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Abstract—Offloading resource-intensive jobs to the cloud and
nearby users is a promising approach to enhance mobile devices.
This paper investigates a hybrid offloading system that takes
both infrastructure-based networks and Ad-hoc networks into the
scope. Specifically, we propose EDOS, an edge assisted offloading
system that consists of two major components, an Edge Assistant
(EA) and Offload Agent (OA). EA runs on the routers/towers
to manage registered remote cloud servers and local service
providers and OA operates on the users’ devices to discover
the services in proximity. We present the system with a suite of
protocols to collect the potential service providers and algorithms
to allocate tasks according to user-specified constraints. To
evaluate EDOS, we prototype it on commercial mobile devices
and evaluate it with both experiments on a small-scale testbed
and simulations. The results show that EDOS is effective and
efficient for offloading jobs.

I. INTRODUCTION

Nowadays, mobile devices and mobile apps have been

seamlessly weaved into people’s daily life. Both hardware and

software have evolved rapidly to fulfill the demands of the

market. Although the state-of-the-art mobile device hardware

is capable of supporting a large set of various applications, it is

still limited compared to regular computers and servers, espe-

cially in terms of computation ability and network bandwidth.

Mobile users, however, desire some computation-intensive

applications that may not be suitable for mobile devices,

e.g., popular cloud-side services like voice recognition, face

recognition, and image/video rendering. In addition, energy

consumption is another critical hurdle for some applications

to deploy on mobile devices.

Offloading is a well-accepted approach that helps overcome

the resource limitation by allowing a device with resource

constraints to delegate its jobs or applications to another

powerful device for execution. The powerful device can be

physically nearby or remotely connected via the Internet. For

mobile devices, the current infrastructure and technology offer

a wide range of choices as offloading targets including cloud-

side servers, other nearby mobile devices, emerging edge

computing devices, and even IoT devices. While the basic

approach of offloading is straightforward, it is challenging to

determine an appropriate offloading plan that involves various

types of devices.

In this paper, we develop a EDge assisted Offloading

System (EDOS). The system targets users’ mobile phones, pads

and smart watches, as well as their smart glasses or helmets

with virtual or augmented reality, connected vehicles and

various Internet of Things (IoT) devices. The main objective

of the system is to select a set of devices to collaboratively and

efficiently accomplish the job. To construct a robust system,

a user chooses potential nodes that are willing to provide

services from both nearby users and remote servers and then,

offloads the jobs to selected nodes. Fig. 1 shows an overview of

the system with one user in red. This user utilizes two different

networks to discover nodes with services, the infrastructure-

based network and the Ad-hoc network. To discover remote

service providers on the cloud, it accesses the network through

a router (or cellular tower) and fetches data from servers. In

addition, the router can direct the user request to a local node

that offers services (red dotted line). At the same time, it can

query the Ad-hoc network to discover nearby nodes that offer

services(red solid line).

Fig. 1: EDOS in a heterogeneous network

Our main contributions are as follows:

• We propose EDOS, an edge assisted offloading sys-

tem that discovers services from both traditional

infrastructure-based networks and Ad-hoc networks.

• We consider a dynamic job setting where a job can be

split into a number of tasks which can be reassembled

afterwards. The input and output size can be different.

• We mathematically formulate the problem and develop

a suite of protocols along with algorithms to efficiently

address it.

• We evaluate EDOS through popular applications on a

small-scale test bed. The result shows a significant re-

duction in the average job completion time. Furthermore,

we conduct simulations to evaluate EDOS in a large-scale

environment.

II. RELATED WORK

With prevalence of computing infrastructures, mobile sys-

tems, such as smartphones, benefit from various emerging

technologies [1]–[4]. However, the limited onboard resources,
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such as battery life, network bandwidth, and storage capac-

ity obstruct mobile devices from various applications. As a

practical approach, offloading those resource-intensive jobs to

the cloud or other users is gaining attention in the research

communities.

Depending on the system design, offloading operations

may be performed at different levels, such as methods [5],

tasks [6], applications [7], virtual machine [8] and code [9].

