Then in order to determine all invariants computed
at the point when a CSA completes, we combine all invariants from previously
completed CSA with the current one. The result is aggregated invariants ordered
based on the execution time of the partitions - from fastest to slowest. To com-
pare SA and CSA invariants we use the logical equivalence relation for two
invariants. To compare RD and CRD we compared their sets of reaching defini-
tion at each program location. To compare VB and CVB we evaluate implication
relations between their SMT formulas, i.e, (CVB =⇒ VB) ∧ (VB =⇒ CVB) at
each program point. If the formula evaluates to true then we count it as a sound
invariant for CVB. If the formula evaluates to false and the first implication
evaluates to true, then CSA under-approximates the invariant of SA. All other
evaluation of the formula to false indicate either a conceptual mistake in our
CSA approach or a bug in our implementations. In all our experiments, we have
not observed such cases.

6.2 Results

Performance. We used the ratio between runtimes of the slowest CSA partition
and the full SA for each method to compare CSA and SA performances. Fig. 3
shows the histograms the ratios for each analysis implementation. The x-axes
show the ratio values and the labels on top of the bars are the counts for that
bar interval.

The histograms show that CRD1 performed the worst since it has many
executions with higher runtimes than RD. However, their average runtimes
across 53 methods are comparable: CRD1 is 148 ms and RD is 143 ms. This is
because CRD1 performed much better on larger methods than on smaller ones.

Conditional Data-Flow Analysis 261

Even though CRD2 has 16 method with ratios greater than 1, its average runtime
is 108 ms, which makes this implementation 24% faster than RD.

Both CVB1 and CVB2 have few methods with ratios greater than 1.0, how-
ever those value are very close to 1.0. Among the 11 CVB1 methods that under-
performed, 6 have ratios of 1.01 and the rest have rations no greater than 1.05.
For CVB2’s 8 underperforming methods, 5 of them have the ratios of 1.01, 2
have the ratios no greater than 1.05 and one has 1.28 ratio. The average run-
times across 53 methods are 6989 ms for CVB1 and 7035 ms for CVB2, which is
20% faster than VB’s 8689 ms. Even though CVB1 and CVB2 have comparable
performances, CVB2 was able to compute more programs faster.

Invariants. The results for sound invariants computation are presented in
Table 1 for CRD and in Table 2 for CVB. The column headers describe the
two points “0”, “100” and four ranges “(0,25)”, “[25, 50)”, “[50, 75)” and “[75,
100)” of the percentage of sound invariants of a full SA that CSA is able to
compute. The row header shows the same ratios of running time of CSA to a
full SA running time. The cell values represent the count of methods for which
CSA is able to compute sound invariants within the given invariant range and
within the given time interval. For example in Table 2 the first data row and the
second data column contains value 21, which can be interpreted as such: for 21
methods CVB1 is able to produce up to 25% of the sound invariants computed
by a full VB in 20% of time of the full VB. The data in the second data row and
in the last column tells us that within 40% of the full VB computational time
CVB1 is able to compute all invariants for 4 methods.

The data show that CSA can produce sound invariants faster for several
methods and compute partial sound invariants for a majority of them. For exam-
ple CVB computes all invariants for 21 methods within 80% of VB runtime and
can produce partial sound invariants within 20% of VB runtime. Note that the
histogram counts and the values in the last column might not equal. This is
because CVB was able to produce the same invariant values as VB after com-
puting only a few partitions, thus the rest of partitions compute redundant
information.

The data shows that the efficiency of the CSA1 and CSA2 implementations
depend on the analysis type. Thus, for CRD its CRD2 performs better than
CRD1. However, for CVB analysis both implementation produce close results
with CVB2 performing slightly better than CVB1. CRD is more sensitive to the
implementation because it is a relatively fast analysis - it runs in a fraction of
a second while CVB requires several minutes to complete. Overall, the second
implementation of CSA that require modification of the underlying topological
order algorithm is a better implementation choice.

6.3 Discussion

The results indicate that CSA allows for faster analysis, while requiring minimal
modification in SA frameworks. However, the main contribution of CSA is its
ability to provide partial invariants in a fraction of a time of SA. While a user

262 E. Sherman and M. B. Dwyer

waits for a completion of all partitions to complete she can use the invariants
provided earlier to check the safety properties of the program. If such property
does hold, then the user has more confidence about the program correctness.
However, if the property does not hold for the computed invariants then she
can start investigate the cause of it. Moreover, the partition information could
accelerate this task since it narrows down the set of paths that causes property
violation.

7 Related Work

Besides related work on conditional analysis described in the introduction our
work relates the body of research that improve the performance of SA algorithms
and the accuracy of SA using program’s structural information. The body of
work on designing parallel SA algorithms through partitioning the program’s
state space started back 1990’s with the work of Lee at el., [11] that partitioned
program CFG into strongly connected components applying fixed point com-
putation inside those components and then using elimination algorithm [12] to
combine the data from the external nodes of those components. Albarghouthi
at el., [13] investigated parallel C interprocedural analysis, where based on the
reachability in the call-graph multiple method analyzed intraprocedurally in par-
allel. Dewey at el., [14] explores parallel analysis of JavaScript by partitioning
the state space of the program into regions that can be computed in parallel and
those that require synchronizations of the parallel computations, i.e., merging
points of the analysis.

Another body of work identifies partitions of CFG to improve the precision
of the analysis by delaying the merge of abstract values from controls flows or
adding new abstract elements that exactly describe the join of two abstract
elements, i.e., computing disjunctive completion of the partially ordered set.
However, disjunctive completion can lead to excessively large representation of
abstract values, and at some point, at least some values should be joined in
order for the computation to reach its fixed point. Prior research has explored
what abstract values should be joined; computational traces [15] or some other
heuristic based on the CFG, such as a trace partitioning domain method [16],
can provide a basis for these determinations.

