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Abstract 
 

A hybrid clustering-fusion methodology is developed in this study that employs Genetic 
Algorithm (GA) optimization method, k-means method, and several soft computing (SC) 
models to better estimate land subsidence. Estimation of land subsidence is important in 
planning and management of groundwater resources to prevent associated catastrophic 
damages. Methods such as the Persistent Scatterer Interferometric Synthetic Aperture Radar 
(PS-InSAR) can be used to estimate the subsidence rate, but PS-InSAR does not offer the 
required efficiency and accuracy in noisy pixels (obtained from remote sensing). 
Alternatively, a fusion-based methodology can be used to estimate subsidence rate, which 
offers a superior accuracy as opposed to the traditionally used methods. In the proposed 
methodology, five SC methods are employed with hydrogeological forcing of frequency 
and thickness of fine-grained sediments, groundwater depth, water level decline, 
transmissivity and storage coefficient, and output of land subsidence rate. Results of 
individual SC models are then fused to render more accurate land subsidence rate in noisy 
pixels, for which PS-InSAR cannot be effective. We first extract 14,392 different input-
output patterns from PS-InSAR technique for our study area in Tehran province, Iran. Then, 
k-means method is used to divide the study area to homogenous zones with similar features. 
The five SC models include Adaptive Neuro Fuzzy Inference System (ANFIS), Support 
Vector Regression (SVR), Multi-Layer Perceptron (MLP) neural network and two 
optimized models, namely, Radial Basis Function (RBF) and Generalized Regression 
Neural Network (GRNN). To fuse individual SC models, three methods including Genetic 
Algorithm (GA), K-Nearest Neighbors (KNN) and Ordered Weighted Average (OWA) 
based on ORNESS method and ORLIKE method, are developed and evaluated. Results 
show that the fusion-based method is significantly superior to each of the employed 
individual methods in predicting land subsidence rate. 

 
Keywords: land subsidence rate, model fusion, Genetic Algorithm (GA), K-nearest neighbors algorithm (KNN), 
Ordered Weighted Average (OWA), persistent scatterer interferometry 
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1. Introduction 
 
Metropolitan and agricultural development increase groundwater resources withdrawal, which in turn poses 
serious environmental challenges. Unregulated and excessive groundwater extraction for agricultural, domestic 
and industrial use have resulted in severe drop in groundwater table in several basins in Iran (Motagh et al. 2008; 
Sadegh et al. 2010; Sadegh and Kerachian, 2011). Decline in groundwater level increases the effective stress in 
the aquifer system that promote compaction in fine-grained sediments (Budhu and Adiyaman 2009; Dehghani et 
al. 2013), which in turn prompts land subsidence. In addition to groundwater level decline, other geology and 
hydrogeology factors can affect subsidence rate, including gas, oil and geothermal water extraction (Gambolati 
et al. 2005), coal mining (Jung et al. 2007) and sudden hydrogeological changes along faults (Burbey 2002). 
 
Precise estimation of land subsidence provides helpful information to decision makers in their efforts to control 
and mitigate the impacts of such a grave hazard. Satellites have provided alternative land subsidence monitoring 
methods complementing in situe observations based on remote sensing techniques. In the previous decades, 
several studies have performed monitoring and analyzing land subsidence due to groundwater withdrawal based 
on observations from satellites and radars such as Environmental Satellite Advanced Synthetic Aperture Radar 
(ENVISAT ASAR) (Osmanoglu et al. 2011; Yue et al. 2011; Ng et al. 2012; Dehghani et al. 2013; Strozzi et al. 
2017; Deng et al. 2017; Lu et al. 2018; Du et al. 2018). Interferometry Synthetic Aperture Radar (InSAR) is one 
such technique that provides accurate measurements of land subsidence (Amelung et al. 1999; Carnec and Fabriol 
1999; Nakagawa et al. 2000; Ding et al. 2004; Dehghani et al. 2009; Yu et al. 2011; Calderhead et al. 2011;Cigna 
et al. 2012; Teatini et al. 2012; Qu et al. 2014; Strozzi et al. 2017; Lu et al. 2018; Du et al. 2018; Nadiri et al. 
2018). Another such techinque is Persistant Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) that 
is recently developed to address the decorrelation problem in land subsidence estimation, and is widely used in 
the literature (Jung et al. 2007; Osmanoglu et al. 2011; Cigna et al. 2012; Teatini et al. 2012; Dehghani et al. 
2013; Strozzi et al. 2013; Wu and Hu 2016;  Sun et al. 2017; Deng et al. 2017; Maghsoudi et al. 2018). However, 
although the remotely sensed techniques offer valuable opportunities and advanteges for land subsidence 
estimation as opposed to traditional in situe observations, a potential drawback associated with remote sensing is 
lack of accurate and detailed information about subsidence in noisy pixels (Dehghani et al., 2013). In view of the 
fact that the PS-InSAR technique is based on persistent scatterer points, noisy behavior could be observed in 
many points of the study area especially in non-urban regions (Gehlot and Hanssen, 2008). In such cases, an 
approach based on soft computing models can be effectively utilized to estimate land subsidence. For example, 
Artificial Neural Networks (ANNs) have been used to monitor subsidence in various studies. In Table 1 related 
studies on subsidence analysis using soft computing models are sumarized. 
 

