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ABSTRACT

We propose a method for temporal alignment–a precondition of

meaningful fusion–of multimodal systems, using the incremental

unit dialogue system framework, which gives the system flexibil-

ity in how it handles alignment: either by delaying a modality

for a specified amount of time, or by revoking (i.e., backtracking)

processed information so multiple information sources can be pro-

cessed jointly. We evaluate our approach in an offline experiment

with multimodal data and find that using the incremental frame-

work is flexible and shows promise as a solution to the problem of

temporal alignment in multimodal systems.
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1 INTRODUCTION

Multimodal fusion requires the joint processing of information from

various sources which, for technical reasons, may show different

temporal characteristics; i.e., a delay between the actual time of

an event and when the information about that event is available

[18]. This is further complicated by processing delays (which are

often variable) of modules that produce some kind of late fusion

[28]; i.e., a discrete signal (e.g., speech recognizer). We make an

important distinction between multimodal temporal alignment; i.e.,

ensuring that bits of information which originated at the same time

from multiple sensors or processing modules are available to be

processed jointly, and fusion; i.e., the actual combining of those bits

of information. Such a distinction ensures that whatever performs

the fusion actually fuses together information that should be based

on when the bits of information originated temporally.
For example, consider a human user who is interacting with a

robot equipped with a speech recognizer, an object detector, and
a deixis detector. If that human user says move that one over there,
with the words that and there accompanied by two distinct corre-
sponding deictic gestures, then in order to understand the intent of
the user, the system must align what object was pointed at by the
user when the word that was uttered, and again when the word
there was uttered in order for fusion to be meaningful. Any tempo-
ral misalignment in the three modalities would result in the robot
selecting the wrong object or bringing it to the wrong destination.
We propose and explore three possible solutions to the temporal
alignment problem:

• Each modality has an activity detector that informs the system that

information from their respective modalities will be forthcoming.

The alignment module can then wait for information from all modal-

ities before acting.

• Information from any modality is acted upon immediately, but re-

called and reprocessed when other delayed modalities produce in-

formation that originated at the same time.

• A combination of the above two approaches.

This paper contributes a novel approach using the incremental

unit framework (explained in Section 3) as an amenable frame-

work for the above solutions to the temporal alignment problem.

The framework lends itself well to alignment because it allows

provisions for aligning many sensors with less need for delays (fur-

ther explained in Section 4). We show through some preliminary

experiments that the system performs as expected (explained in

section Section 5), however we leave evaluation within a live, mul-

timodal system that interacts with real users for future work. In

the following Section, we explain related work.

2 RELATEDWORK

Though somewhat indirectly, we build upon previous general work

inmultimodal interfaces [19] aswell as [3] which defined an interval

algebra for time-series overlaps (e.g., eventX could take place before

event Y , or they could overlap completely or partially, etc.). The

evaluation explained in Section 3 is a form of late fusion, which is

similar to early work in unification-based fusion [13] and fusion

at the semantic level [6, 21, 32].1 [4, 24] were early approaches

to temporal alignment in terms of incremental processing making

their work directly related to ours, albeit with a different framework.

We refer the reader to [20] for a more in-depth review of relevant

multimodal fusion literature than we can provide here.

3 THE IU FRAMEWORK

Incremental systems (i.e., spoken dialogue systems–sds) process

input modalities incrementally; that is, they process as much as

possible as early as possible (e.g., an incremental speech recognizer

would process word by word instead of waiting for silence). It has

been shown that human users perceive incremental systems as

being more natural than traditional, turn-based sds [1, 5, 16, 25, 27],

offer a more human-like experience [10] and are more satisfying to

interact with than non-incremental systems [2]. Psycholinguistic

research has also shown that humans comprehend utterances as

they unfold and do not wait until the end of an utterance to begin

the comprehension process [29, 30], which motivates using an

incremental framework for alignment.

The incremental unit (iu) framework [23] is a conceptual ap-

proach to incremental processing which we build on for alignment.