Another approach is to delay the join operation by conducting incremental
analysis as guided analysis [17]. In this approach, each iteration of the fixed point
computation is applied to an incrementally augmented subgraph of P ’s CFG. For
instance on the first iteration, i.e., propagating abstract values through CFG, the
analysis considers one true branch of a conditional statement, and on the second
iteration it would add the false branch. This approach limits the loss of preci-
sion resulting from widening operators for numerical domains, such as polyhedra
that have infinite ascending chains. This incremental approach also includes a
disjunctive extension when the analysis first performs fixed point computation
before extending the part of the CFG’s to be analyzed, i.e., successively com-
puting invariants. An orthogonal approach is the path focusing technique [18],

Conditional Data-Flow Analysis 263

which computes invariants separately for each path between two loop-free points
in the CFG. Thus, each part of the CFG between entrance and exit of a loop
is expanded into a set of paths. After the computation is done, then results of
each path are joined.

The latest development has been in combining guided analysis and path
focusing techniques [19]. Using this approach, analysis continues to evaluate
paths between loop-free points encoded separately with the SMT formula. This
approach allows the analysis to explore only those paths that have the potential
to improve the precision of the invariants.

Our approach is complimentary to the above techniques, since a CSA for a
single partition could use a parallel algorithm for computing its propagation to
further improve CSA efficiency.

8 Conclusion and Future Work

In this work we introduce structurally defined conditional static analysis, formal-
ize it in terms of standard data-flow frameworks, provide algorithms for CSA,
and two distinct implementations. We evaluate the efficiency and precision of
these techniques through extensive empirical study on real-world programs. The
key insight is that CSA partitions a program’s CFG into a subset of graphs at
the conditional statements. These partitions induce a series of independent CSA
executions that can run in parallel. The empirical evaluation suggest that CSA
provides improvements over the full SA for a significant fraction of a program.
In particular depending on the analysis around 24% of methods completed their
analysis within 60% of run time required by the full SA. Moreover, CSA is able
to produce partial safe invariant computations for a majority of the programs.

In the future we plan to further improve the efficiency of CSA and the con-
fidence of the partial information that it produces. Currently CSA that follow
the same path prefix compute identical information for the prefix, we plan to
investigate an approach where only one analysis computes the prefix information
and communicates to the rest of CSA with the common prefixes. In addition,
we would like to qualify CSA’s partially computed invariants into safe or under-
approximating based on the partition that CSA analyzes. Thus, when a CSA
computes an invariant that is marked as safe, the user should use it with the
same amount of confidence as she would for the full SA.

Acknowledgment. The authors would like to thank Eric Keefe for working on CSA2

implementation during his REU experience at Boise State University supported by the
National Science Foundation under award CNS 1461133.

264 E. Sherman and M. B. Dwyer

References

1. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 3

2. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

3. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 13

4. Ballabriga, C., Cass, H., Sainrat, P.: WCET computation on software components
by partial static analysis. In: Junior Researcher Workshop on Real-Time Comput-
ing, pp. 15–18 (2007)

5. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In: Pro-
ceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2007, pp. 327–338. ACM, New York (2007).
https://doi.org/10.1145/1190216.1190265

6. Conway, C.L., Dams, D., Namjoshi, K.S., Barrett, C.: Pointer analysis, conditional
soundness, and proving the absence of errors. In: Alpuente, M., Vidal, G. (eds.)
SAS 2008. LNCS, vol. 5079, pp. 62–77. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69166-2 5

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012, pp. 57:1–57:11. ACM, New York (2012). https://doi.org/
10.1145/2393596.2393664

8. Sherman, E., Dwyer, M.B.: Exploiting domain and program structure to synthesize
efficient and precise data flow analyses (T). In: 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
9–13 November 2015, pp. 608–618 (2015). https://doi.org/10.1109/ASE.2015.41

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

10. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: a language and infrastruc-
ture for analyzing ultra-large-scale software repositories. In: Proceedings of the
35th International Conference on Software Engineering, ICSE 2013, pp. 422–431,
May 2013

11. Lee, Y.-F., Marlowe, T.J., Ryder, B.G.: Performing data flow analysis in parallel.
In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Super-
computing 1990, pp. 942–951. IEEE Computer Society Press, Los Alamitos (1990).
http://dl.acm.org/citation.cfm?id=110382.110625

12. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. 18(3), 277–316 (1986). https://doi.org/10.1145/27632.27649

13. Albarghouthi, A., Kumar, R., Nori, A.V., Rajamani, S.K.: Parallelizing top-down
interprocedural analyses. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2012, pp. 217–228.
ACM, New York (2012). https://doi.org/10.1145/2254064.2254091

Conditional Data-Flow Analysis 265

14. Dewey, K., Kashyap, V., Hardekopf, B.: A parallel abstract interpreter for
javascript. In: Proceedings of the 13th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2015, pp. 34–45. IEEE
Computer Society, Washington, DC (2015). http://dl.acm.org/citation.cfm?
id=2738600.2738606

15. Holley, L.H., Rosen, B.K.: Qualified data flow problems. IEEE Trans. Softw. Eng.
7(1), 60–78 (1981)

16. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5), 26 (2007)

17. Gopan, D., Reps, T.: Guided static analysis. In: Nielson, H.R., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74061-2 22

18. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint iter-
ations. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7 27

19. Henry, J., Monniaux, D., Moy, M.: Succinct representations for abstract interpre-
tation. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 283–299.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 20

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

	Structurally Defined Conditional Data-Flow Static Analysis
	tmp.1526078166.pdf.KSTnJ

