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Abstract

In this study, we investigate changes in future streamflows in California using bias-corrected and
routed streamflows derived from global climate model (GCM) simulations under two
representative concentration pathways (RCPs): RCP4.5 and RCP8.5. Unlike previous studies that
have focused mainly on the mean streamflow, annual maxima or seasonality, we focus on projected
changes across the distribution of streamflow and the underlying causes. We report opposing
trends in the two tails of the future streamflow simulations: lower low flows and higher high flows
with no change in the overall mean of future flows relative to the historical baseline (statistically
significant at 0.05 level). Furthermore, results show that streamflow is projected to increase
during most of the rainy season (December to March) while it is expected to decrease in the rest
of the year (i.e., wetter rainy seasons, and drier dry seasons). We argue that the projected changes
to streamflow in California are driven by the expected changes to snow patterns and precipitation
extremes in a warming climate. Changes to future low flows and extreme high flows can have
significant implications for water resource planning, drought management, and infrastructure

design and risk assessment.
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1. Introduction

Excessive deviation from the normal hydrological condition in river systems can impose
catastrophic socioeconomic impacts (e.g., fatalities, infrastructure and property damage,
agricultural loss, and disruption of daily life) and challenge the existing water management plans
(e.g., Demaria et al., 2016; Nazemi & Wheater, 2014). Current methods for design of hydraulic
structures (e.g., dams, bridges, levees, spillways, culverts) are based on the so-called stationary
assumption that assumes the statistics of extremes and distribution of the underlying variables do
not change over time (Sadegh et al., 2015). The stationarity assumption requires that the
distribution of past observed events and the statistics of observed extremes are a good
representative of possible future conditions (e.g., Koutsoyiannis, 2006; Read & Vogel, 2015;
Villarini et al., 2009). However, in recent years, studies have shown that different natural and
anthropogenic factors (e.g., land use land cover, climate, urbanization, watershed modification)
can alter streamflow characteristics (Alfieri et al., 2015; Beighley et al., 2003; Hailegeorgis &
Alfredsen, 2017; Krakauer & Fung, 2008; Luke et al., 2017; Mallakpour et al., 2017; Mallakpour
& Villarini, 2015; Villarini et al., 2015), thus questioning the validity of the stationary assumption
(Cheng et al., 2014).

The projected warming and expected changes in precipitation and snow patterns are anticipated
to change river flows (e.g., Alfieri et al., 2015; McCabe & Wolock, 2014; Nazemi & Wheater,
2014). A warmer climate is expected to intensify the hydrological cycle, increasing the frequency
and/or intensity of extreme events such as droughts and floods (e.g., Das et al., 2013; Milly et al.,
2005; Pachauri et al., 2015; Voss et al., 2002; Wang et al., 2017). Warmer land surface and water

bodies may increase evaporation (Scheff & Frierson, 2014), and enlarge atmospheric moisture
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holding capacity (the Clausius—Clapeyron relation; O’Gorman & Muller, 2010); both of which can
contribute to the changes in river flows (e.g., Alfieri et al., 2015).

Moreover, a warmer climate may drive earlier snowmelt, decline in snowpack, change in
seasonality of river flows and changes in snow to rain ratio (e.g., Cayan et al., 2001; Harpold et
al., 2017; Knowles et al., 2006; Mao et al., 2015; Neelin et al., 2013; Stewart et al., 2005). These
changes are even more important in regions like California, where streamflow relies on winter
snow accumulation (e.g., Diffenbaugh et al., 2015; Li et al., 2017). Several studies have
documented that warm and wet storms brought by atmospheric rivers (AR) during winter may
cause severe flooding in California (e.g., Barth et al., 2016; Dettinger, 2011; Leung & Qian, 2009;
Ralph et al., 2013). Jeon et al. (2015) used 10 CMIP5 climate models to show that AR events in
warming climate would bring more frequent and severe storms to California in the future.
Similarly, Payne and Magnusdottir (2015) used 28 CMIP5 models in a study where they projected
up to 35% increase in AR landfall days. Dettinger (2011) have shown that potential increases in
the magnitude and frequency of AR events in the future can cause more severe and frequent
flooding events in California.

In recent years, California has experienced a series of flooding events (Vahedifard et al., 2017)
on the heels of a 5-year drought (e.g., AghaKouchak et al., 2014; Hardin et al., 2017; Shukla et al.,
2015). In 2017, a major flood in Northern California led to structural failure of Oroville Dam’s
spillway that triggered the evacuation of about 200,000 people. In another event, a levee breach
near Manteca, CA, provoked the local government to evacuate about 500 people (Vahedifard et
al., 2017). In light of the occurrence of recent extreme events over Northern California, this study
aims to answer a simple but important question: how will streamflow distribution change for

Northern California under a warming climate? The insights gained by improving our
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understanding of the possible changes in the direction and magnitude of streamflow can have
profound implications on adaptation strategies to cope with the future extreme events (i.e., floods
and droughts) and better managing of the water resources (Villarini et al. (2015)).