------------------------------------------------------------------------------------------------------------------------------------
Table 1. Summary of related studies on subsidence analysis using soft computing models based on artificial 

intelligence neural network. 
------------------------------------------------------------------------------------------------------------------------------------ 

 
In a closely related effort to this study, Dehghani et al. (2013) studied land subsidence due to groundwater 
extraction in Tehran basin, Iran. They considered six hydrogeological variables as Multi-Layer Perceptron (MLP) 
model’s forcing to estimate subsidence rate. In their study, forcing of the MLP model is not classified, and the 
subsidence rate is estimated only by one soft computing model (MLP). Hence, the developed model is not 
sufficiently precise as evidenced by relatively high Root Mean Square Error (RMSE). To improve the accuracy 
of land subsidence rate estimation one can cluster forcing data and train a separate model for each cluster, and/or 
employ several soft computing models and fuse their estimations. 
 
In the past years, the increasing demand for enhanced accuracy of soft computing (SC) models has stimulated 
researchers to develop fusion-based methods. Model fusion is the procedure of gathering data from several models 
such as different individual SC models’ outputs, aiming to provide more precise and reliable information 
compared to each individual model (Dasarathy 1997). Fusion-based methods, such as Bayesian Model Averaging, 
have been recently used in different research areas, namely, drought index estimation (Azmi et al. 2016; Alizadeh 
and Nikoo, 2018), river-level forcasting (See and Abrahart 2001) and hydrological engineering (Shu and Burn 
2004; Duan et al. 2007; Ajami et al. 2007; Azmi et al. 2010; Ashouri et al. 2015). But to the best of authors 
knowledge, there is not any study on estimation of land subsidence rate using fusion-based methods. The 
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importance of this phenomenon motivated the authors to develop a fusion model in order to achieve more 
precision in land subsidence estimation. Therefore, in this study a fusion-based methodology is developed based 
on five individual soft computing (SC) models, which are subsequently fused using Genetic Algorithm (GA), K-
nearest neighbors (KNN) method and Ordered Weighted Average (OWA) method. Five SC models, namely, 
Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Regression (SVR), Multi-Layer Perceptron 
(MLP), and two optimized models based on Genetic Algorithm (GA) including Radial Basis Function (RBF) and 
Generalized Regression Neural Network (GRNN) were employed to estimate subsidence rate. The input variables 
of all SC models are six effective hydrogeological variables and the output is the subsidence rate derived from 
PS-InSAR. Then, k-means is utilized for dividing the study area to clusters (homogenous zones) with similar 
features. 70% and 30% of each cluster’s data are used for training and validating the individual and fusion-based 
models, respectively. Four fusion methods based on Genetic Algorithm (GA) optimization method, K-Nearest 
Neighbors (KNN) and Ordered Weighted Average (OWA) models are then developed to fuse the outputs of 
individual SC models. The latter (OWA) consists of two sub-models, namely, ORNESS and ORLIKE methods. 
The main novelty of proposed methodology is developing several fusion-based models as well as optimized soft 
computing (SC) models to achieve the best possible result in land subsidence estimation. In the next sections main 
parts of proposed methodology, case study and results are presented. 
 

2. Methodology 
 
Flowchart of the fusion-based methodology which proposed for land subsidence rate estimation is presented in 
Fig. 1. The proposed methodology consists of five main steps. In the first step, the data are prepared and derived 
from ENVISAT ASAR and PS-InSAR. In the next step, to obtain more precision in subsidence rate estimation, 
the k-means method is used to classify data. Then, each cluster’s data are randomly separated as train and 
validation sets. In the third step, five individual Soft Computing (SC) models, namely, ANFIS, SVR, MLP and 
two optimized models, namely, RBF and GRNN are developed. In the fourth step, four different methods 
including KNN, GA and two OWA-based models, namely, ORNESS and ORLIKE are utilized as fusion methods 
for analysis and estimation of land subsidence rate based on PS-InSAR data. Finally, the results of SC models 
and model fusion methods are assessed and compared through different statistical error indices. In the next 
sections, the main steps of proposed methodology are briefly described. 
 

------------------------------------------------------------------------------------------------------------------------------------
Fig. 1. Flowchart of fusion-based methodology for land subsidence rate estimation. 

------------------------------------------------------------------------------------------------------------------------------------ 
 
2.1. K-Means Method 
 
This algorithm classifies data into several homogenous clusters with similar features. k-means method initializes 
the center of ݇ clusters by random search in each iteration and subsequently measures the distances between data 
points (xij) and the centers (cj). So, by minimizing the objective function specified in Eq. 1, this algorithm assigns 
cluster k to data point xij (MacQueen 1967). 
 

