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Abstract—Using public cloud for image storage has become
a prevalent trend with the rapidly increasing number of pic-
tures generated by various devices. For example, today’s most
smartphones and tablets synchronize photo albums with cloud
storage platforms. However, as many images contain sensitive
information, such as personal identities and financial data, it
is concerning to upload images to cloud storage. To eliminate
such privacy concerns in cloud storage while keeping decent data
management and search features, a spectrum of keywords-based
searchable encryption (SE) schemes have been proposed in the
past decade. Unfortunately, there is a fundamental gap remains
open for their support of images, i.e., appropriate keywords need
to be extracted for images before applying SE schemes to them.
On one hand, it is obviously impractical for smartphone users
to manually annotate their images. On the other hand, although
cloud storage services now offer image annotation services, they
rely on access to users’ unencrypted images. To fulfill this
gap and open the first path from SE schemes to images, this
paper proposes a cloud assisted privacy-preserving automatic
image annotation scheme, namely CAPIA. CAPIA enables cloud
storage users to automatically assign keywords to their images
by leveraging the power of cloud computing. Meanwhile, CAPIA
prevents the cloud from learning the content of images and their
keywords. Thorough analysis is carried out to demonstrate the
security of CAPIA. A prototype implementation over the well-
known IAPR TC-12 dataset further validates the efficiency and
accuracy of CAPIA.

I. INTRODUCTION

The widespread use of smartphones brings the explosive

growth in the number of pictures taken. According to a recent

report from Mylio [1], over one trillion pictures will be

taken by smartphones in 2017. To store and manage a large

number of images in an efficient and economical way, public

cloud storage has been widely adopted by most smartphone

users. Currently, majority of smartphones are synchronizing

their photo albums with cloud storage services, including

Apple’s iCloud, Samsung Cloud, Google Photo, etc. Despite

the decent features offered by cloud storage services, directly

uploading images to public cloud also causes privacy breaches

and even legal issues. This is because many images contain

sensitive information, such as healthcare information, personal

identities/locations, and financial information, etc. Nowadays,

encrypting images with standard encryption algorithms, such

as AES, is still the major approach for privacy protection in

cloud storage [2], [3]. Nevertheless, these traditional encryp-

tion algorithms inevitability sacrifice the usability of images

outsourced to cloud, including efficient indexing, search, key-

words extractions, etc.

To protect the privacy of data stored on public cloud

while retaining the efficient search ability over these data,

keywords-based searchable encryption (SE) has received a lot

of research effort in recent years [4]–[9]. A SE scheme typi-

cally provides encrypted search indexes constructed based on

proper keywords assigned to data files. With these encrypted

indexes, the data owner can submit encrypted keywords-

based-search request to search their data over ciphertexts. SE

schemes have been demonstrated to be effective for text files,

however, fundamental challenges remain for their support of

images. Specifically, unlike text files that support automatic

keyword extraction from their content or file names, keywords

assignment for an image relies on manual description, or

automatic annotation based on a large-scale pre-annotated

image dataset. From the perspective of user experience, man-

ually annotating each image from users’ devices is clearly an

impractical choice. Meanwhile, automatic image annotation

involving large-scale image datasets is too resource consuming

to be developed on mobile terminals. Although cloud storage

services, such as Apple’s iCloud and Google Photo, are now

offering automatic image annotation to extract appropriate

keywords for images, access to unencrypted images is a nec-

essary requirement. As a matter of fact, directly utilizing this

kind of annotation services contradicts the privacy protection

purpose in SE. Therefore, the key gap to fulfill between SE

schemes and images becomes how to automatically annotate

images in a privacy-preserving manner. Unfortunately, to the

best of our knowledge, there is no existing solution that can

efficiently and effectively achieve such a desired functionality.

In this paper, we propose the first privacy-preserving image

annotation scheme (CAPIA) that can be securely delegated

to the public cloud. CAPIA provides efficient annotation and

can be easily parallelized for cloud computing environment.

Meanwhile, CAPIA achieves comparable annotation accuracy

compared with existing no-privacy-preserving image anno-

tation approaches. To securely support required operations

in automatic image annotation, we first design two privacy-

preserving outsourcing schemes for L1 distance comparison978-1-5386-0683-4/17/$31.00 c©2017 IEEE
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and Kullback-Leibler (KL) Divergence comparison respec-

tively as building blocks for CAPIA. Furthermore, as the

same keyword may have different importance for the semantic

description of different images, we design a real-time weight

to support accurate final keywords selection in the image anno-

tation process. To evaluate CAPIA, we first conduct thorough

analysis for it in terms of security and efficiency. Then, we

provide an extensive experimental evaluation for CAPIA with

a prototype implementation over the well-known IAPR TC-

12 dataset [10]. Our evaluation results further validate the

practical performance of CAPIA in terms of efficiency and

accuracy.

The rest of this paper is organized as follows: In Section

II: we present the system model and threat model of CAPIA.

Section III introduces backgrounds of automatic image an-

notation and technical preliminaries for CAPIA. The detailed

construction of CAPIA as well as its security analysis are

provided in Section IV. Section V evaluates the performance

of CAPIA. We review and discuss related works in Section

VI and conclude this paper in Section VII.

