
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Anthropology Faculty Publications and 
Presentations Department of Anthropology 

4-2017 

Determining the Population Affinity of an Unprovenienced Human Determining the Population Affinity of an Unprovenienced Human 

Skull for Repatriation Skull for Repatriation 

Jennifer K. Watkins 
Boise State University 

Samantha H. Blatt 
Boise State University 

Cynthia A. Bradbury 
Boise State University 

Gordon A. Alanko 
Boise State University 

Matthew J. Kohn 
Boise State University 

See next page for additional authors 

Publication Information Publication Information 
Watkins, Jennifer K.; Blatt, Samantha H.; Bradbury, Cynthia A.; Alanko, Gordon A.; Kohn, Matthew J.; Lytle, 
Marion L.; and Butt, Darryl P. (2017). "Determining the Population Affinity of an Unprovenienced Human 
Skull for Repatriation". Journal of Archaeological Science: Reports, 12, 384-394. https://doi.org/10.1016/
j.jasrep.2017.02.006 

This document was originally published by Elsevier in Journal of Archaeological Science: Reports. This work is 
provided under a Creative Commons NonCommercial-NoDerivs 4.0 license. Details regarding the use of this work 
can be found at: http://creativecommons.org/licenses/by-nc-nd/4.0/. doi: 10.1016/j.jasrep.2017.02.006 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/anthro_facpubs
https://scholarworks.boisestate.edu/anthro_facpubs
https://scholarworks.boisestate.edu/anthropology
https://doi.org/10.1016/j.jasrep.2017.02.006
https://doi.org/10.1016/j.jasrep.2017.02.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jasrep.2017.02.006%20


Authors Authors 
Jennifer K. Watkins, Samantha H. Blatt, Cynthia A. Bradbury, Gordon A. Alanko, Matthew J. Kohn, Marion 
L. Lytle, and Darryl P. Butt 

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/anthro_facpubs/128 

https://scholarworks.boisestate.edu/anthro_facpubs/128


Determining the population affinity of an unprovenienced human skull
for repatriation

Jennifer K. Watkins a,d,⁎, Samantha H. Blatt b, Cynthia A. Bradbury b, Gordon A. Alanko a,d, Matthew J. Kohn c,
Marion L. Lytle c, Joanna Taylor e, Deborah Lacroix e, Maria A. Nieves-Colón f, Anne C. Stone f,g, Darryl P. Butt a,d,h

a Department of Materials Science & Engineering, Boise State University, 1910 University Dr., Boise, ID 83725, USA
b Department of Anthropology, Boise State University, 1910 University Dr., Boise, ID 83725, USA
c Department of Geosciences, Boise State University, 1910 University Dr., Boise, ID 83725, USA
d Center for Advanced Energy Studies, Boise State University, 995 University Blvd., Idaho Falls, ID 83401, USA
e Center for Advanced Energy Studies, University of Idaho, 995 University Blvd., Idaho Falls, ID 83401, USA
f School of Human Evolution and Social Change, Arizona State University, 900 Cady Mall, Tempe, AZ 85287, USA
g Center for Bioarchaeological Research, Arizona State University, 900 Cady Mall, Tempe, AZ 85287, USA
h College of Mines and Earth Sciences, University of Utah, Salt Lake City, UT 84112, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 July 2016
Received in revised form 5 February 2017
Accepted 5 February 2017
Available online xxxx

An archaeological assessment was carried out on an unprovenienced human skull recovered in eastern Idaho,
exhibiting cranial deformation and peri-mortem application of a red pigment. A combination of scanning elec-
tron microscopy (SEM), X-ray fluorescence (XRF), and energy-dispersive X-ray spectroscopy (EDS) identified
the major and trace elements present in the red pigment as natural cinnabar. Carbon and oxygen stable isotopes
from teeth and bone suggest a mostly C3 plant-based diet with subsidiary consumption of salmon or marine re-
sources, and a regional geographic transition between early life and late adulthood. Radiocarbon dating deter-
mined the approximate age of the skull to be between 600 and 700 years old, and ancient mitochondrial DNA
assessment identified characteristics of haplogroup B, one of fourmajor Native Americanmitochondrial DNA lin-
eages, which is consistent with the osteological analyses.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Provenience
Repatriation
Skull
Cinnabar
mtDNA
Cranial deformation
NAGPRA

1. Introduction

Despite the legal consequences of ignoring the Native American
Graves Protection and Repatriation Act (NAGPRA) and regional laws
in regards to collection and selling human skeletal remains, illicit traf-
ficking of human remains is not abated. Therefore, law enforcement
and state archaeologistsmust have effectivemeans of identifying popu-
lation affinity of remains with unknown or lost provenience in order to
resolve such cases. Though ancestry can be estimated, comparative os-
teological databases can be insufficient when identifying remains to a
specific region or culture, as great variability in regions and through
time exist (Seidemann et al., 2009). This is confounded for forensic
and archaeological remains that lack context due to collection, traffick-
ing, and sale of remains. This ambiguity often leaves bioarchaeologists
unable to conclusively assign specific population affinity for repatria-
tion. This paper reports the results of a multidisciplinary analysis of an

unusual human skull with unknownprovenience and unknown affinity.
It combines traditional and alternativemethods and denotes the impor-
tance of exhausting multiple means to narrow down skeletal affinity in
a post-NAGPRA environment in which descendent population-
bioarchaeologist relations are ever so fragile and important tomaintain.

In November 2013, a human skull with very limited and vague ori-
gins came into the possession of the Boise State University, Anthropolo-
gy Department from the Idaho State Historic Preservation Office,
Western Repository. Some basic observations, such as soil in the nasal
aperture and eye orbits, suggested that it had been interred. The skull
was particularly notable both for its cranial deformation and for a red-
dish to brownish pigment applied over much of the vault and face
(Fig. 1 and Fig. 2). Prior to this, the remains had been curated by the Ar-
chaeological Survey of Idaho, Northern Repository (ASINR) located at
the University of Idaho, Alfred W. Bowers Laboratory of Anthropology
(Moscow, ID). The accompanying report stated the remains were col-
lected from an unknown location near Rigby, Jefferson County, in east-
ern Idaho and then donated to ASINR from the local sheriff's office
sometime prior to 1976. This report stated that the cranium andmandi-
ble were brought to ASINR with materials from site 10CW1, but the

Journal of Archaeological Science: Reports 12 (2017) 384–394

⁎ Corresponding author at: Department of Materials Science & Engineering, Boise State
University, 1910 University Dr., Boise, ID 83725, USA.