A prerequisite to an efficient offloading system is to decide

which components to offload. Such decisions are based on

the profiling data about application execution and system

contexts, such as the CPU usage, energy consumption, and

network latency [10]. For example, MAUI [11] provides a

system framework that enables energy-aware offloading of

mobile code to the infrastructure. However, MAUI system

relies on developers efforts to annotate the methods that should

be offloaded. On the other hand, CloneCloud [12] boosts

unmodified mobile applications by seamlessly offloading part

of their execution from the mobile device onto device clones

operating in a computational cloud. It determines these pieces

with an offline static analysis of different running conditions

of the process’ binary on both a target smartphone and the

cloud. By deploying a Software Defined Network framework

in the core mobile network, SMORE [13] architecture allows

offloading selected traffic to an in-mobile-core-network cloud

platform without requiring protocol changes. Saving energy

to extend the battery life is an important objective of the

offloading systems. Karthik et.al [14] proposes an analytical

model for comparing energy usage in the cloud and the mobile

device.

Besides determining which components to offload, another

aspect is where should the offloadable tasks go. The MobiS-

cud [15] system offloads these tasks to a personal cloud. In

addition, it takes the mobility into consideration and ensures

a low latency between mobile devices and cloud platforms

is maintained as users move around. The authors in [16]–

[18] investigate the offloading system by using the vehicle

network to enable the data transmission between vehicles and

infrastructures. Opportunistic networks have also been studied

for mobile offloading systems [19]–[24].

A recent trend in the field is to enable Mobile Edge

Computing (MEC). Several approaches have been trying to

push the jobs to the edge. Chen et al. [25] proposed a

distributed computational offloading model that uses game

theoretical approach to achieve the Nash equilibrium of the

multi-user computation offloading game. Moreover, a dynamic

computation offloading policy for MEC systems with mobile

devices powered by renewable energy is presented in [26].

However, the unstable wireless connection between the edge

and users results in a substantial delay.

Unlike the previous work, in this paper, we focus on de-

veloping an offloading system that considers a heterogeneous

network. In our setting, the users hold various types of devices,

regarding hardware, software and network association (e.g.

cellular, WiFi). Additionally, the user can utilize both edge

assistance to discover the potential service providers and Ad-

hoc networks to find nearby service nodes.

III. FRAMEWORK OF EDOS

In this section, we present the details of EDOS system. It

mainly includes two components, Edge Assistant (EA)

and Offloading Agent (OA), where EA operates on

routers or towers and OA runs on users. Edge

Assistant and Offloading Agent are designed to

gather the information, analyze the data and process the

requests.

A. Edge Assistant

The EA is a lightweight middleware that is running on

cellular towers and routers. Due to unpredictable delays from

users to various remote servers, deploying EA on the edge of

the wired network can reduce the workload of discovering

the services on the user side. Additionally, some of the

clients associated with this tower or router may also act

as service providers. Therefore, the primary responsibilities

of EA include the management of registered remote service

providers and clients that are connected to itself. Fig. 2(upper

level) illustrates the major components in the architecture of

EA, service manager and client manager.

• Service Manager is in charge of the coordination with

registered service providers. First, for each provider, it

collects the types of services it offers, the currently avail-

able resources as well as the delays to the remote servers.

Due to rapid changes, this information needs to be

updated timely. Then, it creates a virtual platform which

includes the metadata of different providers. Whenever

an offloading request arrives at service manager, it uses

this virtual platform to estimate the cost for a user under

each particular remote server.

• Client Manager is a background service that constantly

interacts with its host (towers and routers). First, it fetches

the current active users that are associated with this host.

A user can identify itself as a service node which means

it is willing to share the resources with nearby users. The

client manager maintains a table for each of the service

nodes. This table contains the state information of service

nodes, e.g., battery life percentage, network bandwidth,

computation resources and delays. When the user leaves

the network, e.g. moving out of the towers or routers, the

table will be updated accordingly. Client manager uses

this table to predict the cost to use services provided

different nodes.

B. Offloading Agent

The OA is developed to operate on the users’ devices to

perform the essential functionalities, such as job analysis,

service discovery and task allocation, in EDOS. Fig. 2(lower

level) presents OA that consists of two principal components,

job manager and EDOS core.

• Job Manager handles users’ requests from the applica-

tions. If a request contains an offloadable job, this job

can be further split into a number of tasks. Such a task is
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a minimum unit that can be processed by other nodes.

The job manager maintains a table of the offloadable

jobs and their corresponding tasks. Each task contains

an estimation of required resources and a budget that

shows how much the user is willing to pay, in terms of

computation, bandwidth and/or money.