II. MODELS

A. System Model

As shown in Fig.1, our CAPIA system is consistent with

today’s major cloud storage application, which consists of

two entities: a Cloud Server and a User. The user stores

his/her images on cloud, and the cloud helps the user to

annotate his/her images. Once the user obtains keywords for

his/her images, he/she can adopt existing SE schemes for

his/her images to achieve keywords-based privacy-preserving

image search. During the entire image storage and annotation

process, CAPIA prevents the cloud storage server from learn-

ing the privacy of the user’s images and their corresponding

keywords.

In CAPIA, the user first performs a one-time preparation

for extracting features of images in a pre-annotated dataset,

and encrypts these features as well as keywords. These en-

crypted features and keywords will be outsourced to cloud to

assist future privacy-preserving image annotation. For resource

constrained mobile devices, this one-time setup process can

be performed using desktops. Later on, when the user has a

new image to annotate, he/she generates an encrypted request

and sends it to the cloud. After processing the request, the

cloud returns ciphertexts of top related keywords and auxiliary

information. Finally, the user decrypts all keywords and ranks

them based on their real-time weights to select final keywords.

Fig. 1. System Model of CAPIA

B. Threat Model

In CAPIA, we consider the cloud server to be “curious-

but-honest”, i.e., the cloud server will follow our scheme to

perform storage and annotation services correctly, but it may

try to learn sensitive information in users’ data. The cloud

server has access to all encrypted images, encrypted image

features, encrypted keywords, the user’s request, and encrypted

annotation results. This assumption is consistent with majority

of existing works that focus on search over encrypted data

on public cloud [6]–[9]. In addition, the cloud may get some

ciphertexts-plaintexts pairs of the user’s images as well as their

corresponding features and keywords. For example, the cloud

may obtain a user’s image information by analyzing his/her

social media posts. CAPIA should protect a user’s privacy by

preventing the cloud from learning the following information:

1) content of the user’s images; 2) features extracted and

keywords annotated for each image; 3) request linkability, i.e.,

tell whether multiple annotation requests are from the same

image.

III. PRELIMINARIES

A. Image Feature Extraction

In this paper, we adopt global low-level image features as

that are utilized in the baseline image annotation technique

[11], because it can be applied to general images without

complex models and subsequent training. Color features of

an image are extracted in three different color spaces: RGB,

HSV, and LAB. In particular, RGB feature is computed as a

normalized 3D histogram of RGB pixel, in which each channel

(R,G,B) has 16 bins that divide the color space values from 0

to 255. The HSV and LAB features can be processed similarly

as RGB, and thus we can construct three feature vectors

for RGB, HSV and LAB respectively as VRGB , VHSV , and

VLAB . Texture features of an image are extracted using Gabor

and Haar wavelets. Specifically, an image is first filtered with

Gabor wavelets at three scales and four orientations, resulting

in twelve response images. Each response image is then

divided into non-overlappng rectangle blocks. Finally, mean

filter response magnitudes from each block over all response

images are concatenated into a feature vector, denoted as

VG. Meanwhile, a quantized Gabor feature of an image is

generated using the mean Gabor response phase angle in non-

overlapping blocks in each response image. These quantized

values are concatenated into a feature vector, denoted as VGQ.

The Haar feature of an image is extracted similarly as Gabor,

but based on differently configured Haar wavelets. HaarQ

stands for the quantized version of Haar feature, which quan-

tizes Haar features into [0,-1,1] if the sign of Haar response

values are [zero, negative, positive], respectively. We denote

feature vectors of Haar and HaarQ as VH and VHQ respec-

tively. Therefore, given an image, seven feature vectors will

be extracted as [VRGB ,VHSV ,VLAB ,VG,VGQ,VH ,VHQ].
For more details about the adopted image feature extraction,

please refer to ref [11].
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B. Integer Vector Encryption (IVE)
In this section, we describe a homomorphic encryption

scheme designed for integer vectors [12], which will be tai-

lored in our construction to achieve privacy-preserving image

annotation. For expression simplicity, following definitions

will be used in the rest of this paper

• For a vector V (or a matrix M), define |max(V)| (or

|max(M)|) to be the maximum absolute value of their

elements.

• For a ∈ R, define �a� to be the nearest integer of a, �a�q
to be the nearest integer of a with modulus q.

• For matrix M ∈ R
n×m, define vec(M) to be a nm-

dimensional vector by concatenating the transpose of

each column of M.

Encryption: Given a m-dimensional vector V ∈ Z
m
p and the

secret key matrix S ∈ Z
m×m
q , output the ciphertext of V as

C = S−1(wV + e)T (1)

where S−1 is the inverse matrix of S, T is the transpose

operator, e is a random error vector, w is an integer parameter,

q >> p, w > 2|max(e)|.
Decryption: Given the ciphertext C, it can be decrypted using

S and w as V = � (SC)T

w �q .
Inner Product: Given two ciphertexts C1,C2 of V1,V2, and

their corresponding secret keys S1 and S2, the inner product

operation of V1 and V2 over ciphertexts can be performed as

vec(ST
1 S2)�vec(C1CT

2 )

w
�q = wV1VT

2 + e (2)

To this end, vec(ST
1 S2) becomes the new secret key and

� vec(C1CT
2 )

w �q becomes the new ciphertext of V1VT
2 .