E-mail address: jenniferwatkins1@boisestate.edu (J.K. Watkins).

http://dx.doi.org/10.1016/j.jasrep.2017.02.006
2352-409X/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Journal of Archaeological Science: Reports

j ourna l homepage: www.e lsev ie r .com/ locate / jas rep

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jasrep.2017.02.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jasrep.2017.02.006
mailto:jenniferwatkins1@boisestate.edu
Journal logo
http://dx.doi.org/10.1016/j.jasrep.2017.02.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jasrep


remains might not actually derive from that site. The cultural remains
from 10CW1 had been repatriated years ago without the cranium be-
cause it was not believed to be part of that collection, yet specific knowl-
edge of its origins had been lost (Idaho State University staff, pers.
comm.). At this time the skull was brought to Boise State University, it
was assigned the case number F112413.

Although the provenience of the skull was ambiguous and incom-
plete, its associationwith other Native American artifacts and pre-mod-
ern appearance suggested it may also be of Native American origin, thus
calling into question the applicability of NAGPRA. Given these suspi-
cions and the drive to repatriate remains, an investigation into the tem-
poral and geographic backgrounds, and biological affinity of the skull
was undertaken, with permission from ASIWR and state archaeologists,
usingmultidisciplinarymethods. Here, we describe the complementary
results of these different methods, which narrow the origins of these
otherwise enigmatic materials, with the purpose of repatriation.

2. Background and scientific rationale

In bioarchaeological and forensic anthropology studies, no one ap-
proach is singularly diagnostic of the origin of the individual (particular-
ly when only a skull remains, as in this case), but in summation can help
narrow possible geographic locations. Thus, several independent
datasets were collected. Specifically, we employed several complemen-
tarymethods, including analysis of skeletal morphology, pigments, hair,
mitochondrial DNA (mtDNA) and stable isotopes, as well as dating the
bone using 14C. The following sections provide background information
and rationale to explain what information we can gain from, as well as

limitations of, each technique we employed with the ultimate objective
of ascribing affinity for repatriation.

2.1. Systematics of cranial deformation

As mentioned, skull F112413 appeared to be artificially deformed/
modified. This observation played a role in decisionsmade subsequent-
ly about the methods used in this report. Artificial cranial deformation
serves as a cultural artifact that preserves better than other forms of
body modification and can serve to help reconstruction of social sys-
tems, stratification, migrations, and ethnic identity of past peoples. In-
tentional cranial deformation has been practiced on nearly every
continent of the world and in different historical contexts, and may
have originated as early as 15,000 years ago (Anton, 1989; Brown,
1981; Dingwall, 1931). Ethnographic accounts have indicated that
some cultures considered deformation a mark of beauty (Boas, 1890),
while in others it was a symbol of elevated status (Ortner, 2003), or a
form of body decoration marking group affiliation (Dingwall, 1931;
Gerszten, 1993).

Deformation can also be unintentional, such as the flattening of the
occipital bone through the use of a cradleboard (when the infant fre-
quently sleeps on a hardened surface) seen in many North American
populations (Kohn et al., 1995). In both intentional and unintentional
cases, deformation begins prior to cranial fusion when the bones of
the cranium are more malleable. Ethnographic and ethno-historic
sources indicate that intentional or artificial deformation often begins
within a few days of birth with a flattening apparatus being used for
6 months to 5 years (O'Loughlin, 2004). Groups practicing deformation

Fig. 1. Photographs for the (a) cranium andmandible of F112413; the red pigmentwas applied near the bregma, at the top of the cranium, down to glabella on the frontal, to bothmaxillae,
and across the anterior body of the mandible. Fronto-occipital cranial deformation is depicted in the lateral view (c) and superior view (d).

Fig. 2. (a) Photograph of the skull F112413withmarkers indicating fromwhere the pigment sampleswere taken. (b) Red pigment sample under opticalmicroscopy at 20×magnification.
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would either strap hard, flat devices like boards, to both the front and
back of the infant's head, or wrap the infant's headwith tight bandages,
like cords, permanently altering the head shape.

Although as many as 16 types of deformation have been described,
only two forms are common: annular (or circumferential) and fronto-
occipital (or antero-posterior) deformation (Anton, 1989; Anton and
Weinstein, 1999; Clark et al., 2007; Gerszten, 1993). Annular deforma-
tion is associatedwith binding the cranium and compressing it cylindri-
cally, limiting growth medio-laterally and resulting in increased cranial
length and a decrease in breadth. Annular deformation has been cited
among the Kwakiutl and Nootka (prehistoric Northwest coast), and
some populations from Peru and Arawe (Clark et al., 2007; Gerszten,
1993). Fronto-occipital deformation involves binding the cranium to a
flat surface, compressing the cranium antero-posteriorly and constrict-
ing growth between the frontal and occipital. Fronto-occipital deforma-
tion is characterized by decreased cranial length, increased cranial
breadth, and a flattening of the front and occipital bones resulting in
the bulging of the parietal bones. This type of deformation has been
cited from the Ancon, Peru, Makapuan, Hawaii, American Southwest
(e.g. Hopi), and the Songish from the Pacific Northwest, among others,
and is typically the result of cradleboarding (Clark et al., 2007;
Gerszten, 1993). With all this in mind, the cranial deformation in skull
F112413 could not serve as a cultural, regional, or temporal indicator
for repatriation.

Though cranial metrics are routinely applied for inventory and de-
scriptive purposes, due to potential bias inmetric analyses from the cra-
nial modification, they were not used in assessing ancestral affinity.
Notwithstanding such issues, the Amerind sample in the Forensic Data
Bank, which is often used to estimate ancestry from craniometrics, con-
sists only of modern Native Americans from the southwestern United
States as it is, which may not be representative of prehistoric or pre-
modern indigenous American groups from other regions. It was felt
that craniometrics results using these standard data banks as reference
could only be presented with great caution and would only confound
interpretation in this case and, thus further investigation was
warranted.

2.2. Pigment and hair analysis

Many different ancient and prehistoric cultures, separated by both
geographical region and time, have utilized red pigments like those ob-
served on skull F112413, most commonly ochre or iron oxides (Fe2O3).
Indeed, red ochrewaswidespread in funerary rituals during the Late Ar-
chaic period in North America (Wreschner et al., 1980). In the case of
the present skull, the red and brown pigments adhering to the cranium
and mandible were not staining the bone and were not consistent with
red ochre. The potential for an unusual – and geographically distinctive
– pigment prompted us to focusmineralogical and chemical analysis on
this pigment. Identification of the hairs could link the skull to resource
use of other mammals, e.g. bison, deer/elk, small mammals, etc. that
might be geographically distinctive.