• EDOS Core is a decision maker whose main responsi-

bilities are discovering the service nodes and determin-

ing which service nodes should be selected for tasks.

For service discovering, if the user is connected to an

infrastructure-based network, it queries its EA to fetch

available service providers on the cloud and the nearby

service nodes that associate with the same EA. Further-

more, it uses the Ad-hoc network to discover the nearby

users who are willing to offer services but not within

the same EA. After the discovery, the user generates

two tables, one is node candidates with estimated time

delays that include both computational and transmission

delays, the other one is node candidates with their cost

to complete the tasks. Based on these tables, EDOS core

makes the decision on which candidates would be se-

lected to perform the task. The objective is to minimize

time overhead, in the meanwhile complete task within the

budget.

Fig. 2: Major components in EDOS

IV. EDOS SERVICE DISCOVERY

Previously, we discussed that the first step of any user in

EDOS is to discover the service providers for offloading. In

this section, we present the service discovery protocol in our

solution, EDOS, which mainly consists of two separate parts:

discovery with Edge Assistant and discovery with Ad-

hoc Networks.

A. Discover Service Nodes with EA

Edge Assistant, running on the routers and towers,

gathers the information of the clients that are associated with

it and the remote servers that are registered with it. The

information which stores in a set {R} includes service type,

cost per unit and available resources, such as computation and

bandwidth. In general, EA maintains ui ∈ U and mi ∈ M

where ui is a user with id i and mi is the cloud service

provider with id i. Whenever the user has an offloadable job,

it constructs a Service Discovery Request for EA(SDR-EA).

Fig. 3 shows the format of a SDR-EA message that contains

its own user id (Uid), requested service type (Type), job id

(Jid), Tasks and Budget. The task field stores the minimum

size among split tasks (minS). The budget field includes the

maximum budget in the tasks (maxB).

Algorithm. 1 shows how the SDR-EA is handled by EA.

First of all, EA maintains a (Uid, Jid) pair and stores it into

a set, {A}, which can be used to identify the active offloading

jobs and manage the total workload through the cardinality

of {A}(lines 1-8). For a remote server to be selected as a

candidate for a particular job, it needs to satisfy the following

conditions: 1) The service type, such as network-intensive

and computation-intensive, must match the job’s Type. 2)

The cost per unit can not exceed the maximum budget for

a task; otherwise, it cannot take any of the tasks in this job.

Upon finding a satisfied server, the server’s information set

Rc will be stored in {CAND} (lines 9-11). Following the

same procedure, we enumerate the nearby service providers

that connect to EA. In addition to the requirements for wired

cloud servers, this provider, as a wireless node, should offer

a larger bandwidth than the minimum task size. Otherwise, it

can not take a single task. After checking requirements, the

EA adds the candidate’s {Ru} to {CAND} (lines 12-14).

Finally, EA updates the {A} and returns the {CAND} set to

the requester (lines 14-16).

Fig. 3: Message format of SDR-EA

B. Discover Service Nodes with Ad-hoc Networks

In addition to infrastructure-based discovering, EDOS sup-

ports finding the nearby service nodes through Ad-hoc net-

works. The nearby users can use the onboard Bluetooth or

WiFi Direct modules to construct an Ad-hoc network. Due

to missing a centralized controller, like EA, when requesting

the services, it is unlikely the user has an updated list of

nearby service nodes on hand. Therefore, we design a three-

way handshake protocol to request services. In the protocol, a

user broadcasts out the SDR-INIT message that contains its id

(Uid), requested services type (Type), the maximum budget

for a split task (maxB) and the timestamp (st). Once receiving

the message, targeted service nodes reply to it with a SDR-

ACK message which consists of the requester’s id (Uid), its

own id (V id) and resources set {R}, such as id, computation

and etc, cost per unit (Cost), the delay between them (dl) and

current timestamp (st). If a service node has been selected, the

user sends out a SDR-FIN message that includes its id (Uid),

target node id (V id), the split tasks (Tasks), the budget for
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Algorithm 1 Process Service Discovery Request on EA

1: Maintains {A} that stores activated offloading user ids and

job ids

2: Candidates set {CAND} = ∅
3: function Receive(DSR-EA):

4: Read Uid, Type, Jid, Tasks and Cost from SDR-EA

5: if (Uid, Jid) /∈ {A} then

6: Add (Uid, Jid) to {A}
7: else

8: Return Still Active

9: for mi ∈ M do

10: if mi.type == Type &&

mi.cost× Tasks.minS < Budget.maxB then

11: Add Rmi
into {CAND}

12: for ui ∈ U do

13: if ui.type == Type &&

ui.cost× Tasks.minS < Budget.maxB &&

ui.bandwidth > 2× Tasks.minS then

14: Add Rui
into {CAND}

15: Remove (Uid, Jid) from {A}
16: Return {CAND}

each task (Budget), and current timestamp (st). The structures

of these three messages are illustrated in Fig. 4.