Several studies have previously investigated projected changes in the hydrologic cycle over
California from different perspectives (AghaKouchak et al., 2014; Ashfaq et al., 2013; Burke &
Ficklin, 2017; Diffenbaugh et al., 2015; Hailegeorgis & Alfredsen, 2017; Li et al., 2017; Thorne
et al., 2015; Zhu et al., 2005). Our current state of the knowledge is mostly limited to possible
changes in average annual, annual maxima or seasonal streamflow mainly using gridded runoff
products. While most studies reported changes in seasonality of streamflow over California, there
is no consensus on the direction (sign) of change in the flow regime. Some studies projected little
or no change in future annual streamflow over California (e.g., Regonda et al., 2005; Stewart et
al., 2005; Thorne et al., 2015), while others projected a decreasing trend in streamflow (e.g.,
Berghuijs et al., 2014, Das, et al., 2011b; Li et al., 2017). Furthermore, there are a number of
studies that have focused only on the peak flows, where they projected increases in the magnitude
of flooding in California under climate change scenarios (e.g., Das et al., 2011a, 2013; M. D.
Dettinger & Ingram, 2012). The aim of the current study is to get a more comprehensive view of
possible changes in streamflow distribution over Northern California by analyzing the possible
changes in different streamflow quantiles. Unlike previous studies, and instead of gridded runoff
simulations, we employed a unique data set generated for the 4" California Climate Assessment
group, which includes climate model simulations, bias corrected, and routed for 59 sites across
Northern California for the period of 1950-2099. Moreover, in order to investigate the direction
of change in river discharge, in addition to investigating the mean flows, we examine changes over

different parts of the discharge regime (from low to high flows).
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2. Data and Method

Daily streamflow (m®/s) data for 59 locations across Northern California were developed at the
Scripps Institution of Oceanography, University of California San Diego and acquired from the 4™
California Climate Assessment group (Pierce et al., 2014, 2015; Figure S1). The Variable
Infiltration Capacity (VIC) land surface model (Lohmann et al., 1996, 1998), a macro-scale
hydrological model framework that simulates surface and subsurface processes, was forced with
downscaled global climate model (GCM) simulations to route streamflow at a daily temporal scale.
The use of downscaling techniques to convert the coarse spatial resolution in the GCMs to high
resolution hydrological variables is an inevitable step for the climate change impacts assessment
studies (Mehrotra & Sharma, 2015). The VIC model is driven by the high-resolution Localized
Constructed Analogs (LOCA) downscaled and bias-corrected minimum and maximum
temperature, and precipitation. The LOCA method calculates the simulated hydrological variable
(with a grid resolution of 0.0625°) by using a multiscale spatial matching framework in order to
pick suitable analog days from historical observations. Pierce et al., 2014 mentioned that the
motivation behind developing the LOCA method was to have a framework that can better preserve
regional patterns in temperature and precipitation, and also better represent the maximum
temperature and precipitation for California. There are a number of limitations associated with the
use of any downscaling technique including simplification of the physical processes that may result
in systematic errors that can be distributed between temperature and precipitation (Mehrotra &
Sharma, 2012, 2016). More detailed description of the downscaling and bias-correction methods
to develop the streamflow dataset we used here, together with limitations and advantages, can be

found in Pierce et al., 2014, 2015.



143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

The VIC model parameters were obtained from the University of Colorado hydrologically
based dataset for entire California (Livneh et al., 2013; Maurer et al., 2002). The details on the
VIC model, together with strengths, weakness and parameterization of it can be found in the Pierce
et al. (2016). As Pierce et al. (2016) indicated while the VIC hydrological modeling framework is
widely used in the hydrological community, the use of any hydrological model will result in some
degree of uncertainty to projected climate variables and future studies are encouraged to perform
similar analysis using additional land surface models. Furthermore, it is noteworthy that the
antecedent moisture conditions in a drying climate were merely accounted for by the energy
balance scheme of the VIC model, and further uncertainty analysis is required to scrutinize such
impacts on the trends of streamflow. This will be the subject of a future study.

In this study, the bias-corrected inputs to the VIC model are based on ten GCMs from the Fifth
Coupled Model Intercomparison Project (CMIP5; Table S1) and two representative concentration
pathways (RCPs): RCP4.5 and RCP8.5. We use these ten models, selected from 32 different
GCMs by the Climate Action Team Research Working Group of the 4th California’s Climate
Change Assessment, as they cover a wide range of possible conditions that California may confront
in the future (CDWR, 2015). Furthermore, the future climate related policies and actions in
California would be based on the outputs of these climate models that is provided by the 4th

California’s Climate Change Assessments (www.ClimateAssessment.ca.gov).