2.3. Mitochondrial DNA analysis

Mitochondrial DNA can be used to estimate population affinity
through identification of geographically diagnostic mtDNA lineages
known as haplogroups. Our primary objective was to obtain the com-
plete mtDNA genome of the individual by extracting and quantifying
genetic material from the remains. Our specific goals were to build se-
quencing libraries, recover endogenous ancient DNA through target en-
richment capture, and then sequence the mtDNA genome with next
generation Illumina MiSeq technology. Mitochondria are the energy
producing organelles of eukaryotic cells. Each cell typically contains sev-
eral hundred mitochondria, and each mitochondrion has several copies
of a circular genome approximately 16,500 base pairs (bp) in length.
Due to the high copy number of mitochondrial DNA found per

eukaryotic cell, it is more likely to survive over time than nuclear DNA
in skeletal remains from archaeological contexts. MtDNA is inherited
solely through the female line and does not recombine (Giles et al.,
1980). Therefore, mitochondrial lineages are informative of female pop-
ulation history. These lineages can be identified through screening of di-
agnostic polymorphisms such as the 9 base pair (bp) deletion. Human
groups across the world carry characteristic mtDNA lineages which
have arisen through migration and regional demographic histories. Na-
tiveAmericanmtDNA lineages cluster into fourmajor groups defined by
the 9 bp deletion or certain restriction sites, as well as by specific muta-
tions in the mtDNA genome (Schurr et al., 1990). Most of these
haplogroups are also found in Asian populations but they are typically
rare.

2.4. Stable isotopes

Tooth enamel and bone δ18O1 values can also provide information
about origins like the methods above because they correlate with δ18O
values in surface water, such as streams, rivers, or lakes, which varies
geographically (Chenery et al., 2012; Daux et al., 2008; Luz et al.,
1984). After development, tooth enamel remains unchanged through-
out life except for mechanical abrasion and is resistant to diagenetic
changes (Koch et al., 1997). Bioapatite (approximately
Ca4.5[(PO4)2.7(HPO4)0.2(CO3)]0.3(OH)0.5) is compositionally most simi-
lar to hydroxylapatite and is the main component of enamel (Pasteris
et al., 2004). Either the phosphate (PO4) or carbonate (CO3) component
can be analyzed for isotopic composition. Carbonate component analy-
sis results in values for both carbon and oxygen stable isotopes, which
are proxies for diet and ingested water respectively (Koch, 1998; Kohn
and Cerling, 2002).

Bone bioapatite has a similar chemical composition to that of enam-
el, albeit lacking substantial OH (Pasteris et al., 2004), and also provides
carbon and oxygen stable isotope compositions. Unlike enamel, it re-
equilibrates continuously through an individual's lifetime, and some-
times post-burial. Tooth enamel, therefore, indicates food and water
sources early in life (because enamel is unchanging after growth),
while bone representmore ante-mortem sources. Because jaw bone re-
models ~90% over 5 years (Huja et al., 2006), the mandible isotopic
composition thatwemeasured reflects the last several years that the in-
dividual was alive. We do not think the bone has undergone substantial
isotopic alteration post-burial, in part because diagenetic alteration
commonly destroys collagen, whereas sufficient collagen was retrieved
from the same bone for 14C analysis. Moreover, studies that compare
completely recrystallized fossil bone vs. enamel show compositions
within ~2% (Kohn et al., 2015; Kohn and Law, 2006), so a small amount
of alteration should not bias compositions substantially. Comparing
bone and enamel compositions allows for detection of geographic mi-
gration after enamel growth has completed and therefore, could be
used to narrow regional origins.

Diet in the form of vegetation is reflected in carbon isotope values
(δ13C). Plants are separated into two dominant groups, C3 and C4,
based on photosynthetic pathways (Fig. 3). C3 plants typically range
from −30 to −25‰ (V-PDB), but can span b−35‰ (rainforest) to al-
most−20‰ (Atacamadesert) depending on local conditions, especially
rainfall (Kohn, 2010). C4 plant compositions range between≈−10 and
≈−14‰ (Cerling et al., 1997). Tooth isotope compositions parallel
these differences in habitat but with higher δ13C values. A fractionation
of≈13‰ between enamel and diet (see reviewof Sandberg et al., 2012)
implies that plant compositions should be 13‰ lower than bioapatite
compositions. In addition, when using archaeological bioapatite to cal-
culate apparentmodern plant compositions (for comparison tomodern
datasets whose ecologies are known), an additional ≈1.5‰ correction
should also be applied to account for fossil fuel burning over the last

1 Delta notation for oxygen is given by: δ18O ¼ 1000 � b
ð18O16O

Þ
sample

−ð18O16O
Þ
standard

ð18O16O
Þ
standard

c and analo-
gously for carbon.
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≈200 years (Bauska et al., 2015; Friedli et al., 1986). Thus, an archaeo-
logical composition of −10‰ would imply equivalent modern plant
compositions of−24.5‰ (=−10‰–13‰–1.5‰). Consumption of rela-
tively high δ13C salmon (c. −17 to−22‰; e.g., Satterfield and Finney,
2002) or especially marine foods (c. −11 to −15‰; Schoeninger and
DeNiro, 1984) would increase δ13C compared to a C3-only diet, and
cause an underestimate of the ratio of C3 to C4 plants in an individual's
diet. Conversely, consumption of terrestrial meat would likely reduce
δ13C values relative to a purely vegetarian diet (Clementz et al., 2009),
and cause an overestimate of the ratio of C3 to C4 plants in an
individual's diet.

Precipitation δ18O values in temperate areas are controlled by dis-
tance from the source, temperature, and altitude. In Idaho, precipitation
derives mainly from winter sources originating directly west in the
North Pacific. Summers are dry. Thewinter snowpack generally exhibits
low δ18O values and itsmelt supplies streams, rivers, and lakes through-
out the year. Summer aridity increases evaporation of surfacewater, in-
creasing summer δ18O values. Cooler temperatures and/or increasing
altitudes correlate with decreased δ18O (Dansgaard, 1964). Average
modern Idaho surface water oxygen isotope values are ≈−16‰
(V-SMOW; Kendall and Coplen, 2001). Similarly, these regional values
can help pinpoint geographic origin for the unprovenienced skull.

3. Materials and methods

3.1. Radiocarbon dating

Collagen was separated using bone solvent extractions (due to un-
known adherents) from the condyle of the right mandible. Radiocarbon
dates were determined using accelerator mass spectrometry (AMS)
measurements (Beta Analytic Radiocarbon Dating Laboratory; Florida,
USA; Beta-393782; November 17, 2014). The sample's 14C/13Cwasmea-
sured relative to 14C/13C in Oxalic Acid II (NIST-4990C) in one of four in-
house stage accelerator mass spectrometers. Three quality assurance
samples were measured along with unknowns. Results for the QA sam-
ples fell, as required, within expectations of known values prior to
accepting the results for all samples. δ13Ccoll was obtained by oxidizing
a small portion of the extract in an elemental analyzer connected direct-
ly to an isotope ratio mass spectrometer (IRMS). δ13Ccoll is reported

relative to VPDB. More detailed information on the radiocarbon dating
methods is available in the supplementary content.