In the system, a user can act as a requester and a service

node simultaneously. Each node vi maintains a set {L}, which

stores a list of nearby nodes, their service types, and delays.

A {CAND} will be created if vi is a requester. When

overhearing the three-way handshake messages, every node

applies the following Algorithm 2. First, it initializes the

parameters and reads the message to determine the type (lines

1-4). If it is a SDR-INIT, it checks the requested service

type with its types. If it finds the match, it then checks the

maximum per task budget. The cost should be less than this

budget; otherwise, it can not take any of the tasks. If vi
identifies itself as a target of this SDR-INIT, it constructs the

SDR-ACK message that includes Uid, V id, {R}, {Cost}, dl
and st (lines 5-7). Upon receiving a SDR-ACK, vi first checks

whether this message is targeted on itself. If it is, vi calculates

the roundtrip delay of SDR-INIT and SDR-ACK and then,

adds the information into both {CAND} and {L} (lines 8-

11). If it is not, vi computes the one-way delay from V id to

itself and adds it into {L} (lines 12-14). When the arrived

message is SDR-FIN, vi checks whether it is the destination

of this message. If it is, vi extracts the Tasks list and starts

processing them. Otherwise, vi calculates the one-way delay

between the sender and itself and stores it into {L} (lines

15-20).

V. TASK ALLOCATION

Given the candidate node sets {CAND}, along with their

parameters Delay and Cost, we could present our task model.

Specifically, we use vj to denote each candidate node, and

Dt
j , D

c
j as the delay, and Ct

j , C
c
j as the costs.

Fig. 4: Three-way handshake protocol

Algorithm 2 Process Handshake Messages on OA

1: At node vi with nearby nodes stored in {L}
2: {CAND} = ∅
3: function Receive(Msg):

4: Read Msg

5: if Msg is a SDR-INIT message then

6: if Type == vi.T ype and maxB > vi.cost then

7: Return SDR-ACK

8: else if Msg is a SDR-ACK message then

9: if Uid == vi.id then

10: Delay = timestamp− st+ dl
11: Add ({R}, Cost, Delay) to {CAND} and {L}
12: else

13: Delay = timestamp− st
14: Add ({R}, Cost, Delay) to {L}
15: else if Msg is a SDR-FIN message then

16: if V id == vi.id then

17: Extract Tasks and start executing them

18: else

19: Delay = timestamp− st
20: Add (Uid, Delay) to {L}

A. Problem Formulation

We first present the network model, task model and then

formulate the task allocation problem. The major notations

are listed in Table. I.

TABLE I: Notations

Sl task l’s size

Dc
j/C

c
j node vj ’s computational delay/cost per unit data

Dt
j/C

t
j transmission delay/cost per unit data towards node vj

Cj,th cost upper limit on node vj
Qj,n node vj ’s availability at time slot n
dl delay variable, caused by task l
el,j task assignment variable of task l on node vj
al,n task l’s starting time slot

Tn starting time of slot n
Ts constant system time overhead

1) Task Modeling: Without loss of generality, we assume

node v0 generates the tasks and offloads them to other devices

in the network. Let K be a job generated by v0. In our settings,

each job K can be split into L small tasks, k1, k2, ...kL. Each

task kl can be offloaded by OA to any of the J devices

vj ∈ {v0, v2, ...vJ}, including OA itself, v0. Note that the

candidate devices consist of mobile nodes and cloud servers.
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The tasks are sequentially disseminated but could be processed

by multiple nodes in parallel. Time is slotted into N pieces

with fixed length ΔT , i.e., Tn − Tn−1 = ΔT, ∀1 � n � N .