More details about this IVE encryption algorithm and its

security proof are available in ref [12].

IV. CLOUD ASSISTED PRIVACY-PRESERVING IMAGE

ANNOTATION

The core idea of automatic image annotation is built on

the hypothesis that images contain similar objects are likely

to share keywords. Hence, given a large-scale pre-annotated

image dataset, the annotation process for a new image can be

first treated as a process of transferring keywords from images

that contains similar objects. In CAPIA, similarity of images

is measured by seven low-level color and texture feature

vectors [Vi,RGB ,Vi,HSV ,Vi,LAB ,Vi,G,Vi,GQ,Vi,H ,Vi,HQ]
as discussed in Section III-A. Specifically, given two images

Ia,Ib, their similarity can be computed as a combined distance

Disab =DL1RGB
ab +DL1HSV

ab +DL1Gab +DL1GQ
ab

+DL1Hab +DL1HQ
ab +DKLLAB

ab

where DL1 and DKL denote L1 distance and KL-Divergence

of two vectors after data normalization. We consider these

seven basic distances contribute equally to the total combined

distance Disab. Based on this observation, we first propose

two privacy-preserving distance comparison solutions for L1

(namely, PL1C) and KL-Divergence (namely, PKLC) respec-

tively, which support two key operations in CAPIA.

A. PL1C: Privacy-preserving L1 Distance Comparison

In PL1C, we consider a user has three m-dimensional

integer vectors Vi, i ∈ {a, b, c} that will be outsourced to

cloud after encryption. The cloud later compares L1 distances

DL1ac and DL1bc directly over ciphertexts to figure out which

one is smaller.

Data Preparation: Given a vector Vi = [vi1, · · · , vim], i ∈
{a, b, c}, the user converts it to a mβ-dimensional binary

vector Ṽi = [F (vi1), · · · , F (vim)], where β = |max(Vi)|,
and F (vij) = [1, 1, · · · , 1, 0, · · · , 0] such that the first vij
terms are 1 and the rest β − vij terms are 0. The L1 distance

between Va and Vb now can be calculated as

DL1ab =
∑m

j=1 |vaj − vbj | =
∑mβ

j=1(ṽaj − ṽbj)
2

Then, the user adopts an approximation method introduced

in ref [13] to reduce the dimension of Ṽi from mβ to m̂ =
αm logβ+1

γ based on the Johnson Lindenstrauss (JL) Lemma

[14]. By denoting the approximated vector as V̂i, we have

DL1ab =
∑mβ

j=1(ṽaj − ṽbj)
2 ≈ ∑m̂

j=1(v̂aj − v̂bj)
2.

The correctness and accuracy of such an approximation

have been proved in ref [13]. According to our experimental

evaluation in Section V, we set α = 1 and γ = 100 in our

scheme to achieve balanced accuracy and efficiency.

Data Encryption: Given an approximated vector V̂i, i ∈
{a, b}, the user appends two elements to it as V̂i =
[v̂i1, v̂i2, · · · , v̂im̂, r − 1

2

∑m̂
j=1 v̂

2
ij , εi], where r is a random

number and εi is a small random noise. Then, the user

encrypts V̂i using the Encryption algorithm of IVE presented

in Section III-B as

Ci = S−1(wV̂i + ei)T (3)

where S is the secret matrix, ei is an error vector, and w is an

integer parameter. Ca, Cb, and w are outsourced to the cloud.

Request Generation: Given the approximated vector V̂c,

the user selects a positive random number rc and applies it to

V̂c as V̂c = [rcv̂c1, · · · , rcv̂cm̂, rc, 1]. V̂c is then encrypted as

Cc = S−1
c (wV̂c + ec)T , where Sc is the secret key generated

for V̂c. Cc and ST Sc are sent to the cloud as request.

Distance Comparison: On receiving the request, the cloud

computes � vec(CaCT
c )

w �q , � vec(CbCT
c )

w �q , and decrypts them us-

ing vec(ST Sc) to obtain V̂aV̂
T

c and V̂bV̂
T

c as Eq.2. Finally,

the approximated L1 distance comparison is performed as

V̂bV̂
T

c − V̂aV̂
T

c (4)

= rc

m̂∑
j=1

v̂bj v̂cj − rc
2

m̂∑
j=1

v̂2bj + rcr + εb

− (rc

m̂∑
j=1

v̂aj v̂cj − rc
2

m̂∑
j=1

v̂2aj + rcr + εa)

=
rc
2
(

m̂∑
j=1

(v̂aj − v̂cj)
2 −

m̂∑
j=1

(v̂bj − v̂cj)
2) + (εb − εa)

≈ rc
2
(DL1ac −DL1bc) + (εb − εa)
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It is worth to note that PL1C is only interested in which

distance is smaller during the comparison. Therefore, instead

of letting the cloud get exact L1 distances for comparison,

PL1C adopts approximated distance comparison result scaled

and obfuscated by rc and εb − εa as shown in Eq.4. As rc is

a positive random number, the sign of rc
2 (DL1ac − DL1bc)

is consistent with DL1ac −DL1bc. Meanwhile, since rc >>
εb − εa, the added noise term has negligible influence to the

sign of DL1ac −DL1bc unless these two distances are very

close to each other. Fortunately, instead of finding the most

related one, our CAPIA design will utilize PL1C to figure out

top 10 related candidates during the comparison. Such a design

makes important candidates (say top 5 out of top 10) not be

bypassed by the error introduced in εb − εa. This hypothesis

is further validated by our experimental results in Section V.