3.2. Skeletal analysis

The materials used in this report consist of a single skull (F112413)
and the adhering pigment and hairs. The skull was macroscopically ob-
served and standard anthroposcopic methods were applied to estimate
ancestry (Buikstra and Ubelaker, 1994), age (Buikstra and Ubelaker,
1994; Gruspier and Mullen, 1991; Mann et al., 1987; Meindl and
Lovejoy, 1985), and sex from the skull (France, 1998; Krogman, 1962;
Walker, 2008). Craniometrics were avoided for ancestry estimation
due to bias from vault modification (Fig. 1c–d). The skull has been con-
sidered to be themost accurate skeletal indicator of ancestry. Finite scal-
ing work (Kohn et al., 1995) suggested that facial alterations due to
cranial deformation were rare among Hopi and the only significant dif-
ferences were in the slightly higher and narrower faces of individuals
with deformed vaults. When cradleboarding produced fronto-occipital
flattening, such modifications did not impact the face and cranial base
and did not add bias to analysis of determining biological distance be-
tween populations. Therefore, estimation of ancestry from facial mor-
phology non-metrics in this specimen is assumed to be unbiased
despite cranial vault deformation. In contrast, craniometrics methods
(for discriminant functions) for ancestry estimation were deemed too
biased due to the deformation to warrant application.

3.3. Pigment and hair analysis

We used optical microscopy, scanning electron microscopy (SEM),
and energy dispersive spectroscopy (EDS) to identify the red and
brown pigments. A sample of red pigment with one of the hair strands
embedded within it was imaged via bright field optical microscopy
and SEM (Fig. 7). We especially wished to confirm that the pigment
was not simply a modern, commercial paint. Using a dental pick, pig-
ment samples were removed by gently scraping from the red and
brown areas on the skull (Fig. 2a) and stored in small glass vials. Sam-
ples were affixed to an aluminum holder using carbon tape and exam-
ined via optical microscopy (Olympus BX51 with U-CMAD3 ColorView
camera and analysis imager software; Fig. 2b), manual scanning elec-
tronmicroscopy (SEM) for microstructure and linked energy dispersive
spectroscopy (EDS) for chemical composition (Hitachi 3400-N-II).

To help constrain a geological source of the colorant from trace ele-
ment concentrations (Erlandson et al., 1999), three pigment samples
were analyzed using a Horiba micro X-ray fluorescence XGT-7200 ana-
lytical microscope with Microanalysis Suite-Issue 17B, XGT-7200 Suite
version 1.94 integrated analysis software. The same samples analyzed
via SEM, EDS, and XRF were submitted for more sensitive analysis via
laser ablation inductively coupled plasma mass spectrometry (LA-
ICPMS). A Thermo Electron X-Series II quadrupole mass spectrometer
coupled with a New Wave UP 213 nm frequency Nd:YAG laser was
used. More detailed information regarding these methods is available
in the supplementary content.

Hairs embedded in the pigment and adhering to the top of the skull
were collected and sent for blind comparative analysis and identifica-
tion at the Department of Art Conservation Studies at the University of
Delaware. Four different samples were isolated for slide preparation
for optical analysis.

3.4. mtDNA analysis

Sampling and ancient DNA extractionswere conducted at the Arizo-
na State University Ancient DNA Laboratory, a Class 10,000 clean-room
facility. Four extractions total were attempted, two on a lower third
molar, one on calculus and one on an upper right secondmolar. Consid-
erable difficulty was encountered in obtaining a non-contaminated
sample. Ultimately, the amount of recovered endogenous DNA was

Fig. 3. The relationship between carbon isotope values of modern C3 and C4 plants and
modern herbivore enamel (see Kohn, 2010; Kohn and Cerling, 2002). The skull tooth
carbon isotope values are at the maximum limit of C3 plants, likely reflecting slight
consumption of either C4 sources or possibly fish or shellfish.
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insufficient to build complex sequencing libraries, so target enrichment
capture and sequencingwere not attempted. Because of poor DNApres-
ervation, identification of the individual'smtDNA lineage relied on poly-
merase chain reaction (PCR) data from amplification of the 9 bp
deletion region of the mtDNA genome (Pääbo, 1989). Sample prepara-
tion and elimination of surface contaminants and inhibitors followed
standard methods (Gilbert et al., 2006; Rohland and Hofreiter, 2007;
Schuenemann et al., 2011). DNA extraction methods optimized for re-
covery of short, degraded DNA fragments from ancient teeth and calcu-
luswere used (Dabney et al., 2013;Warinner et al., 2014).More detailed
descriptions of the methods used are available in the supplementary
content published electronically along with this paper.

3.5. Stable isotope analysis

Six mandibular teeth from skull F112413 were analyzed to deter-
mine their carbon and oxygen stable isotope composition. The lower
left canine, right and left lower first premolars, right lower second
molar, and right and left lower third molars were loose but not able to
be removed from themandiblewithout further destruction. The enamel
was slightly discolored, and heavily worn or chipped post-mortem in
most cases. Powdered enamel samples, removed with a Dremel,
weighing 3 mg or less were reacted at 70 °C in a He gas-purged borosil-
icate exetainer with 0.05 mL of concentrated phosphoric acid for the
carbonate standards and 0.1 mL for the bioapatite until completely dis-
solved (approximately 24 h). Evolved carbon dioxide samples were an-
alyzed using continuous flow isotope ratio mass spectrometry
(CF-IRMS) on a ThermoDelta V Plus IRMSwith a Gasbench II headspace
sampler. Data are reported in standard permil (δ) notation, relative to
V-PDB (carbon isotopes) and V-SMOW (oxygen isotopes). More de-
tailed information regarding this method is available in the supplemen-
tary content.

4. Results

4.1. Radiocarbon dating

The results provided for Beta-393782 indicate a conventional radio-
carbon age of 580 ± 30 BP (13C/12C ratio of −14.5‰ ± 1σ) for skull
F112413. The INTCAL13 database (Reimer et al., 2013) provides calibra-
tion curve intercepts at 1330, 1340, and 1395 CE and a date range of
1300–1415 CE for the skull at 95% confidence. Osteological observa-
tions, such as soil coloration and dental wear, are consistentwith the re-
mains being archaeological.

4.2. Skeletal analysis

The F112413 remains consist of a well preserved cranium and man-
dible (Fig. 1a–b). Most teeth were missing post-mortem and the lower
left 1st molar was lost pre-mortem. The severity of the dental attrition
of remaining dentition is not consistent with modern diet and suggests
a pre-modern or archaeological temporal affiliation. The skull exhibits
soil staining andwas not bleached or professionally curated. Nopostcra-
nial remains are present. The coloration and adherence of small
amounts of sediment in the cavities suggest that the individual had
been buried in soil, but the length of interment and whether it was
the primary or secondary means of mortuary treatment is unclear.
Along the sagittal suture, coarse dark-colored hairs adhered to the
vault. Hairs also adhered to red and brown pigments on the face.