Following [15], the iu framework consists of a network of process-

ing modules. A typical module takes input data on its left buffer,

performs some kind of processing on that data, and produces out-

put on its right buffer. The data are packaged as the payload of

incremental units (ius) which are passed between modules. The

ius themselves are interconnected via so-called same level links

(sll) and grounded-in links (grin), the former allowing the linking

1[11] makes the case that early fusion (i.e., at the feature level) works better than
late fusion–we conjecture that the approach presented here could also be used as a
precursor to early fusion.
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of ius as a growing sequence, the latter allowing that sequence

to convey what ius directly affect it. Important to this framework

and what makes it amenable to alignment is that ius can be added,

but can be later revoked and replaced in light of new information.

Figure 1 shows an example of how a speech recognition module

takes an audio signal as input and produces word ius as output.

The iu framework can take advantage of up-to-date information,

but have the potential to function in such a way that users perceive

as more natural by allowing ius to be added (thereby acted upon

without delay) and revoked, if necessary. In this work, we realize

the mechanism that handles multimodal temporal alignment as an

iu module, explained in the next section.

Figure 1: Example of sll, add, and revoke; the word four is added then
revoked, being replaced with forty. The diamonds denote the point in time
when the iu is passed to the next module.

4 IU TEMPORAL ALIGNMENT

For the purposes of this paper, alignment within the iu framework

amounts to ius from multiple modalities arriving at a later process-

ing module (i.e., some kind of fusion module) on its left buffer (i.e.,

input) simultaneously. In this section, we explain the three pro-

posed solutions for alignment within the iu framework as attempts

to meet this goal. For each explanation, we will use examples from

two modalitiesM1 andM2 in system aligment iu-module S .

4.1 The Alignment IU-Module

Our model of multimodal temporal alignment is realized as an

iu-module which has a left buffer, a right buffer, and a process-

ing element. However, the processing element of this particular

module does not perform any additional processing on the ius

that it receives; rather, it serves as a placeholder for those ius to

be passed on, held, or revoked (explained further in the sections

that immediately follow). Whereas the left buffer can receive input

from multiple modalities, the right buffer should pass those ius (i.e.,

produce output on the right buffer) jointly aligned in time. This

module assumes that ius have some kind of timestamp (e.g., iu

creation time, or sensor read time) to inform the genesis of an iu

to the module. The module can also take in a threshold parameter

to determine the maximum amount of time gap that is allowed

between two ius of two different modalities to be considered for

alignment. When two ius are considered aligned in time, they are

linked together via a grin link (see Section 3).

4.2 Activity Detection Driven (AD)

For this approach, each modality has a corresponding activity de-

tector (e.g., speech recognizers often have voice activity detection)

Figure 2: Activity Detection Driven (AD): ius from each modality’s ads sig-
nal that data (i.e., ius) will be forthcoming. M1 waits for ius from other M2

before being passed along. The dashed arrow denotes the iu was received, but
held. The solid arrow indicates time.

that informs the alignment module that information from their re-

spective modalities will be forthcoming. The alignment module can

then wait for information from all modalities which have signaled

activity before acting.

Example: S receives an activity detection signal forM1 andM2. S
then receives information fromM1 at time t1.M2 also has data at

time t1, but it has a delay of 250ms. Because of the activity detec-

tion signals from both modalities, S waits for information fromM2

(within a specified wait time) before acting. After 250ms, S receives

the data from M2. S outputs the data from M1 and M2 simultane-

ously. This is illustrated in Figure 2. Another example: S receives an

activity detection signal fromM1, then receives information from

M1. Because S has no indication that information fromM2 will be

forthcoming, it outputs theM1 information without delay.

Discussion: S is informed by eachmodality’s activity detector. This

way S will delay its actions, but only if both modalities will have

forthcoming information. S will have less need to revoke, which

will produce more informed behaviors. There is also the added

difficulty of having some kind of functional activity detector for

each modality.2

Figure 3: Act and Revoke (AR): ius from each modality potentially are
passed immediately and revoked when information from other modalities
is received. Dashed lines denote the point when a sent iu is revoked.