B. PKLC: Privacy-preserving KL-Divergence Comparison

In PKLC, we consider a user has three m-dimensional vec-

tors Vi, i ∈ {a, b, c}, and wants to outsource the comparison

of DKLac and DKLbc to the cloud without disclosing the

content of Vi, i ∈ {a, b, c}. The definition of KL-Divergence

for two vectors Va, Vb is:

DKLab =
m∑
j=1

vaj × log(
vaj
vbj

) (5)

=

m∑
j=1

vaj × log(vaj)−
m∑
j=1

vaj × log(vbj)

where log(
vaj

vbj
) = log(vaj) = log(vbj) = 0 if vaj = 0 or

vbj = 0.

Data Encryption: The user first appends m + 2 ele-

ments to Vi, i ∈ {a, b} as Vi = [vi1, vi2, · · · , vim, vi1 ×
log(vi1), · · · , vim × log(vim), r, εi], where r is a random

number and εi is a small random noise. Then, Vi, i ∈ {a, b}
are encrypted with the Encryption algorithm of IVE as

Ci = S−1(wVi + ei)T (6)

Ca and Cb are outsourced to the cloud.

Request Generation: The user processes Vc to generate a

privacy-preserving KL-Divergence comparison request as

• Replace elements vcj with −rc × log(vcj), and append

m+2 elements to Vc as Vc = [−rc×log(vc1), · · · ,−rc×
log(vcm), G(vc1), · · · , G(vcm), rc,−1], where G(vcj) ={
rc, vcj �= 0

0, vcj = 0
, rc is a positive random number changing

for every request.

• Encrypt Vc as Cc using the Encryption algorithm of IVE

as Cc = S−1
c (wVc + ec)T .

Cc and ST Sc are sent to the cloud as request.

Distance Comparison: On receiving the request, the cloud

first computes � vec(CaCT
c )

w �q , � vec(CbCT
c )

w �q and decrypts them

using vec(ST Sc) to get VaVT
c and VbVT

c as Eq.2. Then, the

cloud compares DKLac and DKLbc by computing

VaVT
c − VbVT

c (7)

= rc(r +

m∑
j=1

vaj × log(vaj)−
m∑
j=1

vaj × log(vcj))− εa

− rc(r +

m∑
j=1

vbj × log(vbj)−
m∑
j=1

vbj × log(vcj)) + εb

= rc(DKLac −DKLbc) + (εb − εa)

Similar to our PL1C construction, we have rc > 0 and

rc >> (εb − εa). Therefore, the cloud can figure out which

KL-Divergence is smaller based on the scaled and obfuscated

comparison result.

C. Detailed Construction of CAPIA

CAPIA consists of five major procedures. In the System
Setup, the user selects system parameters, extracts and pre-

processes feature vectors of images in a pre-annotated dataset.

Then, the user executes the Data Encryption procedure to

encrypt these processed feature vectors. Both the System Setup
procedure and the Data Encryption procedure are one-time

cost in CAPIA. Later on, the user can use the Secure Anno-
tation Request procedure to generate an encrypted annotation

request. On receiving the request, the cloud server performs the

Privacy-preserving Annotation on Cloud procedure to return

encrypted keywords for the requested image. At the end, the

user obtains final keywords by executing the Final Keyword
Selection procedure.

1) System Setup: To perform the one-time setup of CAPIA

system, the user first prepares a pre-annotated image dataset

with n images, which can be obtained from public sources,

such as IAPR TC-12 [10], LabelMe [15], etc. For each

image Ii in the dataset, the user extracts seven feature

vectors [Vi,RGB ,Vi,HSV ,Vi,LAB ,Vi,G,Vi,GQ,Vi,H ,Vi,HQ].
Compared with other five feature vectors that have dimension

up to 256, Vi,H and Vi,HQ have a high dimension as 4096.

To guarantee the efficiency while processing feature vectors,

Principal Component Analysis (PCA) [16] is utilized to re-

duce the dimension of Vi,H and Vi,HQ. According to our

experimental evaluation in Section V-B, PCA based dimension

reduction with proper setting can significantly improve the

efficiency of CAPIA with slight accuracy loss. After that,

L1 normalization will be performed for each feature vector,

which normalizes elements in these vectors to [-1,1]. Besides

Vi,LAB , the user also increases each element in Vi,k, k ∈
{RGB,HSV,G,GQ,H,HQ} as vi,k,j = vi,k,j + 1 to avoid

negative values. Next, each element in all feature vectors

are scaled by the same value. Given three processed vectors

Vi, i ∈ {a, b, c}, it is easy to verify that the sign of L1 dis-

tance comparison result DL1ab −DL1ac and KL-Divergence

comparison result DKLab −DKLac with processed vectors

remain the same as that using original vectors. Six feature

vectors that use L1 distance for similarity measurement are

concatenated as a mL1-dimensional vector Vi,L1. Vi,LAB is
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denoted as a mKL-dimensional vector Vi,KL for expression

simplicity. It is easy to verify that DL1L1
ab = DL1RGB

ab +
DL1HSV

ab +DL1Gab +DL1GQ
ab +DL1Hab +DL1HQ

ab .