For each site and scenario, we calculated the ensemble median of daily streamflow based on
all the ten climate models from 1950 to 2099 using 1950 to 2005 as the historical baseline period
and 2020 to 2099 as the projection period. To investigate changes in the magnitude and direction
of discharge, we computed annual time series for different discharge quantiles (from low to high

flows) of the daily streamflow for each of the 59 locations (Lins & Slack, 1999; Villarini & Strong,
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2014). We then use the nonparametric Mann-Kendall test (Kendall & Gibbons, 1990; Mann, 1945)
to detect monotonic trends in different parts of the streamflow distribution. An extensive
discussion on the Mann-Kendall test can be found in Helsel & Hirsch (1992). The test evaluates
the null hypothesis (Ho) of no statistically significant change against the alternative hypothesis
(Ha) of a statistically significant trend in the time series at 0.05 significance (95% confidence)
level. We also examined the projected change in the magnitude and direction of river discharge
based on two hydrological indices, namely 7-day peak flow and 7-day low flow (see
Supplementary Material Section S1; Monk et al., 2007; Olden & Poff, 2003; Richter et al., 1996,
1998). Finally, we used the projected change in the mean monthly flows to compare the
streamflows over the wet seasons versus the warm seasons to get insight about the possible
seasonal changes in streamflow. We compared the mean of the hydrological indices in the

projection period relative to the baseline period under the RCP 4.5 and 8.5 by computing

Future—Historical

normalized percent change: (

x 100).

Historical

3. Results

Figure 1 shows presence/absence of statistically significant trends, at 5% level, in the annual
mean (panel A-C), annual minima (panel D-F) and annual maxima (panel G-I) of ensemble median
of daily streamflow data. Overall, out of the 59 locations, none exhibits statistically significant
changes in the annual mean of daily streamflow for both the historical forcing (figure 1A) and the
RCP 4.5 scenario (figure 1B). Similar behavior is observed for the RCP8.5 scenario, with only 2
locations showing statistically significant changes in the annual mean of streamflow (Figure 1C).

Lack of pronounced signal of change in the annual mean discharge is also observed when we
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explore trends in the annual volume of ensemble daily streamflow data (Figure S2). These results
are consistent with previous studies revealing that future annual mean flow and annual volume of
water are not projected to change significantly relative to the baseline (e.g., Regonda et al., 2005;
Stewart et al., 2005; Thorne et al., 2015).

However, trends and patterns fundamentally change when investigating the upper and lower
tails of the streamflow distribution. Figures 1D-E show the changes in the magnitude of annual
minima. Although the signal of change is relatively weak for the historical period (Figure 1 E; only
8 out of 59 sites show statistically significant change), it becomes much stronger when we explore
changes in the projection period. As shown, 19 and 54 sites (out of 59) exhibit statistically
significant decreasing trends in the discharge annual minima under the RCP 4.5 (Figure 1E) and
8.5 (Figure 1F) scenarios, respectively. Investigating annual maxima reveals opposing trends: 27
sites show statistically significant increasing trends in the baseline period, whereas 29 and 55 sites
exhibit statistically significant increasing trends under the RCP 4.5 (Figure 1H) and RCP 8.5
(Figure 11) scenarios, respectively. Therefore, climate models point to a widespread decreasing
(increasing) trends in the annual minima (maxima) over Northern California. Under the RCP 8.5
scenario changes in the annual minimum and maximum discharge are larger and widespread over

the entire Northern California.
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Figure 1: Statistically significant trends in the annual mean (panel A-C), annual minima (panel D-F) and
annual maxima (panel G-1) flows over Northern California. Left panels summarize the results for the
historical baseline period. Middle and right panels represent change in the projection period under the RCP
4.5 and 8.5 scenarios, respectively. Positive and negative trends are presented with upward blue, and
downward red triangles, respectively. The grey circles show sites with no statistically significant trend at
0.05 level.

To get a more detailed picture on how the tails of discharge distribution are changing, we
investigate percent changes in the projected mean of 7-day low flows (Figures 2A and 2C) and 7-
day high flows (Figures 2B and 2D) relative to the historical period. Figure 2 depicts that the

magnitudes of 7-day low flows are projected to slightly decrease for both concentration paths
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relative to the baseline, and changes are marginally higher under the RCP 8.5 (Figure 2C).
Considering the magnetite of 7-day high flows (Figures 2B and 2D), most locations exhibit
pronounced increasing patterns. It is worth mentioning that the magnitude of change is higher
under RCP 8.5 relative to RCP 4.5. Most of the stations that show slightly decreasing trends in the

magnitude of 7-day high flows are located in the southern part of the study region.
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Figure 2: Percent change [%] in the magnitude of 7-day low flows (left panels) and 7-day high flows (right
panels) relative to the historical period for the RCP 4.5 (top panels) and RCP 8.5 (bottom panels).