The OA works based upon the input parameters that are

generated from the raw data collected by EA and locally. Such

parameters include: S = (Sl) ∈ Z
L denoting all tasks’ sizes;

Dc = (Dc
j) ∈ R

J and Cc = (Cc
j ) ∈ R

J as the computational

delay and cost rates on node vj ; Dt = (Dt
j) ∈ R

J and

Ct = (Ct
j) ∈ R

J being the transmission delay and cost

rates towards vj . Here we assume the transmission time delay

is small compared with the slot length ΔT . The cost upper

limit is denoted as Cth = (Cj,th) ∈ R
J ; The dynamic node

availability status is Q = (Qj,n) ∈ {0, 1}J×N .

To guarantee every task is processed and all tasks are

sequentially disseminated, we must have:
∑

n

al,n = 1, ∀l,
∑

l

al,n � 1, ∀n (1)

The time overhead dl caused by task l can be denoted as:

dl =
∑

j

el,j(D
t
j · Sl +Dc

j · Sl), ∀l (2)

In constraint (2), the binary variable el,j denotes whether

node vj is chosen to process task l. Since only one node is

used to process each task l, we have the constraint:

∑

j

el,j = 1, ∀l (3)

In addition, each node’s overall task assignment should not

be beyond its computing capacity. Using Cc
j to denote the

computational cost rate incurred by processing tasks on node

vj , we have the node capacity constraint for each node vj |j �=0:

∑

l

el,j · C
c
j · Sl < Cj,th∀j �= 0 (4)

Here the parameter Cj,th denotes the capacity upper limit

at node j. For node v0, the non-negligible transmission cost

should be taken into account. Using Ct
j to denote the average

transmission cost rate toward node vj , we should have:

∑

l

(el,0 · C
c
0
· Sl +

∑

j �=0

el,j · C
t
j · Sl) < C0,th (5)

Using binary parameter Qj,n to denote node vj’s dynamic

availability at any time slot n, we use the following constraint

to guarantee each task l is only assigned to the node vj that

is available at any time slot:

Qj,n �
∑

l

el,j · al,n ∀n, j (6)

2) Task Dissemination Problem Formulation: Given all

the input parameters, we can now formulate our problem.

Our task dissemination problem is to find a device allocation

scheme (el,j) ∈ {0, 1}L×J and a scheduling scheme (al,n) ∈
{0, 1}L×N that jointly minimize the overall time delay at

node v0 while satisfying all constraints. The mathematical

formulation is shown as follows:

At node v0

minimize: Ts +max
l

{
∑

n

al,n(Tn + dl)}

s.t. scheduling definiteness (1)

delay definition (2)

allocation definiteness (3)

node capacity (4, 5)

node dynamic availability (6)

In the objective function, Ts is the constant dividing time

overhead for job K . Tn is the total elapsed time before

slot n. Our problem is a mixed integer nonlinear programing

(MINLP) problem, which is NP-hard in general.

B. Task Allocation Algorithm Design

In this subsection, we present an efficient algorithm to solve

the task allocation problem. Our objective is to utilize the

information in the {CAND} set to select service nodes for

all tasks. The total cost should be less than the user’s preset

budget and the job should be completed as soon as possible.

Recall that we split a job into multiple tasks. These tasks

may be correlated with each other, i.e. Google Street View

application discussed in section VI. We define a correlated

priority function, P (ki, kj), where ki, kj ∈ K . P (ki, kj) = 1
means tasks ki and kj have the priority to be allocated to the

same service provider, otherwise, P (ki, kj) = 0.

Running on OA, Algorithm 3 assigns the tasks to candidate

service nodes. First, the OA sorts the candidate set by the

product of the cost and delay. Then it initializes the parameters

id, i,m and the ordered task set {OT } (line 1-2). After

initialization, starting from ki, it enumerates the elements in

task set {K} to find the correlated km. Then ki and km are

assigned with continuous id, loaded to the ordered task set

{OT } and removed from K . This process is repeated until all

tasks are sorted. When |K| = 0, the set {OT } contains all

the ordered tasks (line 3-12). For each service provider, vi, in

sorted candidate set, we feed it with tasks until the budget limit

is reached. Since vi has a budget of cost (prevent resources

draining out on one user), the algorithm needs to check if there

is still room for the task before allocating it (line 13-18). We

remove vj from the {CAND} set whenever it is out of space

for additional tasks (line 19-21). After the task allocation, if

|OT | > 0, meaning the algorithm fails to find an appropriate

service provider to meet the budget, then all the remaining

tasks will be executed locally (line 22-23).