Minimize: 
2

1 1

 


k

j

n

i
jij cxd  

(1) 

 
In this study, we have tried different number of iterations to avoid converging to local optima by the k-means 
algorithm, and successively increased the number of iterations until the result not change anymore. We also have 
repeated the k-mean algorithm several times, each time setting the initial centroid point at the previous optimized 
points to ensure k-means reached a global optimum. 
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2.2. Soft Computing (SC) Models 

In order to reach the optimal network architecture of individual SC models, various values of models’ effective 
parameters (model settings) were optimized with two approaches: 1. trial-and-error analysis for MLP, SVR and 
ANFIS, and 2. Genetic Algorithm (GA) optimization model for RBF and GRNN. Eventually, SC model structures 
were selected that provided superior results according to several statistical error indices such as Scatter Index 
(SI), Root Mean Square Error (RMSE), Root Mean Relative Error (RMRE), Nash-Sutcliffe (NS) efficiency, 
Correlation Coefficient (CC) and Bias: 
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Where, ei and oi are respectively ith estimated and observed subsidence rate (SR) and n is the size of dataset. Also 
E and O indicate the average estimated and observed SR, respectively. The name of main parameter(s) of each 
individual SC model and their method of determination are shown in Fig. 2. 

------------------------------------------------------------------------------------------------------------------------------------
Fig. 2. Main parameter(s) of individual Soft Computing (SC) models and their method of determination. 

------------------------------------------------------------------------------------------------------------------------------------ 

2.3. Fusion-Based Models 

Model fusion is a subset of data fusion technique which amalgamates different model simulations with a goal that 
the result of combining data from different sources become more accurate and reliable than the result of each of 
the primary sources (Hall and Llinas. 1997). Key role of the fusion method is to specify weights to individual 
models. There are various methods available to specify such weights. In this paper, in order to acquire a more 
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precise estimate of land subsidence rate, four fusion methods including Genetic Algorithm (GA), K-Nearest 
Neighbors (KNN), and Ordered Weighted Average (OWA) method based on ORNESS and ORLIKE methods 
are employed to derive the weights of individual SC models. For estimation purposes, suppose yj (j =1, 2, K, k) 
represents observed data, n signifies each individual model, and the estimated value by ith individual model is 
shown as ŷij (i =1, K, n). If weights vector is w= [w1, w2, K, wn]T the estimated output of fusion model (Yj) can be 
expressed as below: 
 




n

i
ijij ywY

1
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 (8) 

Subject to:  
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iw

1

1 ]1,0[iw  
(9) 

 
Individual model errors are calculated through eij= ŷij - yj, while the corresponding error of fusion methods is 
specified as Ej=Yj - yj. 
 
In order to improve estimation accuracy, the corresponding errors of fusion methods should be minimized. For 
this purpose, four different fusion methods including GA, KNN and OWA method (ORNESS and ORLIKE 
methods) are utilized (Fig. 3). A brief explanation of these approaches is given in the next sections. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Fig. 3. Schematic representation of the fusion-based methodology. 

------------------------------------------------------------------------------------------------------------------------------------ 
 
2.3.1) GA Fusion Method 
 
Genetic Algorithm (GA) is one of the optimization methods based on evolutionary process. This method, by 
iteratively generating a set of possible solutions, tries to achieve a global optimum solution. In the present study, 
decision variables of the GA optimization model are the weights assigned to each individual SC model. The 
objective function is to obtain decision variables that minimize Mean Absolute Relative Error (MARE) between 
the weighted individual models’ output (output of fusion method, wiŷij) and target values of subsidence rate (yj): 
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Where n is the number of individual models and k is the size of dataset. 
 
2.3.2) KNN Fusion Method 
 
K-Nearest Neighbor (KNN) obtains the best estimate of a target variable for a specific point based on a weighted 
average of the target values from its k nearest samples (Altman 1992). Briefly, Euclidean distance of all available 
samples to the desired point are calculated according to Eq. 11, and its k nearest samples are selected to estimate  
  

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 
Natural Hazards, published by Springer. Copyright restrictions may apply. doi: 10.1007/s11069-018-3431-8 



6 

the target value at this point. Neighbors that are closer to the desired point should be weighted more heavily than 
more distant ones. Hence, reciprocal of squared distance of each data (Eq. 12) is used as weight. Then, using Eq. 
13, the target value for the desired point is estimated (Larose 2005): 
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Where xi (i = 1, K, n) are the sample data with known target values Yi and xx is the desired point, for which the 
target value, Ynew, is being sought. In this study, the best results of five SC models are applied as inputs of KNN 
method in order to fuse them. For further information about this method refer to Altman (1992) and Larose (2005). 
 
