
Boise State University
ScholarWorks

Chemistry Faculty Publications and Presentations Department of Chemistry and Biochemistry

6-25-2019

Organometallic Compounds as Carriers of
Extraterrestrial Cyanide in Primitive Meteorites
Karen E. Smith
Boise State University

Christopher H. House
Pennsylvania State University

Ricardo D. Arevalo Jr.
University of Maryland

Jason P. Dworkin
NASA Goddard Space Flight Center

Michael P. Callahan
Boise State University

For a complete list of authors, please see article.

Publication Information
Smith, Karen E.; House, Christopher H.; Arevalo, Ricardo D. Jr.; Dworkin, Jason P.; and Callahan, Michael P. (2019). "Organometallic
Compounds as Carriers of Extraterrestrial Cyanide in Primitive Meteorites". Nature Communications, 10, 2777-1 - 2777-7.
http://dx.doi.org/10.1038/s41467-019-10866-x

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/chem_facpubs
https://scholarworks.boisestate.edu/chemistry
http://dx.doi.org/10.1038/s41467-019-10866-x


ARTICLE

Organometallic compounds as carriers of
extraterrestrial cyanide in primitive meteorites
Karen E. Smith1,2, Christopher H. House 2, Ricardo D. Arevalo Jr.3, Jason P. Dworkin 4,5 &

Michael P. Callahan1,4,5

Extraterrestrial delivery of cyanide may have been crucial for the origin of life on Earth since

cyanide is involved in the abiotic synthesis of numerous organic compounds found in extant

life; however, little is known about the abundance and species of cyanide present in

meteorites. Here, we report cyanide abundance in a set of CM chondrites ranging from 50 ± 1

to 2472 ± 38 nmol·g−1, which relates to the degree of aqueous alteration of the meteorite and

indicates that parent body processing influenced cyanide abundance. Analysis of the Lewis

Cliff 85311 meteorite shows that its releasable cyanide is primarily in the form of [FeII

(CN)5(CO)]3− and [FeII(CN)4(CO)2]2−. Meteoritic delivery of iron cyanocarbonyl complexes

to early Earth likely provided an important point source of free cyanide. Iron cyanocarbonyl

complexes may have served as precursors to the unusual FeII(CN)(CO) moieties that form

the catalytic centers of hydrogenases, which are thought to be among the earliest enzymes.
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Carbonaceous chondrites are fragments of ancient asteroids
that provide a record of the chemistry of the early solar
system1,2. They contain a variety of organic compounds

and their delivery to early Earth may have played an essential role
in the chemistry that led to the origin of life3–11. Hydrogen
cyanide (HCN) has been detected in water extracts of the
Murchison meteorite upon acidification12, which was a surprising
result because cyanide is a highly reactive compound and thought
to have been completely consumed by reactions in the parent
asteroid. Isotope ratio mass spectrometry indicated that this
cyanide was extraterrestrial in origin; however, low 13C enrich-
ment and low 15N enrichment of released cyanide in the
Murchison meteorite suggested that this source of cyanide was
separate from the cyanide responsible for the synthesis of some
extraterrestrial amino acids and other organic compounds13.
Furthermore, the compounds responsible for released cyanide in
meteorites are still unknown.

Here, we report releasable cyanide abundance (often referred to
as total cyanide) in acid-digested distillates of various meteorites by
chemical derivatization (Supplementary Fig. 1) and liquid chro-
matography with fluorescence detection and time-of-flight mass
spectrometry (LC-FD/ToF-MS). We identify two iron cyano-
carbonyl complexes, [FeII(CN)5(CO)]3− and [FeII(CN)4(CO)2]2−,
in the Lewis Cliff 85311 meteorite by liquid chromatography-high
resolution orbitrap mass spectrometry. These extraterrestrial orga-
nometallic compounds are a source of free cyanide (HCN/CN−)
and also bear a striking similarity to portions of the active sites of
[NiFe]- and [FeFe]-hydrogeneses, which suggests that these com-
pounds may have played an important role during the origin and
early evolution of life on Earth.