The cranial vault is flattened on the occipital and frontal bones, forc-
ing the parietal bones to bulge medially, known as fronto-occipital flat-
tening. The deformation is asymmetrical as the left parietal from the
superior view is more posteriorly pronounced than the right parietal.
Combined, the deformation results in a cranial vault which appears
taller, yet shortened from anterior to posterior.

Unfortunately, the cranium and dentition in isolation are poor indi-
cators for age-at-death estimation. When considering the morphologi-
cal impact of the deformation process as well as unknown behavioral
impacts, it is highly presumptuous to estimate age in this case. Never-
theless, observations were made to see if the estimation from the orig-
inal ASINR report could be repeated. The skull contained only
permanent dentition, including occluded third molars, and fusion of
the sphenooccipital synchondrosis, all of which indicate adult maturity
(Buikstra andUbelaker, 1994). Additionally, a total of 17 sites for sutural
closure of the craniumwere numerically scored (Buikstra and Ubelaker,
1994). When compared to composite scores from skeletons of known-
age, results indicate an age-at-death range of 45–50 years (Gruspier
and Mullen, 1991; Mann et al., 1987; Meindl and Lovejoy, 1985).

Anthroposcopic traits were similarly used to assess sex. Expression
of supraorbital torus, nuchal area, and supraorbital margin were all
given numerical scores of 1, indicating probable female. Overall size
and ruggedness of the cranium and size and projection of the mastoid
process was scored as a 2, indicating likeliness of being female
(Buikstra and Ubelaker, 1994). However, frontal morphology was un-
able to be assessed because of cranial deformation (likely obscuring nat-
ural morphology) and chin morphology was scored as 3, ambiguous.
Combined, these observations indicate the individual is consistent
with expressing morphologically female features (Buikstra and
Ubelaker, 1994; Krogman, 1962). Sex estimation was also completed
using Walker's (2008) logistic discrimination functions, which use the
same 5 scored traits as Krogman (1962) and France (1998). Four of six
functions indicated probable female.

Despite the fact that dental morphology is generally very useful in
distinguishing population affinity, the extent of dental attrition in this
specimen precluded detailed observation of this data. The teeth are
very worn and many are absent. This included the incisors, so there
was no way to determine if they were shovel-shaped, most frequently
found among Asian or Native Americans, but there is no indication of
a Carabelli's cup on any of the upper molars (frequently found among
Europeans) (Edgar, 2013).

For reasons discussed previously, instead of using cranialmetrics, af-
finity was assessed using only anthroposcopic morphology. The face of
this specimen is flat and wide with rounded eye sockets. The nose has
a low bridge and small spine, and the root appears tented with a flat
lower border of medium width. The zygomatics display a slight malar
tubercle and are flared. The palate is elliptical in shape with a relatively
straight palatal suture, and the mandible is large with a blunt chin. The
specimen also appeared to have a “rocker jaw” type (the ramus of the
mandible is curved convexly/inferiorly, allowing it to rock back and
forth on a flat surface), which is found among Native Americans as
well, though in lower frequency than Polynesians (Buikstra and
Ubelaker, 1994). All the features of F112413 are consistentwith an indi-
vidual of Asian or Native American ancestry (Buikstra and Ubelaker,
1994; Rhine, 1990).

4.3. Stable isotope analysis

The six teeth analyzed for carbon and oxygen isotopic composition
had carbon isotope values grouped between −9.7‰ and −8.1‰ and
oxygen isotope values between +16.5‰ and +18.0‰ (Fig. 4). The
bone had significantly lower carbon and oxygen isotope values of
−11.7‰ and +12.9‰ respectively (Fig. 4). The isotopic compositions
of teeth cluster independent of bone. This difference between teeth
and bone suggests either that the environment in which this individual
lived changed between the time of enamel formation (sub-adult peri-
od) and a few years before death, or that the individual migrated to a
different environment that was colder.

The isotope values of the right and left 3rd molars differ by 1.4‰ for
carbon and 1.5‰ for oxygen, whereas left and right 1st premolars differ
isotopically by only 0.6‰ (δ13Ccarb) and 0.3‰ (δ18Ocarb). Differences
between corresponding teeth can be used to identify diagenesis
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(Prowse et al., 2007). A difference of up to 1.8‰ for 3rdmolars is within
the range observed for modern teeth, so the variation wemeasured be-
tween corresponding teeth is within the expected values for an individ-
ual. Variability in enamel formation and eruption of each tooth, coupled
with seasonal and inter annual differences in isotopes, likely explain ob-
served isotopic disparities.

The carbon isotopic values for the teeth of −9.7‰ to−8.1‰ are as
high or higher than the maximum cutoff for pure C3 consumption
(c. −8.5‰). The cutoff is determined from a maximum likely value
of modern C3 plants of −23‰ (Kohn, 2010) increased by 1.5‰ to
offset recent fossil fuel burning (Friedli et al., 1986) and by +13‰ for
a diet-tooth isotopic offset for humans (Sandberg et al., 2012).

Oxygen isotope values for the tooth carbonate component ranged
from +16.5‰ to +18.0‰. These values represent biologically proc-
essedwater consumed during enamel formationwhich can span several
years in the sub-adult period. The δ18Ocarb of the carbonate component
of enamel correlates with surface or ingested water. Table 1 details the
calculated values for ingested water δ18OIW values based on Chenery et
al. (2012). The δ18OIW can then be directly compared with surface
water. The modern Idaho surface water average based on collection of
stream waters collected over ≈3 years is −16‰ (Kendall and Coplen,
2001). The calculated δ18OIW values for the skull teeth ranged from
−22.3‰ to −20.0‰ (Table 1). The bone δ18OIW value was −28.1‰.
As determined from both tooth and bone oxygen isotopes, δ18OIW

values are well below the average modern value for modern Idaho sur-
face water at moderate elevations (≈−16‰ at≈1000 m) (Fig. 5).

4.4. Hair analysis

Two different kinds of hairs were distinguishable on F112413. Hairs
1–3 (Fig. 6) show similar scales,medullas, pigmentation, and diameters.
They are light brown andvery degraded; they fragmented easily and the
scale patterns were hardly distinguishable. In contrast, the darkly

pigmented hair sample was in good condition. Its characteristics are
consistent with human hair: the scale pattern is irregular mosaic, with
smooth borders near the proximal end, pigmentation is densest near
the cuticle, it has an oval to circular cross-section, and narrowmedulla.
The hair is likely from this individual. Based on comparison with photo-
micrographs, the strands do not appear to be badger, bear, beaver,
bison, cat, chinchilla, civet, ferret, fox, hog, horse, pine marten, stone
marten, American mink, mole, mouse, muskrat, opossum, otter, rabbit
or hare, rat, sable, seal, squirrel, stoat, weasel, or wolf, based on differing
scale types and/or medullas (Appleyard, 1978). Instead, the hairs ap-
pear most similar to sheep's wool or the fine hairs of cattle, deer, dog,
goat, marmot, or musk ox.