2) Dataset Encryption: Given an image Ii in the pre-

annotated dataset, its keywords {Ki,t} are first encrypted using

AES. Then, feature vectors Vi,L1 and Vi,KL are encrypted as

Ci,L1 and Ci,KL using the Data Encryption methods in our

proposed PL1C and PKLC schemes respectively. During the

encryption, same secret keys SL1, SKL, public parameter w,

and random number r will be used for all images. However,

different error vector ei and noise term εi are generated

for each image Ii correspondingly. The user also computes

ST
L1Ss,L1 and ST

KLSs,KL, in which Ss,L1 and Ss,KL are secret

keys for the encryption of later annotation requests. These

Ci,L1, Ci,KL and encrypted keywords of each image Ii, as

well as ST
L1Ss,L1 and ST

KLSs,KL are outsourced to the cloud.

3) Secure Annotation Request: When the user has a new

image Is for annotation, he/she first extracts seven feature vec-

tors as Vs, s ∈ [RGB,HSV,LAB,G,GQ,H,HQ]. These

vectors will be normalized and scaled to output Vs,L1 and

Vs,KL as that in the System Setup procedure. Then, the user

processes and encrypts Vs,L1 and Vs,KL as Cs,L1 and Cs,KL

using the Request Generation methods in our PL1C and PKLC

schemes respectively. For each annotation request, the user

generates a new positive random number rs and a new error

vector es. Cs,L1 and Cs,KL are sent to the cloud as the

annotation request.

4) Privacy-preserving Annotation on Cloud: On receiv-

ing the request, the cloud first outputs Vi,L1VT
s,L1 and

Vi,KLVT
s,KL for each image in the pre-annotated dataset as

Vi,L1VT
s,L1 = vec(ST

L1Ss,L1)�
vec(Ci,L1CT

s,L1)

w
�q (8)

Vi,KLVT
s,KL = vec(ST

KLSs,KL)�
vec(Ci,KLCT

s,KL)

w
�q (9)

where 1 ≤ i ≤ n. Then, the cloud ranks all the images

according to their combined distances to the request image

Is. Specifically, a distance comparison candidate Compi =
−2(Vi,L1VT

s,L1) + Vi,KLVT
s,KL can be generated for each

image Ii. Given Ia and Ib for example, the cloud can rank

them as

Compa − Compb (10)

= 2(Vb,L1VT
s,L1 − Va,L1VT

s,L1)

+ Va,L1VT
s,KL − Vb,KLVT

s,KL

= rs(DL1L1
as −DL1L1

bs ) + 2(εb − εa)

+ rs(DKLLAB
as −DKLLAB

bs ) + (εb − εa)

= rs(Disas −Disbs) + 3(εb − εa)

As rs is a positive value and rs >> (εb − εa), the cloud can

figure out which image is more relative to Is according to the

above distance comparison result. According to the ranking of

all pre-annotated images, the cloud outputs top related images

to Is and denotes them as a set RST. Finally, the cloud returns

distance comparison candidates Compi, i ∈ RST as well as

corresponding encrypted keywords back to the user.

5) Final Keyword Selection: In this stage, the user first

decrypts encrypted keywords and obtains Ki,t, i ∈ RST ,

where Ki,t is the t-th pre-annotated keyword in image Ii.
Then, the user computes distances Disis, i ∈ RST as

Disis = (2r +

mL1∑
j=1

v2s,L1,j) +
Compi

rs

= (2r +

mL1∑
j=1

v2s,L1,j) +
−2(Vi,L1VT

s,L1) + Vi,KLVT
s,KL

rs

To achieve higher accuracy in keywords selection, we consider

that keywords in images that have smaller distance to the

requested one are more relevant. Thus, we define a real-time

weight Wt for each keyword based on distances Disis as

WIi = 1− Disis∑
i∈RST Disis

(11)

Wt =
∑

WIi , for Ii contains Ki,t (12)

Specifically, we first figure out the weight WIi of each image

according to their distance based similarity. As our definition

in Eq.11, images with smaller distance will receive a larger

weight value. Then, considering the same keyword can appear

in multiple images, the final weight Wt of a keyword Ki,t

is generated by adding weights of images that contain this

keyword. Finally, the user selects keywords for his/her image

according to their ranking of weight Wt.

D. Security Analysis

In CAPIA, we have the following privacy related data:

feature vectors {Vi,L1,Vi,KL}1≤i≤n and keywords of image

Ii in the pre-annotated dataset; feature vectors Vs,L1, Vs,KL of

the image requested for annotation. As keywords are encrypted

using standard AES encryption, we consider them secure

against the cloud server as well as outside adversaries. With

regards to Vi,L1, Vi,KL, Vs,L1, Vs,KL, they are encrypted

using the encryption scheme of IVE [12] after pre-processing

as presented in our PL1C and PKLC schemes. The IVE

scheme [12] has been proved to be secure based on the well-

known Learning with Errors (LWE) hard problem [17]. Thus,

given the ciphertexts Ci,L1, Ci,KL, Cs,L1, Cs,KL only, it

is computational infeasible for the cloud server or outside

adversaries to recover Vi,L1, Vi,KL, Vs,L1, Vs,KL.