Results
Abundance and species of cyanide in meteorites. We analyzed
Allan Hills (ALH) 83100, Allan Hills 84001, Graves Nunataks
(GRA) 06100, Lewis Cliff (LEW) 85311, Lewis Cliff 90500,
Lonewolf Nunataks (LON) 94102, Murchison, and Roberts
Massif (RBT) 04133 for acid-releasable cyanide. All of these
meteorites are carbonaceous chondrites with the exception of
ALH 84001, which is a martian meteorite (see Table 1 for clas-
sifications and additional information14–16). Figure 1 shows the
unambiguous identification of cyanide in LEW 90500, a CM2
chondrite. There is a single peak at ~5.6 min. in the fluorescence
chromatogram in addition to a single peak at ~5.7 min. in the
extracted ion chromatogram (slight delay in retention time due to
the mass spectrometer coming after the fluorescence detector),
which is an exact match to our cyanide standard (in the form of
an NDA-cyanide derivative). We also measured the same

fluorescence and mass peaks corresponding to cyanide for the
other CM chondrites analyzed. All five of the CM chondrites we
analyzed contain cyanide with LEW 85311 containing the highest
concentration at 2472 ± 38 nmol CN·g−1 meteorite (Table 1). The
cyanide abundance for Murchison in our study (95 ± 1 nmol
CN·g−1 meteorite) was noticeably lower than the abundance
(~400 nmol CN·g−1 meteorite) previously reported by Pizzarello,
although our extraction and analysis methods differed12. Method
blanks were almost completely absent of cyanide resulting in a
clean baseline (see Fig. 1 and Supplementary Note 1). We did not
detect any (<0.1 nmol·g−1) releasable cyanide in the CR2
(heated), CV3, or martian meteorite (see Supplementary Note 2).
Cyanide can be found in nature, but most terrestrial sources are
anthropogenic and are derived from industrial processes17. The
observation that cyanide was group-specific (CMs only) among
the Antarctic meteorites analyzed suggests that its source was
indigenous to the meteorite rather than a pervasive terrestrial
contaminant. Furthermore, Antarctic meteorites tend to be less
contaminated compared to meteorites collected elsewhere18–20

and cyanide abundances did not track with the meteorite’s
weathering grade, i.e., meteorites that have experienced greater
terrestrial weathering effects did not have greater cyanide
abundances.

All carbonaceous chondrites in the CM group have experi-
enced some degree of pre-terrestrial aqueous alteration21, which
has been attributed to melting of ice inside asteroids from short-
lived radionuclides (26Al), electromagnetic induction, and/or
impact heating22. During this aqueous alteration stage, fluids in
the asteroid were likely low to moderate in temperature
(0–150 °C) and alkaline in pH based on mineralogy and oxygen
isotope data23–26. The prior detection of releasable cyanide in the
water-soluble portion of the Murchison meteorite12,13 suggested
that this cyanide was not trapped in a mineral phase and would
have been accessible to aqueous fluids in the meteorite parent
body. Table 1 also shows CM chondrites associated with a
numerical scale that estimates the degree of aqueous alteration
(lower numbers mean more aqueously altered) from Alexander
et al.16. There is a noticeable decrease in cyanide abundance for
more aqueously altered CM chondrites. This trend suggests that
the protracted aqueous alteration stage in the meteorite parent
body may have altered or destroyed the compounds responsible
for this cyanide, similar to previous studies involving the
abundance of meteoritic amino acids and N-heterocycles7,20,27.

Meteoritic insoluble organic matter (IOM) is a potential source
of cyanide in CM chondrites because it represents the majority of
organic matter in meteorites and is known to contain nitriles28.
However, we measured a similar concentration of released
cyanide in the Murchison meteorite to those measured in

Table 1 Summary of cyanide abundances in meteorites

Meteorite Type C (wt. %) N (wt. %) CN abundance
(nmol·g−1 meteorite)d

Aqueous alteration scale for CMs

ALH 83100 CM1/2 1.90a 0.070a 50 ± 1 1.1c

Murchison CM2 2.08a 0.105a 95 ± 1 1.6c

LEW 90500 CM2 1.84 ± 0.04a 0.094 ± 0.004a 148 ± 6 1.6c

LON 94102 CM2 2.06 ± 0.05a 0.123 ± 0.003a 421 ± 26 1.8c

LEW 85311 CM2 2.03a 0.156a 2472 ± 38 1.9c

RBT 04133 CV3 (reduced) 0.06b <0.1
GRA 06100 CR2 (heated) 0.20 ± 0.01c 0.010 ± 0.001c <0.1
ALH 84001 orthopyroxenite (martian) <0.1

aFrom ref. 14
bFrom ref. 15
cFrom ref. 16
dThe error was calculated as the standard error of the mean from four measurements using mass and fluorescence data.
Source data are provided as a Source Data file
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previous studies of hot water extracts12,13, the latter result
indicates that the cyanide species would be water-soluble, which
would rule out IOM as a source. If there was a high concentration
of cyanide in meteorite parent bodies, cyanide may be present in
polymeric form (we do not consider HCN polymers to be part of
the IOM because they can be extracted in water yielding a
yellow–brown solution29). However, it is unlikely that the cyanide
detected in this study originated mainly from HCN polymer
because the total cyanide liberated from the HCN polymer using
our methods is only ~0.02% (wt/wt). The meteorite sample would
need to be almost entirely HCN polymer in order to release the
levels of cyanide we detect in LEW 85311 (see Supplementary
Note 3). Organonitrile compounds do not appear to be a
significant source of releasable cyanide in CM chondrites because
they release little to no detectable cyanide when analyzed using
our method (see Supplementary Note 4).