To this end, our analysis points to a decreasing trend in the magnitude of low flows and
increasing trend in the magnitude of high flows. To further explore this issue, we investigate how
the distribution of river discharge is expected to change under global warming. We extend our
analysis to examine the presence of monotonic trends over different discharge quantiles (i.e.,

Q0.05, Q0.25, Q0.5, Q0.75, Q0.95) using the Mann-Kendall test. Here, we only show the results
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for RCP 8.5 for brevity, and similar results for RCP 4.5 can be found in Figure S3. Figure 3 shows
that the future projections point to statistically significant decreasing trends in the streamflow
relative to the baseline period for the 5™, 25", 50™" and 75" percentiles. While in the baseline period
we do not observe a statistically significant change for the 95" percentiles of discharge, a
significant increasing trend for the 95" percentile of projections is observed consistent with the
previous figures. These trends are most prevalent over the northern part of the study area. Figure
3 confirms that current climate model simulations indicate an asymmetrical change in the tails of

the streamflow distribution; i.e. low flows decrease and high flows increase.
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Figure 3: Trends in the magnitude of different discharge quantiles: Q0.05 (panels A and F), Q0.25 (panels
B and G), Q0.50 (panels C and H), Q0.75 (panels D and 1), and Q0.95 (panels E and J). Left panels depict
the baseline period whereas the right panels represent future projections (RCP 8.5). Positive and negative
trends are presented with upward blue, and downward red triangles, respectively. Grey circles show the
sites with no statistically significant trends at 0.05 level.

The change in the distribution of streamflow is more evident by looking at Figure 4 which
presents the Empirical Cumulative Distribution Functions (ECDFs) of the ensemble median of
daily streamflow in the baseline and projection periods for two locations: Orville Lake (Figure 4A)
and Shasta Lake (Figure 4B). The projected streamflow ECDFs confirm the results from Figure 3
and show the potential changes in different parts of the discharge distribution. The discharge below

the 80th percentiles exhibits a lower low flow, while it indicates higher high flows above the 80"

percentiles.
(=]
| / /
i _
o
2 ]
w
(=]
Q
- | -
o
o
| i
o | = 1950-2005 — 2020-NIHRCP 4 5) 2020-209%(RCP 8 5)
=] T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800
Discharge (m’/s) Discharge (m”[s)

Figure 4: Empirical Cumulative Distribution Functions (ECDFs) of streamflow in the baseline (blue line)
and projection periods (red line RCP 4.5 and green line RCP 8.5) in the Oroville Lake (left panel) and
Shasta Lake (right panel).

To understand the seasonal changes, we have also investigated percent changes in the projected

mean of streamflows relative to the baseline period at the monthly scale (Figures 5 and S4). During
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the winter months (December, January, and February) and March (when most of the annual
precipitation is delivered), majority of the sites depict an increase in the monthly mean of projected
streamflow. This increasing pattern is more prevalent for the sites that are located in the north part
of the study region over the Sacramento River Basin. In the rest of the year (April to November),
the results point to a marked decrease in the mean of streamflow relative to the baseline period,
with deviation from the mean being more pronounced in April to July. Overall, these results show
that mean monthly streamflows over the rainy season are projected to increase by the end of the
century under RCP 8.5 (similar results for RCP 4.5 shown in Figure S4), while for the rest of the
year a decreasing trend is expected. This indicates California can possibly face wetter wet seasons
and drier dry seasons by the end of this century. This finding is in line with Pierce et al. (2013)
that projected an increase in winter average precipitation in California. Note that these changes in
the mean monthly streamflows are more noticeable for the higher emissions scenario (RCP 8.5;

Figure S5).
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4. Discussion and Conclusion

In this study, we explore potential changes in future river flows in California using bias-
corrected and routed simulated streamflows from multi-model climate simulations. Our results
indicate that the annual mean of daily streamflow is not expected to change significantly by the
end of this century. However, we observe opposing trends and sign of change when examining
changes in the upper and lower tails of streamflow distribution. Results point to a widespread
statistically significant increase in the magnitude of the annual streamflow maxima and a prevalent
decreasing trend in the annual streamflow minima under both RCP 4.5 and RCP 8.5 scenarios.
Investigating 7-day low and high flows and different quantiles of streamflow distribution also
confirm this finding, indicating that extreme high and low flows are expected to intensify while
the mean flows are not expected to change significantly. Overall, the decreasing (increasing) trends
in the magnitude of 7-day high flows are vivid in the southern (northern) part of the study domain.
Our results are in agreement with Yoon et al. (2015) who postulated future changes in large scale
circulation patterns might intensify future floods and droughts. Our findings are also consistent
with Li et al. (2017) who pointed to declines in low to moderated discharge in the future. However,
in contrast to Li et al. (2017), our analysis does not identify a statistically significant change in the
annual mean streamflow. Instead, we only find an increasing pattern in the magnitude of high
flows.