VI. IMPLEMENTATION AND EVALUATION

In this section, we will first introduce the workloads which

we used to test our EDOS system, then discuss the implementa-

tion of EDOS and finally present the performance evaluation

results from both experiments on a small-scale testbed and

simulations.
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Algorithm 3 Task Allocation in EDOS system

1: Sort candidates by Cc
j × (Dc

j +Dt
j) in an increasing order

2: Initialize id, i,m, {OT } = ∅ (Ordered Tasks set)

3: while |K| > 0 do

4: for ki ∈ K do

5: ki.id = id
6: for km ∈ K do

7: if P (ki, km) == 1 then

8: km.id = ++ id
9: i = m

10: Add ki, km into OT
11: Remove ki, km from K
12: Break

13: for vj ∈ {CAND} do

14: for ki ∈ OT do

15: if ki.budget < ki.size× Cc
j and Cj,B > 0 then

16: Cj,B = Cj,B − ki.size× Cc
j

17: ei,j = 1
18: Remove ki from OT
19: else

20: Remove vj from {CAND}
21: Break

22: if |OT | > 0 then

23: Execute the unassigned tasks locally

A. Understanding the Workloads

In our problem settings, each offloadable job generated by

the user can be split into several tasks for the further process.

This is a commonly applied setting in many fields, such as

in virtual reality, which usually involves panoramic photos

from a 360-degree camera. Google street view is another

representative use case of EDOS. It provides panoramic views

from positions along many streets for more than 70 countries

and 6000 cities. Google produces the street views in three

steps: firstly, the street-view vehicle that is equipped with

multiple cameras drives around and photographs the locations;

secondly, it combines signals from sensors on the vehicle

that measure GPS, speed, and direction to match each image

to its geographic location on the map; finally, it applies

image processing algorithms to stitch the small photos together

into a single 360-degree image where those small photos

taken by adjacent cameras are slightly overlapping each other.

Consequently, loading a street view is an offloadable job and

those small photos are tasks that split from such a job.

Regarding the image quality, the street view offers 5 levels,

and each level corresponds to a number of small images.

From level 1 to 5, the number of small images is 2, 8, 28,

91, and 338, respectively. Each level has a default resolution,

which are 832×416, 1664×832, 3328×1664, 6656×3328 and

13312×6656, respectively. To utilize the Google street view,

the user needs to download the small pictures and stitch them

into a panoramic photo. When stitching, the user can specify

an appropriate resolution that is suitable for this device.

(a) Small images with level 2
quality

(b) Panoramic photo stitched
from the small images

Fig. 5: Google street panoramic view

Fig. 5a and Fig. 5b illustrate an example of small images

and its corresponding panoramic photo. Fig. 5a contains 8

512×512 (pixels) figures (level 2). These figures form a matrix

where the adjacent images have some overlaps. It implies that

they can be further divided into two groups of four images

which can be stitched into two larger photos and they can be

used as the base images when constructing Fig. 5b. If multiple

adjacent images are handled by one service node, this node

can stitch these small images into an intermediate one and

reduce the computation at the end node.

TABLE II: Google Street View Workloads

Number Location

1 Apple Store Fifth Avenue, NYC, NY

2 Metropolitan Museum of Art(indoor), NY

3 San Francisco Fishermans Wharf, CA

4 Fremont Sunday Flea Market, Seattle, WA

5 Capitol Hill, Washington, D.C.

6 Miami Beach, Miami, FL

7 Sydney Opera House, Sydney, Australia

8 Taj Mahal, Burhanpur, India

9 Palace of Versailles, Versailles, France

10 The Colosseum, Rome, Italy
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Fig. 6: Size of each small images in location 4 level 5

Table II shows the 10 different locations that we used as

the workloads for our EDOS system. At each of the locations,

we ran the experiments with 10 steps to simulate the moving

forward action. We tested all 5 levels at each step. Since

whoever uses street view needs to download small images first,

the size of each small image is an important metric. Fig. 6

presents the sizes of tasks at location 4, level 5. The pictures

with neighboring IDs are adjacent to each other. As we can see

from the figure, the adjacent images have similar sizes because

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ICCN 2017: 2017 
26th International Conference on Computer Communications and Networks (ICCCN): July 31-August 3, 2017 Vancouver, Canada, published by IEEE. 
Copyright restrictions may apply. doi: 10.1109/ICCCN.2017.8038421 



7

0

2

4

6

8

10
Jo

b
C

o
m

p
le

ti
o
n

T
im

e(
S

ec
o
n
d
)

Download
Stitch

Transmission

10987654321

(a) Comparison with one user

0

2

4

6

8

10

12

Jo
b

C
o
m

p
le

ti
o
n

T
im

e(
S

ec
o
n
d
)

Download
Stitch

Transmission

10987654321

(b) Comparison with two users

Fig. 7: Average job completion time at different locations with level 4 resolution (91 small images)

the cameras that took these photos are geographically near

each other with slightly different angles. Allocating adjacent

images as a group to a node provides benefits to the system.