It is widely believed that many of the soluble organic
compounds in carbonaceous chondrites were synthesized during
the aqueous alteration stage(s) that occurred in the parent body,
which also resulted in changes to the mineral composition21.
Reaction-path calculations simulating aqueous alteration in CM
parent bodies suggest that metal-organic compounds (along with
carboxylic acids and amides, which agrees with experimental
measurements of CM chondrites3) should dominate the compo-
sition of organic compounds30. Recently, dihydroxymagnesium
carboxylates [(OH)2MgO2C-R]− were reported in the soluble
organic fraction of various meteorites31.

We analyzed both water and base extracts of LEW 85311 by
inductively coupled plasma mass spectrometry in order to help
elucidate potential speciation of cyanide in these meteorites. Both
types of extractions had relatively similar element contents with
high concentrations of Mg, Na, Ca, K, and Al. Appreciable

amounts of Fe, Ni, Ag, and Pt were also detected (Supplementary
Table 1). Many of these elements are known to form simple
cyanide salts such as NaCN and KCN; however, simple cyanides
are only a minor contributor to the overall acid-releasable cyanide
based on the analysis of LEW 90500 (see Supplementary Note 5).
Iron forms particularly stable complexes with cyanide ligands due
to cyanide’s strong σ-donor properties. Using negative-ion
electrospray ionization (ESI) mass spectrometry, we observed
changes in iron oxidation state, loss of cyanide ligands, and
aggregation of counterions to reduce charge in ferricyanide [FeIII

(CN)6]3− and ferrocyanide [FeII(CN)6]4− reference standards,
which agrees with previous measurements of these complexes
under ESI conditions32. A major identifying fragment for iron
cyanide complexes is [FeII(CN)3]− at m/z 133.9447.

We identified this [FeII(CN)3]− anion in high resolution mass
spectra of base extracts of LEW 85311 meteorite based on
accurate mass measurements and its distinct isotope pattern
including a triplet peak with 13C, 15N, and 57Fe isotopologues
(Fig. 2). This mass fragment was not associated with either
ferrocyanide or ferricyanide, rather it resulted from the
fragmentation of iron cyanocarbonyl complexes [FeII

(CN)5(CO)]3− and [FeII(CN)4(CO)2]2− (Supplementary Fig. 2).
[FeII(CN)3]− is also a known fragment ion for both [FeII

(CN)5(CO)]3− and [FeII(CN)4(CO)2]2− in the negative-ion ESI
mass spectrum33. We identified the parent ions [H2FeII

(CN)5(CO)]− and [HFeII(CN)4(CO)2]− using accurate mass
measurements, their distinctive isotope patterns, and the
observation that a single peak for each complex was present in
their respective extracted ion chromatogram (Fig. 2 and
Supplementary Fig. 2). We estimate that ~70% of the released
cyanide was derived from these two organometallic compounds
assuming similar responses of m/z 133.9447 to ferrocyanide (see
Supplementary Note 6). It is also noteworthy to point out that
cyanide ligands stabilize CO binding to iron, which makes these
iron cyanocarbonyl complexes very stable.

[FeII(CN)5(CO)]3− and [FeII(CN)4(CO)2]2− (both cis and
trans forms) have been synthesized in the laboratory from
solutions containing ferrous salts (FeCl2), CN−, and CO33, and
similar synthetic routes were likely available during the aqueous
alteration stage(s) on asteroids30. Additionally, the discovery of
iron cyanocarbonyl complexes in aqueously altered meteorites
suggests that these organometallic compounds could have also
been produced by geochemical processes on early Earth34–37.
Thus, we emphasize that the study of meteorites may help
identify unusual or overlooked geochemical reactions (particu-
larly those that are ancient or rarely seen today), as well as reveal
new prebiotic geochemical compounds that were not actively
being considered in scenarios relevant to the origin of life.