We also examine projected changes in the mean of monthly streamflow relative to the baseline
period. Model simulations show that while annual mean of daily streamflow is not projected to
significantly change, mean of monthly streamflow is projected to increase during most of the rainy
season (December to March) and to decrease in the dry season. This increasing signal is more

pronounced for the sites that are located in the Sacramento River Basin. In other words, not only
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the distribution of streamflow, but also the seasonality of river discharge is projected to change by
the end of this century. Note that, as Wasko & Sharma (2017) indicated, the response of streamflow
to an extreme precipitation event depends on the catchment size, and extreme precipitation events
at a higher temperature level may not necessarily result in higher streamflow. Our results here
indicate that in the future, California can face wetter rainy seasons, and drier dry seasons as
indicated. Moreover, Das et al. (2011b) have shown the important role of warm season warming
versus cool season warming on the streamflow level in the western United States. They projected
a higher reduction in streamflow under warmer warm season and an increase in the streamflow
under warmer cool season. Therefore, projected changes in the mean of monthly streamflow will
be of key importance for improving our strategies to manage water resources in California.
While attribution of the projected changes in discharge is not the main focus of this study, a
possible explanation for the observed changes in river discharge is that low to moderate flow in
rivers is sustained primarily by snow, with snowpack decreasing in the western United States and
snowmelt happening earlier in spring (Huning & Margulis, 2017; Maurer et al., 2007; Mote et al.,
2005; Stewart et al., 2005). Stewart et al. (2005) examined the seasonality of streamflow in
snowmelt-dominated regions of western North America from 1948 to 2002 where they pointed to
a reduction of spring and summer streamflow due to earlier snowmelt. For the northern part of
California, Pierce et al. (2013) projected an increase in daily precipitation intensity in the winter
season while spring precipitation is projected to decrease that can worsen the impact of earlier
snowpack melting on the water resources. A smaller contribution of snowmelt to streamflow and
also reduction in the ratio of snow over rain can lead to lower low to moderate discharge during
seasons with lower precipitation (Li et al., 2017; Mote et al., 2005). Moreover, Diffenbaugh et al.

(2015) indicated that snowpack in the montane regions of California has an important role in
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sustaining river discharge during the dry season. However, the projected increase in temperatures,
and consequently earlier snowmelt can result in elongated dry and low flow periods (Ashfag et al.,
2013; Diffenbaugh et al., 2015; Li et al., 2017; Stewart et al., 2005). Li et al. (2017) showed that
historically one-third of precipitation over the entire western United States falls as snow, which
accounts for more than half of the total annual streamflow. They projected that smaller fraction
(~%40 to %30) of snowmelt will contribute to annual discharge in the future. Furthermore, they
argued that runoff will be more rainfall driven in the future over California. On the other hand,
high flow events might be mainly controlled by moist and warm extreme AR events (M. Dettinger,
2011; Jeon et al., 2015). An extensive discussion on the impacts of warming climate on ARs can
be found in Espinoza et al. (2018) where they indicated that all the studies conducted over western
United States point to an increase in the frequency of AR events in a changing climate. Moreover,
in a recent study, Ragno et al., (2018) showed that future extreme precipitation events are expected
to intensify in California, despite relatively unchanged precipitation mean. Their findings are
consistent with our results on future changes to the high flows.

Projected changes in California’s streamflows can have profound implications for water
resource management and infrastructure design and risk assessment. This issue becomes even
more important considering the already aging infrastructures (e.g., dams, levees, and bridges)
designed based on historical extremes and the assumption of stationarity. Any shift in high flows
in the future would increase the risk of infrastructure failure or damages to critical structures such
as the 2017 failure of the Orville Dam spillway. Therefore, new methodological frameworks are
needed to incorporate potential projected changes in the current infrastructure design and risk

assessment procedures to lower the risk of infrastructure failures in the future.
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622  Figure S1: Map showing location of the study area. The dark red circles show the location of the
623 59 routed streamflow sites used in this study.
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650  Figure S3: Same as Figure 3 in the main text but for the RCP 4.5 scenario.
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653 Figure S4: Same as Figure 5 in the main paper but for the RCP 4.5 scenario.
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Figure S5: Percent change [%] between the mean of the monthly river discharge under RCP 8.5 (Figure 5)
and the RCP 4.5 scenario (Figure S4).

S1.Climate Indices Toolbox
In this study, we used the Climate Indices Toolbox to calculate the metrics that can

characterize the condition of streamflow (e.g., magnitude, frequency and timing; Figure S4 and
S5). This toolbox has developed in MATLAB and is able to calculate and compares a suite of more
than 250+ metrics for hydroclimate variables among two distinct time span of interests (Table S6
for the list of these metrics). The user can simply use a Graphical User Interface (GUI) or a script
to execute the underlying functions and compute the hydroclimate indices of interest by dividing
the data into two periods.

4 Climatelndices — >

Select Data (.txt)
B Include ETCCDI Climate Indices

1st Period Data 2nd Period Data

Run Metrics

Compute Metrics & Generate Report

Figure S4. The GUI to execute the Climate Indices Toolbox. If the user select the option of
calculating the ETTCDI climate indices, detailed daily information about precipitation, maximum
and minimum daily temperature is required. The two buttons “1st and 2nd Period Data” will open
browsers for the user to select input data (text file) for each period.
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Figure S5. The script file to run the Climate Indices Toolbox. Detailed description is provided in
the script to guide the users to select proper option.