2.3.3) ORNESS-OWA 
 
The Ordered Weighted Average (OWA) method is a mapping tool ܨ: ܴ → ܴ, in which n is the number of 
individual models. This method allocates weight of each model with the constraint: 
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Here, we first provide some background about the OWA methodology, and then discuss assigning ݓ values in 
the subsequent sections. If the predicted subsidence rate of ith individual model is bi, then the vector of the results 
of n individual models will be ܤ ൌ ሼܾଵ, ܾଶ, … , ܾሽ and the vector of corresponding weights will be ݓ ൌ
ሼݓଵ, ,ଶݓ  ,ሽ. Since weighing individual models by the OWA method makes different combinations of weightsݓ…
Yager (1988) defined the parameter orness and Dispersion to determine the dispersion of weights around the 
median value of the parameters: 
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A 0.5 value for orness represents the equality of all weights, meaning weights are normally distributed around 
the median. Therefore, orness values between 0.5 and 1 indicate that the weight distribution has a positive 
skewness, so that larger weight is assigned to a better model. 
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In this approach, the fusion weights for the SC models are estimated using the Genetic Algorithm (GA) 
optimization model for different α values between 0 and 1 (Eq. 16). O’Hagan (1988) used the following 
optimization model to determine the weights so that for the specified values (α) of the orness parameter, the 
maximum value of Dispersion (w) is calculated: 
 

Maximize 
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2.3.4) ORLIKE-OWA 
 
Yager and Filev (1994) present a family of OWA weights named S-OWA, which include two main weighing 
methods (ORLIKE and ANDLIKE1). In this paper, ORLIKE-OWA is used. In this method, similar to ORNESS, 
the best model gets the highest weight and worst model is penalized in the weighting scheme. This method 
calculates the weights by solving the following equations. F is the ORLIKE method’s operator as shown in Eq. 
20: 
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In this method, for α=0, the orness parameter is equal to 0.5 and for α=1, the value of orness parameter is equal 
to 1, that means the first model will gain more weight. Since the results of individual models are sorted in the 
descending order of the best result to the worst one, it is necessary that the model weights are also adjusted in the 
descending order so that the highest weight is given to the best model output. It is noteworthy that for α values 
smaller than 0.5, the weights of the models are ascending, and for more than 0.5, the weights of the models are 
descending. To accommodate weights and variables, α values greater than 0.5 have been used to implement the 
optimization and weighting process. For more information about OWA methods, refer to Yager (1998), O’Hagan 
(1998) and Yager and Filev (1994). In this study, ORNESS and ORLIKE methods are performed for different α 
values and their best results are determined (Tables 6-7). 
 
  

                                                           
1 In the ANDLIKE method, the worst model gets the highest weight. Authors considered in this study both models to assign weight in a 
sequence. Both (ORLIKE and ORNESS) assign the highest weight to the best. 
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3. Study Area 
 
Tehran basin with a total area of 2,250 km2 is surrounded by the Alborz and the Fashapouye Mountains (Dehghani 
et al., 2013). The vast majority of this basin, which is under agricultural activities, is subject to subsidence due to 
excessive abstraction of groundwater. The study area, depicted in Fig. 4, is in the southwest of the Tehran basin 
in central north part of Iran. 
 
The data collected by Dehghani (2010) is used in this study to develop a model fusion methodology for estimating 
land subsidence using PS-InSAR technique. Dehghani (2010) extracted, with piezometric measurements, the 
effective parameters on subsidence rate, including water level decline (observed between 1968-2003), 
groundwater depth, storage coefficient, transmissivity, alluvial thickness and frequency of fine-grained sediments. 
Also, the subsidence rates were inferred from the PS-InSAR technique. As previously mentioned, to achieve more 
accuracy in land subsidence rate estimation, the dataset were clustered using k-means method. Statistics of 
hydrogeological variables, including maximum, minimum and average, for each cluster are presented in Table 2. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Table 2. Range of hydrogeological variables of each cluster. 

Fig. 4. Location of the study area in Tehran province. 
------------------------------------------------------------------------------------------------------------------------------------ 

 
4. Results 

 
For all Soft Computing (SC) models, available hydrogeology information, which were extracted from piezometric 
measurements, are utilized as forcing and subsidence rates from PS-InSAR technique is used as output data. 
Available data is categorized by k-means method into five clusters, and of each cluster’s data, 70% are used for 
training and 30% for validation. To train the five SC models, namely, ANFIS, SVR, MLP, RBF and GRNN, we 
employed trial-and-error analysis and Genetic Algorithm (GA) optimization. It should be noted that the GA 
optimization method is utilized for training two SC models (RBF and GRNN), optimizing ORNESS-OWA and 
also as one of the fusion methods. Specifications relating to the GA optimization method used in aforementioned 
models are presented in Table 3. Scattered crossover function with fraction value 0.8 is considered for this 
approach. The TolFun 1e-10 (tolerance value) for StallGenLimit 80 (generation limits) are defined as stopping 
criteria for models. The results of each individual model’s parameters and their method of determination are listed 
in Table 4. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Table. 3. Specifications of Genetic Algorithm (GA) used in different parts of the proposed methodology. 