4.3 Act and Revoke (AR)

This approach is explained as follows: information from any modal-

ity is acted upon immediately, but revoked if other delayed modal-

ities produce information that originated at the same time. This

approach makes no use of any activity detection signal.

Example: S receives information fromM1 at time t1.M2 also has

information at time t1, but it has a processing delay of 250ms. S
proceeds with outputting the information fromM1. However, after

250ms, S receives the information fromM2. S revokes information

2For some modalities, the delay is so small that there is no need for an activity detector.

2
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Figure 4: Combined (AR&AD): ius from each modality can be held for a
specified amount of time given a signal from their corresponding ads, or
passed and revoked, if necessary. The dashed diamond denotes a possible out-
put.

fromM1 and jointly outputs the information fromM1 andM2. This

is illustrated in Figure 3.

Discussion: S should not have to wait for M2 to act on M1. This

allows S to produce behavior without an unnatural delay. How-

ever, in light of new information fromM2, S can revoke and pass

information from both modalities jointly.

4.4 Combined AR&AD

This approach combines both ar and ad approaches by treating

them as separate iu-modules used serially.

Example: S receives an activity detection signal forM1 andM2. S
then receives information from M1 at time t1. M2 also has infor-

mation at time t1, but it has a processing delay of 250ms. Because

of the activity detection signals from both modalities, S waits for

information fromM2 for a specified amount of time (say, 150ms) be-

fore acting. The information fromM2 has not yet been forthcoming,

so S acts upon the information it has from M1. After 250ms (from

t1), S receives the information from M2. S revokes the processing

it has done forM1 and restarts the processing of the information

fromM1 andM2 jointly. This is illustrated in Figure 4.

Discussion: In this case, the system designer can determine how

much delay is acceptable (i.e., ad) so the system produces as in-

formed behavior as possible, but can still get the benefit of ar.

5 EVALUATION

Table 1: Evaluation results for variants AD, AR, and var-

ious combinations of AR+AD. The thresholds denote the

amount of time (inms) that was allowed for ius to be consid-

ered aligned; the gaze and speech columns denote the corre-

sponding average delays.

setting threshold # revokes # delays gaze speech

none 0 0 0 11.1 309

AD 300 0 593 119.4 397

AR 300 274 0 19.7 402.6

AR+AD 50/300 46 582 119 392

AR+AD 100/300 98 581 118 364

AR+AD 150/300 155 579 120.5 386.3

AR+AD 200/300 196 576 114.9 401.7

AR+AD 250/300 256 490 103.2 410

We implemented each approach as explained in Section 4 as

an iu module, denoted aligner as part of InproTK [8, 15]. InproTK

has been used in several multimodal systems and experiments

[12, 14, 17].3

Data We apply one multimodal temporally aligned dialogue

of the REX corpus [31] using two modalities: speech realized as

AWordIUs and gaze GazeIUs where the gaze payload is an identifier

of the object that was being looked at (i.e., processed raw eye tracker

data; we used dialogue N2009-N01 form the corpus using the 201

OP-UT ius as speech and 2286 OP-GZE-N ius as gaze points). To

examine the effectiveness of the alignment as it would perform in

a realistic scenario with dynamic and variable delays, we introduce

a random delay to the speech where each delay is sampled from a

normal distribution (μ=300, σ 2 = 100) in milliseconds.

As an initial sanity check, Figure 5 shows multimodal alignment

(in this case, late fusion) between the two modalities using a thresh-

old (i.e., how much time gap is allowed to consider ius from two

modalities for fusion) of 0, 300, and 900 ms. The Alignment Module

made no temporal connection between the two modalities when

the threshold was set to 0 as expected, some connections when set

to 300ms and many connections when set to 900ms. This allows

the system designer flexibility in the value of the threshold. This

result is similar for all three proposed methods.

Task &Metrics. The goal is minimize delay and maximize stability.

Delay is incurred when the aligner holds an iu for some duration,

pending arrival of information (i.e., ius) from another modality.