1) Security of Outsourcing ST
L1Ss,L1 and ST

KLSs,KL: As

ST
L1Ss,L1 and ST

KLSs,KL are used in the same manner, we

use ST Ss to denote them for expression simplicity. Different

from the original Encryption algorithm of IVE, the user in

CAPIA also outsources ST Ss to the cloud besides ciphertexts

Ci,L1, Ci,KL, Cs,L1, Cs,KL. As all elements in S and Ss are

randomly selected, elements in their multiplication ST Ss have

the same distribution as these elements in S and Ss [18]. Thus,

given ST Ss, the cloud server is not be able to extract S or Ss

directly and use them to decrypt Ci,L1, Ci,KL, Cs,L1, Cs,KL.
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By combining ST Ss with ciphertexts Ci,L1 and Cs,L1 (same

as that for Ci,KL and Cs,KL), the cloud can obtain

ST SsCi,L1 = ST SsS−1(wVi,L1 + ei)T

ST SsCs,L1 = ST SsS−1
s (wVs,L1 + ei)T = ST (wVs,L1 + ei)T

From the above two equations, it is clear that the combination

of ST Ss, Ci,L1 and ST Ss, Cs,L1 only transfer them to the

ciphertexts of Vi,L1 and Vs,L1 that encrypted using the IVE

scheme with new keys ST SsS−1 and ST respectively. As

ST SsS−1 and ST are random keys and unknown to the cloud,

recovering Vi,L1, Vs,L1 from ST SsCi,L1, ST SsCs,L1 still

become the LWE problem as proved in ref [12]. To this end,

ST Ss only helps the cloud to perform distance comparison

in CAPIA, but does not bring advantages to recover feature

vectors compared with the given ciphertexts only scenario.
2) Known Ciphertext-Image Pairs: We now consider that

the cloud server gets a set of ciphertext-image pairs from

the background analysis as {Vi,L1,Ci,L1} ({Vs,L1,Cs,L1},

{Vi,KL,Ci,KL}, {Vs,KL,Cs,KL} repsectively). In ref [19], a

linear analysis attack based on ciphertext-image pairs is intro-

duced to recover vectors from their distance comparison result.

In particular, instead of trying to recovering feature vectors or

secret keys directly from ciphertexts, such an attack attempts

to recover the vectors from the distance comparison result by

constructing and solving enough number (i.e., greater than the

dimension of vector) of linear equations. To launch this kind

of linear analysis attack to CAPIA, there are two necessary

requirements that need to be fulfilled simultaneously: 1) The

cloud obtains at least m ciphertext-image pairs, where m is

the dimension of feature vectors; 2) The cloud has access to

the exact L1 distance and KL-Divergence comparison results.

As shown in Eq.4 and Eq.7, CAPIA only provides scaled and

obfuscated comparison results by adding noise terms εi and

random scaling factor rc. As a result, the cloud cannot fulfill

the second requirement to launch a successful linear analysis

attack to CAPIA. To this end, CAPIA is secure even a set of

ciphertext-image pairs are obtained by the cloud server.
3) Request Unlinkability: The request unlinkability in

CAPIA is guaranteed by the randomization for each request.

Specifically, each query request Vs,L1,Vs,KL is element-wise

obfuscated with different random error terms es and random

number rs during the encryption, which makes the obfuscated

Vs,L1,Vs,KL have the same distribution as these random

values in es and rc [18]. Thus, by changing es and rc during

the encryption of different requests, CAPIA outputs different

random ciphertexts, even for requests generated from the same

image.

V. EVALUATION

To evaluate the performance of CAPIA, we implemented

a prototype using Python 2.7. In our implementation, Numpy

[20] is used to support efficient multi-dimension array opera-

tions. OpenCV [21] is used to extract the color-space features

of the images and build the filter kernels to generate the Gabor

filter results. Pywt [22] is adopted to perform Haar wavelet

and get the corresponding Haar results. Sklearn [23] is used

to perform the PCA transformation. We use the well-known

IAPR TC-12 [24] as the pre-annotated dataset, which contains

20,000 annotated images and the average number of keywords

for each image is 5.7. All tests are performed on a 3.1 GHz

Intel Core i7 Macbook Pro with OS X 10.11.6 installed.

In the rest of this section, n is the total number of images

in the pre-annotated dataset; mL1 and mKL are dimensions

of vectors Vi,L1 and Vi,KL after pre-processing respectively;

PCA−X is used to denote the strength of PCA transforma-

tion applied to Vi,H and Vi,HQ in Vi,L1, which compresses

their dimensions from 4096 to 4096
X . PCA− 128, PCA− 64,

PCA − 32, PCA − 16, and PCA − 8 are evaluated in our

experiments to balance the efficiency and accuracy of CAPIA.

We also use DOTm to denote a dot product operation between

to two m-dimensional vectors.

A. System Setup and Dataset Encryption

To perform the one-time setup in CAPIA, the user pre-

processes feature vectors of each image in the pre-annotated

image dataset. Specifically, the user first performs JL-Lemma

based approximation over Vi,L1 to make Vi,L1 compatible

with our PL1C. As discussed in Section IV-A, there is a trade-

off between the approximation accuracy of L1 distance and

length of the approximated vector that determines efficiency

of follow up privacy-preserving operations. To balance such a

trade-off, we evaluate different parameters for approximation

as shown in Fig.2 (a)-(d). According to our results, we suggest

to set α = 1 and γ = 100 which introduces 3.61% error

rate for L1 distance computation, and extends the dimension

of Vi,L1 from 864 to 1296 under the setting of PCA − 32.