Table 4. Results of each individual models’ parameters and their method of determination. 
------------------------------------------------------------------------------------------------------------------------------------ 

 
In order to evaluate the accuracy of these models, six statistical error indices including NS, CC, SI, RMSE, RMRE 
and Bias (Eqs. 2-7) are calculated for all individual models. As an example, the results of all SC models in 
estimating land subsidence rate in validation stage are presented in Table 5. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Table 5. Statistical error indices for individual Soft Computing models in estimating land subsidence rate in 

validation stage 
------------------------------------------------------------------------------------------------------------------------------------ 

 
Proximity of the NS and CC to 1, and RMSE, RMRE, SI and Bias indices to 0, indicate higher accuracy of the 
model. Each model result is then ranked based on superior performance and ranked, with 1 representing best 
model. Minimum summation of ranking in each cluster (Table 5) specifies the more accurate SC model according 
to all indices.  Since the aim of this study is to improve accuracy of subsidence rate estimation, four fusion-based 
methods including Genetic Algorithm (GA) optimization model, K-Nearest Neighbors (KNN) and two Ordered 
Weighted Average (OWA) models, namely, ORNESS and ORLIKE methods were used to fuse the outputs of 
individual SC models and were compared with the best individual model in each cluster (Fig. 6). The performance 
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of ORNESS (Eqs. 14-19) for α values from 0.5 to 1 and ORLIKE (Eqs. 20-22) for α values from 0.1 to 1 are 
determined and compared based on trial-and-error analysis (Tables 6-7). As noted earlier, in ORNESS and 
ORLIKE methods, the best model gets the highest weight. Therefore, according to Tables 6 and 7, the results 
obtained from these two methods are compared based on two statistical error indices (NS and RMSE) for different 
α values. Best prediction and associated α are shown in bold in Tables 6 and 7 for the ORNESS and ORLIKE 
methods. In addition to the trial-and-error analysis, α values were also optimized using GA optimization methods, 
results of which didn’t significantly change the findings of Tables 6 and 7. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Table 6. Comparison of results of ORNESS method for different α values based on NS* and RMSE** error 

indices 
Table 7. Comparison of results of ORLIKE method for different α values based on NS* and RMSE** error 

indices 
------------------------------------------------------------------------------------------------------------------------------------ 

 
Table 8 presents performance evaluation of four fusion methods of this study in terms of the six statistical error 
indices mentioned before. Comparing the statistical error indices shown in Tables 5 and 8 shows the superior 
accuracy of the fusion methods compared to the individual models. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Table 8. Statistical error indices for four fusion methods in estimating land subsidence rate in validation stage. 
------------------------------------------------------------------------------------------------------------------------------------ 

 
To make the intercomparison of fusion methods more visually appealing, bar charts of fusion models performance 
with respect to different statistical error indices are presented in Fig. 5. This figure shows that ORNESS-OWA 
model has a superior performance and is more accurate as opposed to the other fusion methods in most of clusters. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Fig. 5. Fusion methods’ performance with respect to several statistical error indices. 

------------------------------------------------------------------------------------------------------------------------------------ 
 
Fig. 6 compares the best fusion method in each cluster with the best individual SC model in the same cluster. The 
figure confirms that the fusion-based methods are more accurate in estimation of land subsidence rate. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Fig. 6. Comparison the results of best fusion method and best individual SC model of each cluster. 

------------------------------------------------------------------------------------------------------------------------------------ 
 
The average RMSE reported by Dehghani et al. (2013) is 4.055 (mm/year), while in this study, we obtained an 
RMSE value of 3.89 (mm/year) for the best individual SC model (SVR) in most clusters and 2.55 (mm/year) for 
the best fusion model (ORNESS-OWA) in most clusters. Comparing the present study results with Dehghani et 
al. (2013) shows that the presented methodology in this study is more accurate. Moreover, fusion-based methods 
are more accurate than individual soft computing methods. 
 