4.5. Pigment analysis

EDS shows the red pigment to bemercury sulfide (HgS) or cinnabar.
An average Hg/S ratio for all EDS spectra indicatingmercury was 1.05:1,
whichmay indicate a loss of sulfur due tomicrobial activity (Minganti et
al., 2007). Table 2 details these spectra according to the specific loca-
tions where they were analyzed.

Trace element analysis via XRF and LA-ICPMSwas performed on the
pigment samples in the hopes of matching trace element compositions
to a specific geological source for the cinnabar (Erlandson et al., 1999).
Variations in apparent concentration usingXRF and LA-ICP-MS likely re-
flect calibration differences or exact locations of analyses. XRF analysis

Fig. 4.Measured carbon and oxygen stable isotope values from the carbonate component
of teeth and bone shows tooth values grouped together in the upper right quadrant and
the bone value in the lower left quadrant. These tooth and bone values suggest this
individual lived in a different environment as a child and adult.

Table 1
Tooth formation ages and measured carbon and oxygen stable isotopic composition for the skull's teeth and bone. δ13Ccarb and δ18Ocarb are measured values from the carbonate of tooth
enamel and bone. δ18OIW (ingested water) is a calculated value based on Chenery et al. (2012).

Sample Initial calcification Crown complete Left side Right side

δ13Ccarb
(‰, VPDB)

δ18Ocarb

(‰, VSMOW)
δ18OIW

(‰, VSMOW)
δ13Ccarb
(‰, VPDB)

δ18Ocarb

(‰, VSMOW)
δ18OIW

(‰, VSMOW)

Canine 4–5 mo 6–7 yr −9.68 17.66 −20.6
Premolar 1st 1.5–1.75 yr 5–6 yr −8.62 17.70 −20.5 −9.26 17.37 −21.0
Molar 2nd 2.5–3 yr 7–9 yr −9.38 17.83 −20.3
Molar 3rd 7–9 yr 12–16 yr −9.49 16.53 −22.3 −8.09 18.01 −20.0
Bone −11.67 12.89 −28.1

Fig. 5. Continental U.S. modern surface water (discharge) weighted mean δ18O values
distribution. The skull recovery site is marked with a star. Isotope and model data from
Good et al. (2015).
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identified significant amounts (in mass %) of silicon, calcium, and iron
(12.7%, 9.7%, and 3.3% respectively, Table 3). This suggest the pigment
contains calcite, calcium silicate, iron silicate or iron oxide and is rela-
tively raw, not a refined mineral like that used in artwork where
much lower concentrations of impuritieswould be expected. Additional
minor and trace elements were also identified (Table 1), notably Ni,
which would be expected among other sulfides. XRF also suggested
concentrations ≥1000 ppm of dysprosium, europium, and neodymium,
but the more sensitive technique of LA-ICPMS did not support this, and
we attribute the XRF results to peak overlaps from other elements such
as iron andmercury. LA-ICPMSalso identified low concentrations of lan-
thanum and cerium (Table 3). The goal of identifying these trace ele-
ment concentrations and their specific combination within this
cinnabar samplewas tomatch it to a natural geological source. Although
geochemical databases for cinnabar are as yet too sparse for application
to this specimen, future workmay help identify a region where the pig-
ment originated.

4.6. mtDNA haplogroup

Initial quantification of the F112413 skull extracts and extraction
blanks, as well as sequencing libraries with fluorometric quantification
using the Qubit 2.0 assay indicated poor recovery of DNA from this indi-
vidual. Fluorometric quantification measures the amount of total DNA
in the extract but cannot indicate what percentage of the DNA is endog-
enous (belonging to the ancient individual). Ancient DNA extracts often
contain contaminant DNA from other organisms such as bacteria, which
are present in the burial environment or within the sample (Carpenter
et al., 2013). DNA from these exogenous sources may be considered in
the non-specific fluorometric measurement. For F112413, results from
the quantification of all extracts indicated that the sample had very little
DNA. Attempts to build complex sequencing libraries from these ex-
tracts were unsuccessful even after repeated amplification (Table 4).

To identify whether endogenous mtDNA was present in the extract
and to check for contamination in the extraction blanks, we performed

PCR targeting the non-coding region of humanmtDNA located between
the COII and tRNAlys genes. This PCR is highly sensitive to small amounts
of DNA, and it has the added benefit of testing for a marker that is char-
acteristic of one of the four major Native American haplogroups
(Merriwether et al., 1995; Schurr et al., 1990; Tamm et al., 2007;
Wrischnik et al., 1987). The intergenic region between the cytochrome
c oxidase subunit II (COII) gene and the tRNA gene for lysine typically
contains two 9 bp repeats of the sequence CCCCCTCTA. Deletion of
one of those repeats is characteristic of mtDNA haplogroup B (Cann
and Wilson, 1983; Wrischnik et al., 1987).

ThePCR results suggest low amounts of DNAand occasional contam-
ination of blanks or the sample itself. The latterwas apparent because of
the presence of two bands (i.e. one bandwith the 9 bp deletion and one
larger band without the deletion). Specifically, our results suggest that
there was some DNA in the F112413-1 and F112413-2 sample extracts.
PCR results also suggested there was some DNA in the F112413 dental
calculus (F112413-c), but there was a double band and the extraction
blank was positive which indicates that contamination was introduced
during the extraction process. Successful amplification of the 9 bp re-
gion was obtained with the F112413-3 extract. As illustrated in Fig. 8,
skull F112413 carries the 9 bp deletion, indicating membership in
haplogroup B.

5. Discussion

5.1. Skeletal analysis

Shapemodification to skull F112413 presented particular difficulties
of identifying affinity for repatriation in this case. There are no known

Fig. 6. Hairs that were adhered to and embedded within the pigment on the skull.

Fig. 7. (a) Red pigment, identified as cinnabar, with embedded hair under bright field optical microscopy at 5× magnification, and (b) the same sample under scanning electron
microscopy.

Table 2
EDS elemental analysis for all pigment locations that contained mercury.

EDS spectra analysis for all pigment locations containing mercury (at%)

Spectra location N O S Hg Hg/S

SP003106 26.20 37.30 17.82 18.68 1.05
SP003108 21.59 17.48 28.79 32.14 1.12
SP003216 7.36 43.80 48.84 1.12
SP005118 28.80 36.33 34.87 0.96
SP005119 33.80 47.61 9.53 9.06 0.95
SP005120 52.24 21.04 26.72 1.27
SP005224 56.84 19.20 23.96 1.25
SP005225 48.42 24.75 13.43 13.40 1.00
SP005226 63.96 16.74 19.30 1.15
SP005227 52.27 18.12 13.11 16.50 1.26
SP005231 46.62 53.38 1.15
SP005533 19.85 42.62 37.53 0.88
SP005656 47.71 26.88 25.41 0.95
SP005659 51.55 48.45 0.94
SP005661 36.18 34.65 29.17 0.84
SP005662 37.18 43.38 10.50 8.94 0.85
Average 36.58 35.83 27.04 27.90 1.05
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accounts of cranial deformation in Idaho prehistorically (Mark Plew,
pers. comm., 2015), and there is no database of morphological or mor-
tuary indicators to help identify remains to specific indigenous popula-
tions. Even if it were reported, cranial deformation alone is not a
sufficiently specific culturalmarker inNorth America to pinpoint the or-
igins of these remains.