The selection of PCA strength will be discussed and evaluated

in Section V-B. Specifically, the error rate drops fast when

α < 1 and becomes relative stable when α > 1. Meanwhile,

the dimension of the approximated vector increases linearly

to the value of α. With regard to γ, the dimension of the

approximated vector becomes relative stable when γ > 100,

however, the error rate still increases when γ > 100. As shown

in Fig.3 (a), such an approximation setting makes the pre-

processing procedure cost 1471ms to 118ms for each image

with PCA setting from No PCA to PCA− 128.

After the pre-processing, {Vi,L1,Vi,KL}1≤i≤n will be en-

crypted using the Data Encryption procedures of our PL1C

and PKLC schemes respectively. As shown in Eq.3 and

Eq.6, the encryption of each Vi,L1 and Vi,KL requires

(mL1)DOTmL1
and (mKL)DOTmKL

operations respectively.

Fig.3 (a) shows the total encryption cost for Vi,L1 and

Vi,KL of a pre-annotated image decreases from 1436ms to

4.7ms by increasing the strength of PCA from No PCA to

PCA − 128. This is because the dimension of Vi,L1, i.e.,

mL1, is determined by the strength of PCA, which is directly

correlated to the encryption cost of Vi,L1. Same as the system

setup, encrypting feature vectors is also a one-time cost, which

does not impact the performance of later on real-time privacy-

preserving image annotation.
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Fig. 2. Error rate of Approximation and Dimension of Approximated Vector (PCA− 32)
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B. Real-time Image Annotation

Efficiency: To annotate a new image in a privacy-preserving

manner, the user generates an encrypted request by pre-

processing and encrypting feature vectors of the requested

image. By varying the PCA strength from No PCA to

PCA − 128, Fig.3 (b) shows that the request generation

spends from 2775ms to 268ms. On receiving the encrypted

request, the cloud first computes distance comparison candi-

date Compi for each image Ii, 1 ≤ i ≤ n in the pre-annotated

dataset, which requires a (mL1 +1)DOTmL1
operation and a

(mKL+1)DOTmKL
operation as shown in Eq.8 and Eq.9. By

changing the strength of PCA from No PCA to PCA−128,

the computational cost for Compi changes from 4334ms to

16.9ms as shown in Fig.3 (c). This is because the dimension

of Vi,L1, i.e., mL1, is determined by the strength of PCA

and mL1 >> mKL (e.g., 1298 v.s. 98 in PCA − 32).

Afterwards, the cloud selects encrypted keywords according

the ranking of Compi as Eq.10. It is worth to note that

the annotation process on cloud can be easily parallelized

for performance optimization. In particular, computation of

Compi for different pre-annotated images are independent

with each other, and thus can be easily parallelized in the

cloud computing environment.

Accuracy: We now evaluate the accuracy of CAPIA. In our

evaluation, we use the standard average precision and recall
rates to measure the accuracy of keywords annotation as that

in automatic annotation using plaintext images. We use 50

images as annotation requests, and each image will be assigned

ten keywords after automatic annotation. Each request has two

or more related images in the pre-annotated dataset. We use set

[K1,K2, · · · ,Kx] to denote distinct keywords annotated for

all 50 requested images. The annotation precision and recall

rate for a keyword Kj , 1 ≤ j ≤ x in these 50 requests are

defined as

• precisionKj
: number of images assigned Kj correctly in

CAPIA divided by the total number of images assigned

Kj in CAPIA.

• recallKj : number of images assigned Kj correctly in

CAPIA divided by the number of images assigned Kj

in the ground-truth annotation.
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Fig. 4. Precision of CAPIA and Annotation without Encryption

To compare the annotation accuracy of CAPIA, we also

evaluate the no-privacy-preserving annotation using the same

50 requests. As shown in Fig.4 and Fig.5, while providing

strong privacy guarantee, CAPIA introduces less than 2.5%

and 7.5% accuracy loss in terms of average precision and

recall rates with PCA setting from No PCA to PCA−128. In

addition, Fig.4 and Fig.5 also demonstrate that the increasing

of PCA strength reduces the annotation accuracy of CAPIA to

some extent, especially from PCA−32 to PCA−64. Taking

the efficiency enhancement brought by PCA together into

consideration, we suggest to use PCA− 32 as an appropriate

setting for practical usage. Specifically, Fig.3 demonstrates

the efficiency improvement from PCA becomes relative stable
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after PCA−32. Meanwhile, the accuracy loss of CAPIA still

increases quickly after PCA− 32.

In Table I, we present samples of automatically annotated

images using CAPIA. On one hand, CAPIA is highly possible

to assign correct keywords to images compared with human

annotation. This observation also confirms the high average

recall rate of CAPIA, since these ground-truth annotations are

likely to be covered in CAPIA. On the other hand, CAPIA

also introduces additional keywords that frequently appear

together with these accurate keywords in top related images.