5. Summary and Conclusion 
 
Land subsidence due to excessive and unsustainable groundwater withdrawal is a paramount hazard to 
infrastructure safety. Estimating subsidence rate (SR) with sufficient precision is hence of particular interest to 
sustain human and environmental safety and well-being. In this paper, in order to increase the precision of 
subsidence rate estimation in the Tehran basin, Iran, a new methodology is developed based on four fusion-based 
methods, namely, Genetic Algorithm (GA), K-Nearest Neighbors (KNN) and Ordered Weighted Average (OWA) 
with two weighting methods (ORNESS and ORLIKE) to fuse five individual Soft Computing (SC) models. The 
approach initiates with obtaining hydrogeological information and subsidence rates estimated based on PS-InSAR 
technique, and employing a k-means method to categorize different station data into homogeneous groups. The 
cluster data are in turn used to train five Soft Computing (SC) models, namely, Adaptive Neuro Fuzzy Inference 
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System (ANFIS), Support Vector Regression (SVR), Multi-Layer Perceptron (MLP) neural network and two 
optimized models namely Radial Basis Function (RBF) and Generalized Regression Neural Network (GRNN). 
Fusion methods then create a weighted average of individual SC models to improve land subsidence rate accuracy. 
To evaluate and compare the results of all models, six statistical error indices, namely, Scatter Index (SI), Root 
Mean Square Error (RMSE), Root Mean Relative Error (RMRE), Nash-Sutcliffe (NS) efficiency, Correlation 
Coefficient (CC) and Bias, were utilized. The results show that, fusion methods are more accurate than individual 
SC models. Also, the result of fusion methods, reveals that ORNESS-OWA method is the superior model in most 
of clusters. Authors’ suggestions for future studies are (i) to consider Subsidence Vulnerability Indices (SVIs) to 
represent subsidence potential that affect the vulnerable aquifer, and (ii) to employ the proposed methodology to 
determine these indices more precisely. Also, Fuzzy set theory can be utilized to address uncertainty sources in 
land subsidence estimation. 
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Table 1. Summary of related studies on subsidence analysis using soft computing models based on artificial 
intelligence neural network. 
 

Number Study Soft Computing model  Study area 
Reason of 
subsidence 

1 Ambrožič and Turk, 2003 ANN 
Velenje mine 

(Slovenia) 
Mining 

2 Kim et al., 2009 ANN Samcheok (Korea) Mining 

3 Lee et al., 2012 ANFIS Samcheok (Korea) Mining 

4 Dehghani et al., 2013 ANN Tehran (Iran) 
Grounwater 
withdrawal 

5 Ocak and Seker, 2013 ANN, SVM Istanbul (Turkey) Tunneling 

6 Rafie and Samimi Namin, 2015 ANN Tehran (Iran) Tunneling 
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Table 2. Range of hydrogeological variables of each cluster 
 

Cluster’s 
number 

Hydrogeological variables 

 
Alluvial 

frequency* 
(%) 

Alluvial 
thickness 

(m) 

Water level 
decline (m) 

Groundwater 
depth (m) 

Storage 
coefficient (%) 

Transmissivity 
(m2/day) 

1 
Maximum 85.0 83.0 -7.4 50.0 3.8 1004.0 
Minimum 60.0 20.0 -21.4 30.0 1.0 321.0 
Average 76.9 46.3 -17.8 38.0 2.1 725.2 

2 

Maximum 100.0 176.0 -10.4 97.0 10.2 2012.0 
Minimum 53.0 62.0 -45.1 30.0 0.4 1515.0 
Average 84.9 94.8 -20.6 40.9 2.0 175.8 

3 
Maximum 100.0 103.0 -7.1 45.0 4.0 1521.0 
Minimum 68.0 38.0 -22.4 30.0 1.0 1004.0 
Average 85.8 71.2 -15.2 34.4 1.8 1285.1 

4  
Maximum 96.0 107.0 -24.0 113.0 9.7 3000.0 
Minimum 12.0 31.0 -31.9 51.0 1.6 2560.0 
Average 55.3 69.1 -28.9 86.0 4.7 2840.3 

5 
Maximum 100.0 190.0 -19.6 120.0 11.1 2559.0 
Minimum 10.0 30.0 -51.8 42.0 1.0 2005.0 
Average 55.8 98.2 -32.9 82.5 5.7 2267.3 

 
 
Table. 3. Specifications relating to the Genetic Algorithm (GA) used in different parts of the proposed 
methodology 
 

Model 
Number of 
variables 

Population size 
Number of 
generations 

RBF 2 20 40 

GRNN 1 100 20 

ORNESS 5 100 20 

GA as fusion 
model 

5 50 80 
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Table 4. Results of each individual models’ parameters and their method of determination. 
 

Model 

Method of 
parameters 

determination 
(training) 

Parameter 

Cluster’s number 

1 2 3 4 5 

MLP Trial-and-Error 

Number of hidden layer 1 1 1 1 1 
Number of neurons 26 20 18 20 32 

Type of transfer function 
Tangent 
sigmoid 

Tangent 
sigmoid 

Tangent 
sigmoid 

Tangent 
sigmoid 

Tangent 
sigmoid 

SVR Trial-and-Error Kernel function Gaussian Gaussian Gaussian Polynomial Gaussian 

ANFIS Trial-and-Error 

Number of membership 
function 

2 2 2 2 2 

Type of membership function Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid 
Number of epochs 20 15 15 10 25 

RBF 
GA 

optimization  

Maximum number of 
neurons 

99 100 100 88 400 

Spread 87.48 40.62 43.19 28.89 20 

GRNN 
GA 

optimization  
Spread 0.11 1.7 1.1 0.3 3.6 
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Table 5. Several statistical error indices for individual soft computing models in estimating land subsidence rate 
in validation stage 

*RMRE: Root Mean Relative Error, ¤RMSE: Root Mean Square Error, #CC: Correlation Coefficient, •NS: Nash-Sutcliff, ∆SI: 
Scatter Index 
  