Input data to the toolbox should be prepared as the text file with the first line will read as
header and at least four and at maximum seven columns. The first three columns identify the year,
month and day, respectively. The fourth column in the input data is the hydroclimate variable of
interest and might be any hydroclimatological variable such as streamflow, precipitation,
temperature, etc. The next three columns are arbitrary and are only to be provided if the user wishes
to calculate ETTCDI climate indices that are based on the European Climate Assessment
(http://etccdi.pacificclimate.org/list_27_indices.shtml). These three columns take daily values of
precipitation, maximum and minimum daily temperature, with a fixed order.

Upon executing the Climate Indices Toolbox, a summary report file (text format) is
generated that details the metric values for the first and second selected periods, as well as the
change in the magnitude of the metric and percent change between the selected periods. Metrics
are ranked in descending order based on absolute value of percent change. Metrics used in the

Climate Indices Toolbox are described in Table S6.

Table S6. Description of metrics available in the Climate Indices Toolbox.
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Metric Name Description Reference
Slope of survival curve Difference between natural log of 5th and Ref. 2
95th percentiles divided by 0.9 (0.95-0.05)
Slope of survival curve Difference between natural log of 33th and Ref.3&5
66th percentiles divided by 0.33 (0.66-0.33)
Slope of survival curve Difference between natural log of 20th and Ref. 9
70th percentiles divided by 0.5 (0.70-0.20)
Volume of high segment in Volume (area under survival curve) of Ref. 9
survival curve variable when it is above 98th percentile
Volume of low segment in Volume of "natural log of variable whenitis | Ref. 9
survival curve below 30th percentile minus log of minimum
value of the variable"
Median of survival curve Median of natural log of variable Ref. 9 & 10
Autocorrelation of the variable Ref. 6
with 1 day lag
Slope of peak distribution Difference between 50th and 90th percentiles | Ref. 6 & 7
of peak distribution divided by 0.4 (0.9-0.4).
Peaks are higher in value than their
neighboring observations.
Rising limb density number of peaks divided by total length of Ref.6 & 8
rising limbs
Declining limb density number of peaks divided by total length of Ref. 6 & 8
declining limbs
Variable distribution 1,5, 15, 50, 95, 99" percentiles Ref. 13
Mean daily Ref. 1
Median daily Ref. 1
Variability Coefficient of variation in daily variable Ref. 1
Variability Coefficient of variation of natural log of {5, Ref. 1
10, ..., 95}th percentiles
Skewness Mean daily divided by median daily variable | Ref. 1
Range in daily variable Ratio of 10th to 90th percentiles Ref. 1
Range in daily variable Ratio of 20th to 80th percentiles Ref. 1
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Range in daily variable Ratio of 25th to 75th percentiles Ref.

Spread in daily variable Ratio of 10th to 90th percentiles divided by Ref.
median daily variable

Spread in daily variable Ratio of 20th to 80th percentiles divided by Ref.
median daily variable

Spread in daily variable Ratio of 25th to 75th percentiles divided by Ref.
median daily variable

Mean monthly variable for ... | January, February, March, April, May, June, | Ref.
July, August, September, October, November,
December

Variability in monthly variable | Coefficient of variation (standard Ref.

for ... deviation/mean) for
January, February, March, April, May, June,
July, August, September, October, November,
December

Variability across monthly Range of monthly flows divided by median Ref.

variable monthly variable

Variability across monthly Interquartile monthly flows divided by Ref.

variable median monthly variable

Variability across monthly Difference between 10th and 90th percentile | Ref.

variable monthly flows divided by median monthly
variable

Variability across monthly Coefficient of variation in mean monthly Ref.

variable variable

Skewness in monthly variable | “Mean monthly minus median monthly” Ref.
divided by median monthly variable

Variability across yearly Range of yearly variable divided by median Ref.

variable yearly variable

Variability across yearly Interquartile of yearly variable divided by Ref.

variable median yearly variable

Variability across yearly Difference between 10th and 90th percentiles | Ref.

variable

yearly variable divided by median yearly
variable
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Skewness in annual variable

“Mean annual minus median annual variable”
divided by median annual variable

Ref.

Mean of monthly min variable
across all years for ...

January, February, March, April, May, June,
July, August, September, October, November,
December

Ref.

Variability of min monthly
variable

Coefficient of variation in min monthly
variables

Ref.

Mean of annual daily min
variable divided by annual
median variable, averaged
across all years

Ref.

Mean of annual min variable
divided by mean annual
variable, averaged across all
years

Ref.

Median of annual min variable
divided by annual mean
variable over all years

Ref.

Mean of 7day minimum flow
(sum) divided by annual mean
variable, averaged across all
years

Ref.

Coefficient of variation in
“7day minimum variable
(sum) divided by annual mean
variable”

Ref.

Mean of “annual min variable
divided by annual mean
variable” averaged across all
years

Ref.

Mean of coefficient of
variation in monthly min
variable, averaged over all
years

Ref.

Coefficient of variation in
annual min variable

Ref.
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Mean of monthly max variable
across all years for ...