These additional keywords are typically not directly included

in human annotations, but are potentially related to correct

keywords. Such a fact also explains why the average precision

rate of CAPIA is relatively low compared with the average

recall rate. Overall, our evaluation results demonstrate that

although CAPIA cannot provide perfect keywords selection

all the time compared with human annotation, it is still

promising for automatically assigning keywords to images,

and hence fulfilling the fundamental gap between SE schemes

and images.

Image CAPIA Annotation Human Annotation

floor-tennis-court,
man, woman

floor-tennis-count,
man

sky-blue, highway,
vegetation, ground, bush,

trees, lake, ocean

highway, sky-blue,
trees, vegetation

cloud, sky-blue,
ground, mountain, horse,

man, road, grass

ground, cloud,
sky-blue, mountain,

snow, grass

group-of-persons, sky-blue,
ground, trees, mountain,
ruin-archeological, hat,

cloud, hill

trees, ground, man,
sky-blue, group-of-persons

TABLE I
SAMPLE ANNOTATION RESULTS

C. Communication Cost and Storage Overhead

The communication cost in CAPIA comes from two major

parts: annotation request and encrypted results returned from

the cloud server. The encrypted request consists of a mL1-

dimensional vector Cs.L1 and a mKL-dimensional vector

Cs.KL. In the PCA − 32 setting, the total communication

cost for a request is 26KB. Meanwhile, the returned result

contains encrypted keywords and distance comparison candi-

dates Compi of top 10 related images. Using AES-256 for

keywords encryption, the total size for the returned result is

488 Bytes with the average number of keywords for each pre-

annotated image as 5.7. With regard to the storage overhead

of CAPIA, it includes two parts for each pre-annotated image

Ii: 1) encrypted feature vectors Ci.L1 and Ci.KL, which are

26KB in total. 2) Encrypted keywords, which are 480 Bytes

as average using AES-256 encryption.

VI. RELATED WORKS

To solve the problem of how to search over encrypted

data, the idea of keywords-based searchable encryption (SE)

was first introduced by Song et.al in ref [4]. Later on, with

the widespread use of cloud storage services, the idea of SE

received increasing attention from researchers. In ref [5], [6],

search efficiency enhanced SE schemes are proposed based on

novel index constructions. After that, SE with the support of

multiple keywords and conjunctive keywords are investigated

in ref [7], [8], and thus making the search more accurate and

flexible. Recently, fuzzy keyword is considered in ref [9],

which enables SE schemes to tolerate misspelled keyword

during the search process. While these SE schemes offer

decent features for keywords-based search, their application

to images are limited given the question that how keywords

of images can be efficiently extracted with privacy protection.

It is impractical for cloud storage users to manually annotate

their images. To automate the keywords extraction process

for images, a number of research works have been proposed

with the concept of “automatic image annotation” [11], [25]–

[27]. In automatic image annotation, keywords of a new image

can be learned from a large-scale images that have already

been annotated. Nowadays, mobile devices have become the

major platform for taking and outsourcing images, however,

deploying automatic image annotation with large-scale image

datasets on mobile devices is clearly inefficient in terms of

energy, storage, and computation. Although outsourcing image

annotation tasks to public cloud servers is a potential solution

to release the burden of resource constrained mobile devices, it

also raises privacy issues since unencrypted images need to be

delegated to the cloud. Therefore, this paper proposes CAPIA,

which utilizes the power of cloud computing to perform

automatic image annotation for users, while only providing

encrypted image information to the cloud.

Another line of research that is related to this work

is privacy-preserving image retrieval [28]–[31]. While these

schemes also investigate similarity measurement between im-

ages, none of them considers how to transfer keywords to new

images. In addition, these existing privacy-preserving image

retrieval schemes [28]–[30] are designed based on powerful

but expensive homomophic encryption schemes, which require

frequent user (or a fully trusted key agent) involvement during

the image similarity measurement process. Differently, CAPIA

enables the user to fully outsource the privacy-preserving

image similarity measurement task to the cloud without any

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2017 IEEE Conference
on Communications and Network Security (CNS), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CNS.2017.8228627



interaction. In ref [31], the performance of privacy-preserving

image similarity measurement has been greatly enhanced

on both user side and cloud server side. Unfortunately, the

security of this scheme against the linear analysis attack

[19] is based on the assumption that PCA transformation

parameters cannot be learned by the cloud server. In CAPIA,

such an assumption is not necessary thanks to our design based

on the LWE hard problem and our approximated distance

comparison.

VII. CONCLUSION

In this work, we proposed a cloud assisted privacy-

preserving automatic image annotation scheme (CAPIA),

which supports efficient and accurate keywords extraction. In

CAPIA, lightweight privacy-preserving L1 distance (PL1C)

and KL-Divergence (PKLC) comparison schemes are care-

fully designed, which enable key steps of automatic image

annotation to be performed in a privacy-preserving manner.

Our PL1C and PKLC schemes can also utilized as indepen-

dent tools for other related fields, especially for similarity

measurement of data. To improve the annotation accuracy,

we also investigate a real-time weight design and integrate

it into CAPIA. Thorough security analysis is provided to

demonstrate that CAPIA is secure in the defined threat model.

Our prototype implementation over the well-known IAPR TC-

12 dataset validates the practical performance of CAPIA in

terms of computational cost, communication cost, storage cost,

and accuracy.
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