Clusters’ 
number 

Individual 
Model 

 RMRE* RMSE¤ 

(mm/year) 
Bias 

(mm/year) 
CC# NS• SI∆ Summation 

of ranking 

1 

MLP 
Value 0.880 15.070 11.130 0.728 -0.208 0.270  

Rank 1 5 5 4 5 2 22

SVR Value 1.160 2.870 0.390 0.982 0.920 0.260 
Rank 3 1 2 1 1 1 9

ANFIS Value 1.320 3.350 0.460 0.975 0.891 0.310 
Rank 4 2 3 2 3 3 17

RBF Value 0.959 3.365 0.163 0.975 0.893 0.310 
Rank 2 3 1 2 2 3 13

GRNN Value 1.460 4.790 0.870 0.955 0.777 0.440 
Rank 5 4 4 3 4 4 24

2 

MLP Value 0.260 25.330 -0.270 0.998 0.643 0.070 
Rank 3 5 3 2 5 2 23

SVR Value 0.240 5.060 0.040 0.999 0.986 1.000 
Rank 1 1 2 1 1 4 10

ANFIS Value 0.250 5.620 0.000 0.998 0.982 0.060 
Rank 2 2 1 2 2 1 10

RBF Value 0.304 8.767 1.276 0.996 0.957 0.099 
Rank 5 3 5 3 3 3 22

GRNN Value 0.280 11.560 -1.120 0.993 0.926 1.010 
Rank 4 4 4 4 4 5 25

3 

MLP Value 0.270 3.930 0.99 0.997 0.967 0.080 
Rank 1 2 2 1 2 1 9

SVR Value 0.270 3.760 0.640 0.997 0.969 0.080 
Rank 1 1 1 1 1 1 5

ANFIS Value 0.290 4.420 0.990 0.996 0.958 0.090 
Rank 2 3 2 2 3 2 14

RBF Value 0.375 7.244 -1.625 0.990 0.887 0.153 
Rank 4 4 3 3 4 3 21

GRNN Value 0.370 8.390 -2.010 0.987 0.848 1.020 
Rank 3 5 4 4 5 4 22

4 

MLP Value 0.500 33.820 0.820 1.000 0.868 0.030 
Rank 1 5 3 1 4 1 15

SVR Value 1.040 8.10 1.190 0.998 0.992 0.930 
Rank 5 2 4 3 3 5 22

ANFIS Value 0.790 10.380 1.190 0.997 0.988 0.110 
Rank 4 4 4 4 1 3 20

RBF Value 0.553 5.433 0.606 0.999 0.997 0.056 
Rank 2 1 2 2 2 2 11

GRNN Value 0.570 10.370 0.350 0.997 0.988 0.910 
Rank 3 3 1 4 1 4 16

5 

MLP Value 0.880 61.950 0.510 0.999 0.053 0.060 
Rank 4 5 3 1 5 1 19

SVR Value 1.810 5.470 1.480 0.998 0.993 0.080 
Rank 5 2 5 2 2 3 22

ANFIS Value 0.660 4.440 0.070 0.999 0.995 0.070 
Rank 1 1 1 1 1 2 7

RBF Value 0.758 6.313 0.392 0.998 0.990 0.093 
Rank 3 3 2 2 3 4 17

GRNN 
Value 0.690 7.420 -0.610 0.997 0.986 1.050 
Rank 2 4 4 3 4 5 22 
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Table 6. Comparison of results of ORNESS method for different α values based on NS* and RMSE** statistical 
error indices 
 

Clusters’ 
number 

Statistical 
error 
index 

5.0

 
6.0

 
7.0

 
8.0

 
9.0

 1  

1 
RMSE 2.813 2.764 2.478 2.049 1.872 1.714 

NS 0.923 0.925 0.940 0.959 0.965 0.971 

2 
RMSE 5.061 4.722 3.824 3.368 3.204 3.021 

NS 0.985 0.987 0.991 0.993 0.994 0.994 

3 
RMSE 3.309 3.160 2.631 2.251 1.806 1.736 

NS 0.976 0.978 0.985 0.989 0.992 0.993 

4 
RMSE 4.597 43.370 3.479 2.219 1.766 1.639 

NS 0.997 0.998 0.998 0.999 0.999 0.999 

5 
RMSE 3.872 3.239 2.988 2.343 2.145 1.831 

NS 0.996 0.997 0.997 0.998 0.998 0.999 
*NS: Nash-Sutcliff          **RMSE: Root Mean Square Error 
 
 
Table 7. Comparison of results of ORLIKE method for different α values based on NS* and RMSE** statistical 
error indices 
 

