4-15-2019

Stride Length, but Not Body Borne Load Impacts Gait Stability

Luke Parker
Boise State University

Nick Lobb

AuraLea Fain

Kayla Seymore
Boise State University

Tyler Brown
Boise State University
STRIDE LENGTH, BUT NOT BODY BORNE LOAD IMPACTS GAIT STABILITY

Luke Parker, Nick Lobb, AuraLea Fain, Kayla Seymore, and Tyler Brown

INTRODUCTION
During military activities, soldiers are often required to run with heavy loads at a fixed cadence. The body borne loads can often exceed 35 kg and can compromise gait stability, increasing the risk of a fall-related musculoskeletal injury [1].

When running with body borne load, soldiers may adjust their margin of stability (MoS), a measure of balance, to reduce risk of suffering a fall. Soldiers may further compromise balance by altering their stride length, as often required during training. Yet, it is unknown how stride length impacts MoS of running with heavy body borne loads.

PURPOSE
To quantify how running with body borne load impacts gait stability when stride length is altered.

METHODS
Twenty male participants had 3D biomechanics quantified while running at 4 m/s with four body borne load conditions: 20 kg, 25 kg, 30 kg, and 35 kg (Fig. 1).

Each participant ran using three different stride lengths: normal stride (NS), 15% shorter (SS), and 15% longer than NS (LS). Filtered marker trajectories were processed in using Visual 3D (C-Motion, Rockville, MD) to determine whole-body center of mass (COM). Mediolateral (ML) MoS was then calculated, by using a method derived from Hof et al. (2005) [2], as the difference between the ML base of support (width of the foot) and extrapolated COM (a variable which accounts for the position and velocity of the center mass) (Fig. 2).

For analysis, ML MoS was submitted to a RM ANOVA to test the main effect and interaction between load (20, 25, 30, 35 kg) and stride (NS, SS, and LS). Significant interactions were submitted to a simple effects analysis, and a Bonferroni correction was used for pairwise comparisons. Alpha level was set at 0.05.

RESULTS
Stride length (p<0.001) had a significant effect on ML MoS. Specifically, participants increased MoS with SS compared to LS (p=0.001) and NS (p=0.011) (Fig. 3). But, no difference was observed between NS and LS (p=0.450).

PREVENTING FALLS AND AVOIDING FALL-RELATED INJURIES WHILE RUNNING WITH DIFFERENT BODY BORNE LOADS REQUIRES DYNAMIC CONTROL OF GAIT STABILITY. WHEN RUNNING 4 M/S, PARTICIPANTS WERE ABLE TO INCREASE SIDE-TO-SIDE GAIT STABILITY BY SHORTENING, BUT NOT BY LENGTHENING THEIR STRIDES. SOLDIERS MAY NEED TO TAKE SHORTER LENGTH STEPS WHILE RUNNING WITH BODY BORNE LOAD TO MAINTAIN STABILITY AND DECREASE MUSCULOSKELETAL INJURY RISK. BUT, INTERESTINGLY BODY BORNE LOAD DOES NOT APPEAR TO COMPROMISE RUNNING GAIT STABILITY.

REFERENCES