January, February, March, April, May, June,
July, August, September, October, November,
December

Ref.

Coefficient of variation in
“mean monthly max variable”

Ref.

Median of “annual max
variable divided by annual
median variable”

Ref.

Mean of annual 99th percentile
divided by annual median
variable, averaged across all
years

Ref.

Mean of annual 90th percentile
divided by annual median
variable, averaged across all
years

Ref.

Mean of annual 75th percentile
divided by annual median
variable, averaged across all
years

Ref.

Coefficient of variation in log
of annual max variable

Ref.

Skewness in annual max
variable

(NYEARS*sum(log(VARIABLE_MAX_PE
RYEAR.A3)) - 3*NYEARS*
sum(log(VARIABLE_MAX_PERYEAR))
*sum(log(VARIABLE_MAX_PERYEAR.A2
)+
2*sum(log(VARIABLE_MAX_PERYEAR))
A3) [ (NYEARS*(NYEARS-1)*(NYEARS-
2)*std(VARIABLE_MAX_PERYEAR) ):

Ref.

Mean of annual high variable
volume (variable more than
annual median) divided by
annual median variable,
averaged across all years

Ref.

Mean of annual high variable
volume (variable more than
3*annual median) divided by

Ref.
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annual median variable,
averaged across all years

Mean of annual high variable
volume (variable more than
7*annual median) divided by
annual median variable,
averaged across all years

Ref.

Mean of annual high variable
peak (variable more than
annual median) divided by
annual median variable,
averaged across all years

Ref.

Mean of annual high variable
peak (variable more than
3*annual median) divided by
annual median variable,
averaged across all years

Ref.

Mean of annual high variable
peak (variable more than
7*annual median) divided by
annual median variable,
averaged across all years

Ref.

Mean of annual high variable
peak (variable more than
annual 75th percentile) divided
by annual median variable,
averaged across all years

Ref.

Coefficient of variation in
monthly max variable

Ref.

Mean “number of annual
occurrences during which
variable remains below 25th
percentile of the variable”,
averaged across all years

Ref.

Coefficient of variation of
“number of annual occurrences
during which variable remains

Ref.
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below 25th percentile of the
variable”

Frequency of low variable
spells

Total number of days with low variable
(below 0.05*mean of the variable) divided by
the number of years of data

Ref.

Mean “number of annual
occurrences during which
variable remains above 75th
percentile of the variable”,
averaged across all years

Ref.

Coefficient of variation of
“number of annual occurrences
during which variable remains
above 75th percentile of the
variable”

Ref.

Mean “number of annual
occurrences during which
variable remains above
3*median of the variable”,
averaged across all years

Ref.

Mean “number of annual
occurrences during which
variable remains above
7*median of the variable”,
averaged across all years

Ref.

Mean “number of annual
occurrences during which
variable remains above median
of the variable”, averaged
across all years

Ref.

Mean “number of annual
occurrences during which
variable remains above 25th
percentile of the variable”,
averaged across all years

Ref.

Mean “number of annual
occurrences during which
variable remains above median

Ref.
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of annual maxima”, averaged
across all years

Mean of “annual minima of 1-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual minima of 3-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual minima of 7-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual minima of
30-day mean of daily
discharge”, averaged across all
years

Ref.

Mean of “annual minima of
90-day mean of daily
discharge”, averaged across all
years

Ref.

Coefficient of variation of
“annual minima of 1-day mean
of daily discharge”

Ref.

Coefficient of variation of
“annual minima of 3-day mean
of daily discharge”

Ref.

Coefficient of variation of
“annual minima of 7-day mean
of daily discharge”

Ref.

Coefficient of variation of
“annual minima of 30-day
mean of daily discharge”

Ref.

Coefficient of variation of
“annual minima of 90-day
mean of daily discharge”

Ref.

Mean of “annual minima of 1-
day mean of daily discharge

Ref.
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divided by median variable”,
averaged over all years

Mean of “annual minima of 7-
day mean of daily discharge
divided by median variable”,
averaged over all years

Ref.

Mean of “annual minima of
30-day mean of daily
discharge divided by median
variable”, averaged over all
years

Ref.

Mean of “annual mean of
variable below 25th percentile
divided by annual median
variable”, averaged across all
years

Ref.

Mean of “annual mean of
variable below 10th percentile
divided by annual median
variable”, averaged across all
years

Ref.

Low variable pulse duration

Mean “duration of annual occurrences during
which variable remains below 25th percentile
of the variable”, averaged across all years

Ref.

Coefficient of variation in
“duration of annual
occurrences during which
variable remains below 25th
percentile of the variable”

Ref.

Mean annual number of days
in which variable has a zero
value

Ref.

Coefficient of variation of
annual number of days in
which variable has a zero value

Ref.

Percent of months having zero
variable

Ref.
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Mean of “annual maxima of 1-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual maxima of 3-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual maxima of 7-
day mean of daily discharge”,
averaged across all years

Ref.