To reflect this, we compute the number of delayed ius and the

average delay in milliseconds for each modality (where delay is

the difference between the activity detector iu arrival time and

the arrival time of the corresponding iu). To determine stability,

we follow [22] and compute a simplified version of edit overhead;

i.e., how often the model makes unnecessary changes reported as

number of revokes. The goal is to minimize all scores. We chose a

maximum threshold of 300ms for all tests because it is an expected

incremental delay for speech recognition [7] which is also the

average artificial delay we add to each speech iu. As above, to

add realsitic delay variation, we sample the delay from a normal

distribution (μ=300, σ 2 = 100) in milliseconds.

Results. Table 1 shows the results. For the none setting, in all cases

the speech ius are 300ms (on average) delayed with no provisions

for aligning them. As expected, the average delay for the speech

modality was well above the average 300ms delay under all settings.

The avg delay gaze difference between none and AR shows that

revoking incurs a very small time overhead resulting in an increased

delay. As expected, AD produces no revoke operations, but causes

593 ius to be delayed for the full threshold time. AR produced 274

revokes, but incurred no additional processing delay. The revokes

and processing delays for various settings applying AR+AD are

shown in the remaining rows. As the threshold for AR increased

so did the number of revokes. The lowest average delay for speech

was AR+AD 100/300 with an average delay of 364 ms with 98

revokes and 581 delays. This is an encouraging result; the setting

for AR+AD 100/300 produced some revokes and delayed some ius,

but not all in all cases, showing that indeed ius don’t always need

to be delayed, but if they (wrongly) are sent, they can be revoked.

Figure 6 shows a comparison between the modalities when hand-

aligned, when there is no alignment (i.e., an avg 300ms delay for

3https://bitbucket.org/inpro/inprotk

3

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Proceedings of the
19th ACM International Conference on Multimodal Interaction, published by The Association for Computing Machinery. Copyright restrictions may apply. 
doi: 10.1145/3136755.3136769 



Figure 5: Alignment of two modalities (GazeIU and AWordIU) using the three methods AD, AR, and AR+AD for time thresholds of 0, 300, and 900 respectively
from top to bottom. The arrows denote ius that are considered linked temporally (and hence marked for potential fusion). Higher time thresholds generally
means more ius are linked together temporally.

Figure 6: Comparison of hand-aligned vs. non-aligned (where the speech
is, on average, 300ms delayed), and AR+AD aligned.

speech) and alignment using the best setting of AR+AD (100/300).

There is no way to recover the avg 300ms delay in the speech, but

theAR+AD setting aligns the modalities whereas those alignments

would be lost otherwise. This compares to the 300ms middle part

in Figure 5. Note that each iu has information about the sensor

read timing–the figure portrays the timing of ius as they begin

processing in a system (e.g., a dialogue system).

6 DISCUSSION & CONCLUSION

The results show that the iu framework can be used flexibly for

temporal alignment depending on the circumstances; in all cases

with the ability to align and fuse multiple modalities. We noted

above that alignment as an iu module could potentially be used

for realistic, natural behavior. For example, if the AR alignment

module passes an iu to the next module which, as a result, begins to

produce a behavior (e.g., an utterance or a robot begins to reach for

and object), only to revoke that iu, the system can produce some

kind of disfluency (e.g., by uttering “um" or by stopping the reach)

which is seen by human as more natural [9, 26].

In this paper, we have proposed a solution to temporal alignment

based on the iu framework. It can flexibly handle any threshold as

a parameter and can theoretically handle any number of modalities,

though here we only considered two modalities. Moreover, the

module can be instantiated anywhere in a system where there

may be need for temporal alignment between two modalities or

modules. We evaluated our approach systematically using real data

and some simple metrics. No approach to alignment can possibly

recover the delays caused by the sensors and modules, but as shown

here there are several options when handling alignment which

could potentially allow a system to produce behavior as soon as

possible while benefiting from aligned fusion between modalities.

For future work, we will apply this in a live multimodal system that

interacts with human users and evaluate how those users perceive

the naturalness of the interaction.
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