Ideally, a range of vault shapes and deformation characteristics from
a population would be needed to accurately assess type and degree of
vault modification and how suchmodification impacts sex and age esti-
mations from the skull. If a skull shows signs of being deformed or oth-
erwise intentionally altered, it is usually deemed unusable for such
analyses using strict craniometrics analyses. More recently, authors
have applied discriminant functions to identify presence/absence of de-
formation, and traditional and nonstandard craniometrics of deformed
crania to establish indices of deformation type. Yet the impact of defor-
mation on nonmetric traits remains unresolved (Cocilovo, 1975;
Konigsberg et al., 1993; O'Brien and Stanley, 2013). Numerous facial
and cranial base modifications may result from cranial vault deforma-
tion. Some authors (Cheverud et al., 1992) have determined that the
number of morphological variations that ensue are too numerous,

dramatic, and global to allow for analysis of population affinity and rela-
tionships in deformed crania from nonmetric traits, while others (Kohn
et al., 1995; Konigsberg et al., 1993) have found the effects to be mini-
mal and local (limited to a few ossicles and foramina) and not barriers
to interpretation of biological distance. This means that when
unprovenienced skeletal remains are discovered in the state of Idaho,
and likely in other locations, it is an ongoing challenge to ethically cu-
rate even after a Notice of Intent to Repatriate has been given.

Overall, cranial features, combined with what is known about the
specimen history/origins, cranial modification, and the adhering pig-
ment and hairs, are consistent with a Native American ancestry for
F112413. That being said, given the unknown context of the remains
and the fact that neither the cranial morphology or deformation, nor
the pigment, are able to specifically assign origin, this ancestry estima-
tion from the craniumwas not considered informed enough to proceed
with repatriation alone.With a lack of archaeological background, these
above data were not enough to identify the origins as being necessarily
North American, let alone from Idaho, in order to repatriate, and spurred
further investigatory methods.

5.2. Stable isotopes

Because δ13C values of C3 plants increase in arid ecosystems, such as
in Idaho, C3 plants likely formed the majority of this individual's diet,
but some consumption of high δ13C foods is possible. C4 type plants
have never been a large part of the resource base in the Pacific North-
west (Kohn and Law, 2006). Migrating Pacific salmon have elevated
δ13C values, and impart their unique isotopic signature to their
spawning freshwater environment (Bilby et al., 1996). Consumption
of salmon or foods in salmon-bearing freshwater environments could
have helped elevate tooth δ13C of the individual we analyzed.

Before interpreting δ18O values, we argue that isotope compositions
at c. 1300–1400CE should not have beenmarkedly different from today,
somodern isotope patterns can be used for interpretations. After a glob-
al maximum temperature at c. 1000 CE during the Medieval Warm Pe-
riod, and prior to modern climate change, northern hemisphere
temperatures gradually declined to a minimum during the Little Ice
Age (c. 1600–1700 CE; Mann et al., 1999; Stocker et al., 2014). The age
of F112413 coincides with an intermediate position betweenmaximum
and minimum temperatures such that it approximates modern condi-
tions. For example, the detailed record of Dahl-Jensen et al. (1998) for
the Greenland ice core indicates that temperatures at 1300–1400 CE
are not resolvably different frommodern day. Insofar as isotope compo-
sitions generally track temperatures, wewould not expect isotope com-
positions at 1300–1400 CE to be significantly different from today.
Several studies corroborate this expectation in the northwestern US.
Proxy records include speleothems from southeastern Idaho (Lundeen

Table 3
Trace elements presentwithin the red pigment sample as identified via X-rayfluorescence
(XRF) and laser ablation inductively coupled mass spectrometry (LA-ICPMS). Phosphorus
had a sizeable contribution to the impurity concentration.

Trace elements identified via X-ray fluorescence Trace elements
identified via laser
ablation inductively
coupled mass
spectrometry

Element Mass % Element ppm Element ppm
Silicon 12.7 Phosphorus 8300 Phosphorus 190
Calcium 9.7 Titanium 6000 Titanium 57
Iron 3.3 Zirconium 5400 Potassium 47
Potassium 2.2 Bromine 1400 Cerium 0.33
Aluminum 0.9 Nickel 1300 Neodymium 0.18
– – Manganese 1200 Lanthanum 0.09
– – – – Dysprosium 0.075
– – – – Europium 0.005

Table 4
Fluorometric quantification results for the F112413DNA extracts and libraries.

Sample Stage ng/uL

F112413-1 DNA extract (or dilution) b0.50 ng/mL too low
EB-1 b0.50 ng/mL too low
F112413-1 1:10 1.46
EB-1 1:10 1.30
F112413-1 1:10 (again) b0.50 ng/mL too low
EB-1 1:10 (again) b0.50 ng/mL too low
F112413-1-A Indexed library 2.96
EB-1-A 0.01
F112413-1-G 2.58
EB-1-G 0.01
LB 0.01
F112413-1-A Amplified library 189.00
EB-1-A 11.50
F112413-1-G 36.00
EB-1-G 22.20
LB 14.60

Fig. 8. Gel electrophoresis showing 9 bp deletion PCR. Lanes 1 and 6 show the DNA size
standard. Lanes 2 and 5 show the results for F112413-3, lane 3 shows a positive control
(without the deletion), and lane 4 shows the extraction blank (EB-3) from the F112413-
3 extraction. The size of the band for F112413-3 is smaller than the band for the positive
control, indicating the presence of the 9 bp deletion.
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et al., 2013) and near-coastal Oregon (Ersek et al., 2009), as well as lake
sediments from the northern interior Great Basin (Benson et al., 2002),
and extreme SE Idaho (Dean et al., 2005). Lundeen et al. (2013) inter-
pret their data in terms of temperature (assuming no change to δ18O
of precipitation), and the other records suggest no shift to δ18O. Depend-
ing on assumptions regarding temperature shifts, data from Lundeen et
al. (2013) might be reconciled with a maximum decrease in δ18O for
1300–1400 CE relative to today of−1‰. Thuswe take into account pos-
sible downward shift of 0–1‰.