Mean of “annual maxima of
30-day mean of daily
discharge”, averaged across all
years

Ref.

Mean of “annual maxima of
90-day mean of daily
discharge”, averaged across all
years

Ref.

Coefficient of variation of
“annual maxima of 1-day
mean of daily discharge”

Ref.

Coefficient of variation of
“annual maxima of 3-day
mean of daily discharge”

Ref.

Coefficient of variation of
“annual maxima of 7-day
mean of daily discharge”

Ref.

Coefficient of variation of
“annual maxima of 30-day
mean of daily discharge”

Ref.

Coefficient of variation of
“annual maxima of 90-day
mean of daily discharge”

Ref.

Mean of “annual maxima of 1-
day mean of daily discharge
divided by median variable”,
averaged over all years

Ref.
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Mean of “annual maxima of 7-
day mean of daily discharge
divided by median variable”,
averaged over all years

Ref.

Mean of “annual maxima of
30-day mean of daily
discharge divided by median
variable”, averaged over all
years

Ref.

Mean “duration of annual high
variable pulses (above 75th
percentile of the variable)”

Ref.

Coefficient of variation in
“duration of annual high
variable pulses (above 75th
percentile of the variable)”

Ref.

Mean “duration of annual high
variable pulses (above median
of the variable)”

Ref.

Mean “duration of annual high
variable pulses (above
3*median of the variable)”

Ref.

Mean “duration of annual high
variable pulses (above
7*median of the variable)”

Ref.

Mean “duration of annual high
variable pulses (above 25th
percentile of the variable)”

Ref.

Rise rate

Mean rate of positive changes from one day
to the next

Ref.

Variability in rise rate

Coefficient of variation in rate of positive
changes from one day to the next

Ref.

Fall rate

Mean rate of negative changes from one day
to the next

Ref.

Variability in fall rate

Coefficient of variation in rate of negative
changes from one day to the next

Ref.
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temperature is less than 10th percentile

Ratio of days when variable is Ref. 1

higher than the previous day

Median of difference between Ref. 1

log of increasing variables

Median of difference between Ref. 1

log of decreasing variables

Reversals Number of negative and positive changes Ref. 1
from one day to next

Coefficient of variation in Ref. 1

number of negative and

positive changes from one day

to next

ETCCDI metrics

Max Tmax Max value of daily max temperature for Ref. 14
January, February, March, April, May, June,
July, August, September, October, November,
December

Max Tmin Max value of daily min temperature for Ref. 14
January, February, March, April, May, June,
July, August, September, October, November,
December

Min Tmax Min value of daily max temperature for Ref. 14
January, February, March, April, May, June,
July, August, September, October, November,
December

Min Tmin Min value of daily min temperature for Ref. 14
January, February, March, April, May, June,
July, August, September, October, November,
December

Cool nights Percentage of time when daily min Ref. 14
temperature is less than 10th percentile

Cool days Percentage of time when daily max Ref. 14
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Warm nights

Percentage of time when daily min
temperature is more than 90th percentile

Ref.

14

Warm days

Percentage of time when daily max
temperature is more than 90th percentile

Ref.

14

Diurnal temperature range

Monthly mean difference between daily max
and min temperature for

January, February, March, April, May, June,
July, August, September, October, November,
December

Ref.

14

Growing season length

Annual count between first span of at least 6
days with TG>5 Celsius and first span after
July 1 of 6 days with TG<5 Celsius

Ref.

14

Frost days

Annual count when daily min temperature is
less than O Celsius

Ref.

14

Summer days

Annual count when daily max temperature is
more than 25 Celsius

Ref.

14

Tropical nights

Annual count when daily min temperature is
more than 20 Celsius

Ref.

14

Warm spell duration indicator

Annual count when at least 6 consecutive
days of max temperature is more than 90th
percentile

Ref.

14

Cold spell duration indicator

Annual count when at least 6 consecutive
days of min temperature is less than 10th
percentile

Ref.

14

Max 1-day precipitation
amount

Monthly maximum 1-day precipitation for
January, February, March, April, May, June,
July, August, September, October, November,
December

Ref.

14

Max 5-day precipitation
amount

Monthly maximum 5-day precipitation for
January, February, March, April, May, June,
July, August, September, October, November,
December

Ref.

14

Simple daily intensity index

The ratio of annual total precipitation to the
number of wet days (>=1 mm)

Ref.

14
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693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Number of heavy precipitation | Annual count when precipitation >=10 mm Ref. 14
days

Number of very heavy Annual count when precipitation >=20 mm Ref. 14
precipitation days

Consecutive dry days Maximum number of consecutive days when | Ref. 14
precipitation <1 mm

Consecutive wet days Maximum number of consecutive days when | Ref. 14
precipitation >=1 mm

Very wet days Annual total precipitation from days >95th Ref. 14
percentile

Extremely wet days Annual total precipitation from days >99th Ref. 14
percentile

Annual total wet-day Annual total precipitation from days >= 1 mm | Ref. 14

precipitation
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