The reason lies in the fact that similar sizes result in a good

alignment on service node and these images can be stitched

into larger one.

B. System Implementation

We implement EDOS system on commercial mobile de-

vices and public clouds to build our testbed. Introducing

the heterogeneity into the testbed, it consists of 3 mobile

phones(iPhone 6, Google Nexus 5 and Huawei Mate 9), 3 pads

(iPad Air, Samsung Galaxy Tab S2 and Google Nexus 7), and

a Raspberry PI (runs Ubuntu) as the users and 3 Cloudlab [27]

virtual machines as cloud service providers. In addition, some

of the users can connect to a Linksys WRT1900AC router

with OpenFlow. In the system, OA runs on all the users and

EA operates on the router. All the participating nodes can

specify several parameters.

C. Performance Evaluation

In this subsection, we present the results from both experi-

ments on the testbed and simulations.

1) Experiment results: Recall that the main objective of

EDOS is to complete the job with minimized time overhead

and a given budget. The budget for a particular job is given.

However, the budget for each split task is not. In our exper-

iments, we assign a divided budget to a task according to its

size. Assuming the budget is TotalB there are n split tasks,

for ith task, its budget is sizei/
∑n

i=1
sizei × TotalB.

To better evaluate EDOS, we compare it with three different

settings. oSelf: the user will complete the job itself, no offload-

ing. oNearby: offloading all the tasks to a nearby service node

which can be reached through Ad-hoc network or EA. oCloud:

offloading all the tasks to remote cloud servers through EA.

In the experiments, we use Bluetooth or WiFi Direct to

construct an Ad-hoc network. Fig. 7a and Fig. 7b plot the

results for the single user and two users settings with level 4

resolution. For each of the locations, we run the experiments

at 10 steps and calculate the average completion time. At

each location, there are four columns that represent oSelf,

oNearby, oCloud, and EDOS, respectively. From the figures,

we have several findings. Firstly, we can see that the com-

pletion time of oSelf does not contain transmission because

the user downloads all the raw data (small images) itself

and does not request an offloading. On the other hand, the

completion time of EDOS does not includes download which

is due to using EDOS, it does not need raw data; instead, the

nearby users and/or remote servers will send the processed

data to it during transmission time. Secondly, in both settings,

EDOS achieves the shortest completion time. For example,

with a single user, EDOS completes the job 3.085s, while,

oSelf, oCloud and oNearby consume 6.628s, 9.287s, 5.514s,

respectively. The reason is that EDOS introduces multiple

service providers including nearby users and clouds. In EDOS,

the job has been split into multiple tasks which be processed in

parallel on different nodes. The parallel processing accelerates

transmission since WiFi Direct has a much higher rate than

regular WiFi. Finally, the downloading time contributes to

the majority of total completion time. In the figures, the

downloading cost is not stable in a wireless setting. The

duration of downloading starts from the first image until the

last one. It requires all small images to be downloaded to

construct a panoramic view. If any one of them were delayed

it would result in a late start on the stitching process. The user

can download multiple images simultaneously. However, the

larger number of concurrent tasks, the more likely to get one

of them delayed.

The number of split tasks, the size of input and output is

another factor that has an impact on the total cost. Fig. 8

illustrates the input and output sizes. At each location, the

five clustered columns represent level 1-5. From level 1-4, the

input size is larger than the output. For example, at location

3, the input and output sizes for level 1 are, 85.053KB and

57.300KB, which reduced 32%; the reduction of level 2, 3

and 4 is 28%, 17%, and 5%. These reductions come from

the overlaps between the small images. When stitching, the

overlaps will be removed. The reduction is lower along with

the increase of resolution because the algorithm not only

removes but also introduces some metadata on each image,

such as orientation. The metadata dominates the change of

sizes along with the number of small images. From level 4
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Fig. 8: Input and output size on level 1-5 at location 1-10
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Fig. 9: Stitching time cost at each level

to 5, this number increases from 91 to 338, and the resulting

output does not decrease in size but increases 14%.