Clusters’ 
number 

Statistical 
error index 

1.0

 
2.0

 
3.0

 
4.0

 
5.0

 
6.0

 
7.0

 
8.0

 
9.0

 1  

1 
RMSE 4.041 3.784 3.576 3.425 3.338 3.321  3.375 3.497 3.679 3.914 

NS 0.841 0.861 0.875 0.886 0.891 0.892 0.889 0.881 0.868 0.851 

2 
RMSE 16.76 14.723 12.828 11.150 9.799 8.926 8.677 9.102 10.118 11.569 

NS 0.844 0.879 0.908 0.931 0.946 0.955 0.958 0.954   0.943 0.925 

3 
RMSE 8.268 7.174 6.245 5.567 5.237 5.321 5.800 6.588 7.591 8.734 

NS 0.852 0.888 0.915 0.933 0.941 0.938 0.927 0.906 0.875 0.835 

4 
RMSE 21.931 9.026 16.180 13.432 10.854 8.602 6.997 6.536 7.434 9.3067 

NS 0.944 0.958 0.969 0.979 0.986 0.991 0.994 0.995 0.993 0.990 

5 
RMSE 16.478 14.380 12.339 10.389 8.591 7.065 6.018 5.724 6.282 7.510 

NS 0.933 0.949 0.962 0.973 0.981 0.987 0.991 0.992 0.990 0.986 
*NS: Nash-Sutcliff          **RMSE: Root Mean Square Error 
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Table 8. Statistical error indices for four fusion methods in estimating land subsidence rate in validation stage 

Clusters’ 
number 

Fusion Methods RMRE* RMSE¤ 

(mm/year)
Bias 

(mm/year)
CC# NS• SI∆ Summation

of ranking 

1 

GA 
Value 0.898 2.870 0.332 0.982 0.920 0.263 
Rank 2 3 3 2 2 2 14 

KNN 
Value 1.372 4.237 1.736 0.969 0.825 0.357 
Rank 4 4 4 3 3 4 22 

ORNESS 
Value 0.658 1.714 0.151 0.993 0.971 0.158 
Rank 1 1 1 1 1 1 6 

ORLIKE 
Value 1.117 2.868 0.204 0.982 0.920 0.264 
Rank 3 2 2 2 2 3 14 

2 

GA 
Value 0.265 5.804 -0.359 0.998 0.981 0.066 
Rank 3 3 3 2 3 3 17 

KNN 
Value 0.282 7.542 2.685 0.997 0.968 0.081 
Rank 4 4 4 3 4 4 23 

ORNESS 
Value 0.156 3.022 0.152 1.000 0.995 0.035 
Rank 1 1 2 1 1 1 7 

ORLIKE 
Value 0.235 5.365 -0.034 0.998 0.984 0.061 
Rank 2 2 1 2 2 2 11 

3 

GA 
Value 0.267 3.877 0.957 0.997 0.968 0.081 
Rank 1 2 2 1 2 2 10 

KNN 
Value 0.324 5.264 2.421 0.996 0.940 0.101 
Rank 3 3 3 2 3 3 17 

ORNESS 
Value 0.269 3.634 -0.202 0.997 0.971 0.078 
Rank 2 1 1 1 1 1 7 

ORLIKE 
Value 0.346 7.722 -4.411 0.991 0.871 0.137 
Rank 4 4 4 3 4 4 23 

4 

GA 
Value 0.502 3.212 0.143 1.000 0.999 0.034 
Rank 1 1 1 1 1 1 6 

KNN 
Value 0.625 5.409 2.658 0.999 0.997 0.049 
Rank 3 3 3 2 3 3 17 

ORNESS 
Value 0.611 3.868 0.255 1.000 0.998 0.04 
Rank 2 2 2 1 2 2 11 

ORLIKE 
Value 0.754 9.323 -5.626 0.998 0.990 0.078 
Rank 4 4 4 3 4 4 23 

5 

GA 
Value 0.830 4.13 0.400 0.999 0.996 0.06 
Rank 3 2 2 2 2 2 13 

KNN 
Value 0.970 5.34 2.54 0.999 0.993 0.070 
Rank 4 3 3 2 3 3 18 

ORNESS 
Value 0.430 1.84 0.18 1.000 0.999 0.030 
Rank 1 1 1 1 1 1 6 

ORLIKE 
Value 0.810 7.51 -3.62 0.998 0.986 0.100 
Rank 2 4 4 3 4 4 21 

*RMRE: Root Mean Relative Error, ¤RMSE: Root Mean Square Error, #CC: Correlation Coefficient, •NS: Nash-Sutcliff, ∆SI:
Scatter Index 
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Fig. 1. Flowchart of fusion-based methodology for land subsidence rate estimation 
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Fig. 2. Main parameter(s) of individual Soft Computing (SC) models and their method of determination 

Fig. 3.  Schematic representation of the fusion-based methodology 
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Fig. 4. Location of the study area in Tehran province 
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Fig. 5. Fusion methods’ performance with respect to several statistical error indices. 
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Best of Fusion models:  ORNESS GA 

Best of Individual SC 
models: 

 SVR  RBF  ANFIS 

Fig. 6. Comparison the results of best fusion method and best individual SC model of each cluster. 
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