The inferred δ18OIW values (−20 to −22‰ from enamel; −28‰
frombone) are extremely low andpoint to either reduced temperatures
at high latitude or high altitude (Dansgaard, 1964). The highest passes
in central Idaho (2200 to 2800 m) have snowpack δ18O values of −18
to −20‰ (Anderson et al., 2016), or somewhat too high to explain
the tooth enamel compositions, even assuming a 1‰ increase in region-
al δ18O since 1300–1400 CE, and far too high to explain bone composi-
tions. There is no evidence of sustained residential occupation at
altitudes N2000 m in Idaho (Bishop and Plew, 2016; Morgan et al.,
2012; Murphy and Murphy, 1960), and ingested water is also likely to
be acquired from streams, which have higher δ18OIW values than snow-
pack. Instead, the δ18OIW values of the tooth and bone suggest F112413
consumed water that was derived from an area with a sustained re-
duced average temperature compared to modern and prehistoric
Idaho values. Enamel δ18OIW values can be found for modern surface
water in Canada and Alaska, suggesting the range of locations possible
during this individual's early years (Fig. 5). Bone isotope values appear
to reflectmigration to an even higher latitude or perhaps to the Canadi-
an Rockies.

5.3. Hair and pigment

Mercury sulfide is a red pigment that has been used in funerary and
other symbolic rituals dating back to the Neolithic period (Ávila et al.,
2014; Rogerio-Candelera et al., 2013). Red colored pigments are
documented to have been used throughout western North America
for body painting on festive or mourning occasions, for utilitarian and
symbolic decoration of materials, and for skin protection and healing
(Heizer and Treganya, 1944). It is interesting to note that there
may have been knowledge of the ill effects of the mercury in cinnabar,
as a recounting by Chief Umunhunwarnedwarriors towash themselves
of the pigment to cure themselves of illness (Heizer and Treganya,
1944).

Historically, several surface outcroppings of cinnabar (also common-
ly known as vermilionwhen referred to as a pigment) near San Jose and
Sacramento, Californiawere said to bewell known amongNative Amer-
icans from northern California to the Columbia River in the early 1800s
(and most likely longer before this). Heizer and Fenenga (1939) be-
lieved it probable that the 6 lb of cinnabar recovered from historic Na-
tive American burials in Contra Costa County, California originated
from these mining locations. The Northwestern Chinook tribe was also
known to have traded in cinnabar which they obtained from other na-
tive tribes in southernOregon (Swan, 1870). A typical Chinook burial in-
volved placing the deceased in a cabin or raised canoe. Bodies were
reportedly painted with ochre and then wrapped in several mats,
hides, or blankets (Ruby and Brown, 1976). It is possible that this
“ochre” may have in fact been cinnabar. The animal hairs found adher-
ing to the skull F112413 then, are probable remnants of funerary
shrouds covering a cinnabar painted body. Since all hairs were found
adhering to the skull because they were embedded in the pigment, it
is likely the cinnabar was applied before soft tissue decomposition.
One famous Chinook leader, Chief Comcomly, who died in 1830, was
buried in this traditional manner; his skull was later removed and his
body was buried along his lands (Ruby and Brown, 1976). Removal of
the skull from the body prior to burial could explain why the skull of
F112413 was the only skeletal component retrieved in Idaho.

5.4. mtDNA

As previously stated, the PCR results from the F112413-3 sample
showed the 9 bp deletion indicative of membership in mtDNA
Haplogroup B. This haplogroup is common in the Americas but has
also been identified in Polynesia. However, Polynesian lineages are dis-
tinct from Native American lineages (Melton et al., 1995). In addition,
the 9 bp deletion arose independently in Africa where it is found on a
different haplogroup background (Soodyall et al., 1996). Discerning
the specific haplotype would require sequencing of at least a portion
of themtDNAgenomewhich is not possible given the level of DNApres-
ervation of F112413.

6. Conclusions

Murad and Murad (2000) were successful in reuniting a disinterred
Native American skull with the rest of the body from a California ceme-
tery, and Seidemannet al. (2009)were able todetermine the likely buri-
al location of a Native American skull listed for sale on eBay.
Unfortunately, such a degree of success is not always possible for
unprovenienced remains. The bioarchaeological record of Idaho is not
well documented, primarily due to avoidance of burial excavations or
speedy repatriation. These practices allow for preservation of invaluable
remains and maintenance of the relationship among bioarchaeologists
and indigenous descent populations. However, they result in limited
reference collections and data from which to compare skeletal remains
similar to F112413 which require of affiliation to carry out NAGPRA.
However, the results of this multidisciplinary study for determining
the likely origins and affinity of the skull provided much more insight
about F112413than any one direction of inquiry. Bioarchaeological as-
sessments identified intentional cranial deformation and a post-or
ante-mortem application of a red pigment. Analysis of the hair embed-
dedwithin the pigment identified two types: human hair and that of an
animal, possibly sheep, cattle, deer, dog, marmot or musk ox. Although
there was a limited provenance provided for the F112413, these initial
findings provided the basis for the hypothesis that the skull was of Na-
tive American origin. The pigmentwas identified as cinnabar, ormercu-
ry sulfide, and trace element concentrations were detected in amounts
which suggest the pigmentwas of a natural origin andwas not a refined
colorant. The Pacific Northwestern Chinook tribe was known to have
practiced cranial deformation and were traders of vermilion, or cinna-
bar, a brilliant red pigment. It has also been documented that they prac-
ticed post-mortem application of red pigments on their deceased as
well as on other funerary items. Stable isotope analysis confirmed that
the habitat in which the individual lived was either cooler in the years
closer to the person's death or the individual lived in a different location
in which the climate was cooler and/or at a higher altitude. Compari-
sons from the teeth and bone from the skull do not conform to expecta-
tions for isotopic data in the Idaho region, however, other areas in the
Pacific Northwest and up into Alaska, where the Chinook were known
to have trade routes, could be potential matches, rather than Idaho. Ra-
diocarbon dating was performed on a bone sample verifying the skull is
prehistoric. Mitochondrial DNA analysis revealed a 9 bp deletion found
frequently in haplogroup B lineages of Native Americans. More work
would be needed to discern the specific haplotype, although this is im-
probable given poor DNA preservation.

The inability to more specifically identify a cultural group to which
the F112413 skull may be affiliated underscores the need for more ex-
tensive comparative collections in osteology and the necessity for
trace element analysis of archaeologically used minerals like cinnabar
(Seidemann et al., 2009). Despite that, this case demonstrates the po-
tential of combining multiple analyses for narrowing the geographic
identification of unprovenienced remains. The F112413 skull was
returned to the State Historic Preservation Office of Idaho and is
awaiting repatriation. Even though the skull in this case could not be
reunited with the rest of the body or linked to an exact origin, it is
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hoped that the ability to now return the remains to a geographically ap-
propriate cultural descendant group will provide some reassurance to
Northwestern indigenous communities that the State of Idaho takes
NAGPRA and other indigenous concerns seriously.
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