As the final step, stitching is another factor that contributes

to the total cost. Stitching is a computationally intensive job

and relys on the computation of CPU. In our experiments with

the same number of images, the server has the fastest stitching

time. For example, at location 5 level 4, the stitching times

for the server, iPhone 6, and Nexus 7 are 671ms, 1152ms, and

1592ms.

Besides CPU, which is a feature specific to each user, the

number of images is the main factor under control by the

system. In Fig. 7a and Fig. 7b, the stitching time of EDOS has

been significantly reduced. For example, in a two user setting

at location 5, EDOS costs 149ms for stitching and others

use 1421ms, 1592ms,864ms, respectively. The reason is that

EDOS does not need to stitch all 91 small images in level 4.

Depending on the selected nodes for offloading on the user

side, it only needs to stitch a limited number of images, e.g.

2-4 in our experiments. Fig. 9 shows the stitching time cost

at each level. It is a clear trend that the cost increases along

with the number of images.

2) Simulation results: To evaluate on a large scale network,

we conduct simulations to test the performance of EDOS. Our

goal is to study the impact of the number of users on the

system performance, concerning completion time. In our sim-

ulations, we distinguish different service providers by several

parameters discussed in V. We set the value of parameters

based on the intensive experiments above. Recall that a user

can reach three types of service nodes which are: (Type 1)

cloud servers registered EA, (Type 2) devices connected to EA,

(Type 3) nearby users discovered through Ad-hoc networks.

The table III shows the values we derived from experiments.

The parameters are randomly selected within the intervals.

Note that in the simulation we consider the static case where

Qj,n = 1, ∀j, n and communicational costs to be the same

towards all nodes, i.e., Ct
j is the same for all nodes vj . The

environment consists of 10 cloud service providers and 30

mobile devices, 15 of them can be reached through EA and

the other 15 can be accessed through Ad-hoc networks. We

use the same workloads and job splitting scheme as in the

experiments.

In the simulation, we compare EDOS with two different task

TABLE III: Parameters derived from experiments

Parameters Type 1 Type 2 Type 3

Dc
j (0,0.05] [0.01,0.1] [0.01,0.1]

Dt
j [1,3] [0.5,2] [0.5,1]

Cc
j [0,5] [0,5] [0,5]

Cj,B [1, 50]× Cc
j [1, 50]× Cc

j [1, 50]× Cc
j

allocation schemes: 1) randomly selected service providers

(Random); 2) always select available nodes with least cost

(Least); Fig. 10 illustrates the simulation tests with level 5

that contains 338 split tasks. As we can see from the figure,

both the Random and Least solutions result in unstable

completion time with similar input and output sizes. For the

Random approach, it is caused by the fact that the user does

not have the control of which service nodes to offload. If

one node drains the total budget, the rest of the tasks have

to be executed locally (no cost for the user). On the other

hand, the Least solution tries to minimize the cost for tasks.

However, if there exists a service provider that offers low

cost, but extremely large delay, as shown at location 8, the

job completion time would be much larger.

Next, we study the impact of the number of tasks in the

system. Fig. 11 plots the job completion time at location 5 with

level 1-5. Recall that, at each level, the number of tasks is 2,

8, 28, 91, and 338. As shown in the figure, EDOS outperforms

the other two solutions substantially at level 4 and 5. The

performance gain of EDOS is smaller at level 1 to 3, because

the number of tasks is limited and it is more likely that 1-2

service providers hold all the tasks.

VII. CONCLUSION

This paper develops EDOS, a cost-aware hybrid offloading

system with edge assistance. EDOS is based on the EA that

runs on the routers/towers and OA, which operates on the

users’ devices. We present service discovery protocols based

on both infrastructure-based networks and Ad-hoc networks.

The user splits a job into multiple tasks and allocates them

to appropriate service providers according to user-specified

constraints and to reduce the job completion time. We proto-

type EDOS on commercial mobile devices and evaluate it with

both experiments on a small-scale testbed and simulations for

a large-scale setting. The results show that EDOS system is
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Fig. 10: Job completion time with level 5 workloads
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effective and efficient for offloading jobs.
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