Discussion
Both exogeneous and endogenous iron cyanocarbonyl complexes
may have been important for prebiotic chemistry on early Earth.
In the case of meteorites, aqueous leaching or dissolution of CM
chondrites followed by UV irradiation of iron cyanocarbonyl
complexes would have led to the release of cyanide from their
metal centers38. Shallow ponds, streams, or puddles may have
been favorable environments for cyanide release because they
would have allowed greater UV penetration depth with less
dilution effects. Some of this cyanide may have escaped into the
atmosphere, particularly if the solution was acidic. Thus, exo-
genous cyanide delivery via meteorites may have provided a boost
to the cyanide abundance produced on early Earth34; see Sup-
plementary Discussion on estimated cyanide abundance on early
Earth. Reactions involving cyanide were likely critical for the
synthesis of numerous biologically relevant compounds and were

a b
LEW 90500
meteorite

LEW 90500
meteorite

Cyanide

Blank

Retention time (min) Retention time (min)

5 6 5 6

Blank

Cyanide
standard standard

Fig. 1 Identification of cyanide released from CM chondrites. a Fluorescence
chromatograms (λex 252 nm, λem 483 nm) of naphthalene-2,3-
dicarboxaldehyde-cyanide derivative from the LEW 90500 meteorite, KCN
standard, and method blank. b Extracted ion chromatograms (m/z 251.08
with a ±0.03 window; [M+H]+) of naphthalene-2,3-dicarboxaldehyde-
cyanide derivative from the LEW 90500 meteorite, KCN standard, and
method blank

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10866-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2777 | https://doi.org/10.1038/s41467-019-10866-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


driven, in part, by photochemistry of organometallic compounds.
For example, photochemical reduction of cyanohydrins by UV
irradiation of iron cyanocarbonyl complexes in the presence of
sulfite would have likely produced simple sugars and amino acid
precursors since this process was previously demonstrated with
ferrocyanide39,40 (and we would expect similar photochemical
behavior).

On early Earth, molecular hydrogen (H2) was one of the earliest
energy sources available and the ubiquity of hydrogen metabolism
and deeply rooted lineages in both archaea and bacteria has led to
the belief that hydrogen metabolism is ancient in origin41.
Hydrogenases catalyze the reversible oxidation of molecular
hydrogen (H2⇋ 2 H++ 2e−), which takes place at their organo-
metallic active sites. In [NiFe]-hydrogenases as well as the phy-
logenetically unrelated [FeFe]-hydrogenases, the active sites have
iron atoms coordinated to CO and CN ligands, which are assumed
to be essential for enzyme activity because they are always pre-
sent42. These CO and CN ligands are also considered unusual43

since they are not found in other metalloenzymes. Figure 3 shows
that the two iron cyanocarbonyl complexes found in LEW
85311 share structural similarities with the active sites of [NiFe]-
hydrogenase from Desulfovibrio gigas43,44 and [FeFe]-hydrogenase
from Clostridium pasteurianum45, specifically the FeII(CN)(CO)
moieties with similar geometries33,46. It is conceivable that iron
cyanocarbonyl complexes may have served as the building blocks
of these bimetallic active sites through dimerization (for [FeFe]-
hydrogenases) or association with a nickel-containing species (for
[NiFe]-hydrogenases) in conjunction with the loss of CN ligands
(possibly through photodissociation).

A large number of model complexes mimicking the active
site of [FeFe]-hydrogenases have been synthesized in the
laboratory, although this number is much less for model com-
plexes of [NiFe]-hydrogenase active sites due to the difficulty of
synthesizing the heterobimetallic site47. Nevertheless, there
have been reports of synthesizing model complexes of [NiFe]-
hydrogenase active sites using Fe(CN)(CO)-containing
precursors. For example, Perotto et al. demonstrated that
stable heterobimetallic analogs of the active sites of [NiFe]-
hydrogenases can be readily synthesized from reactions of
fac-[Fe(CO)3(CN)2I] and Ni-centered compounds containing
polydentate ligands that were stirred for 1–12 h in acetonitrile48.
Biomimetic complexes that are catalytically active have been
synthesized in the laboratory47, which suggests the possibility that
primitive organometallic compounds could play a role in catalysis
and hydrogen metabolism without a protein scaffold on
early Earth.

Methods
Meteorite sample preparation. All glassware and ceramics were rinsed with
ultrapure water, wrapped in aluminum foil, and heated to 500 °C overnight in
order to remove organic compounds. All meteorites were pulverized to a fine
powder using a porcelain mortar and pestle under a positive pressure ISO 5 High-
Efficiency Particulate Air (HEPA) filtered laminar flow hood (Labconco).

We acid-digested and distilled the following amounts of each meteorite:
204.3 mg ALH 83100 (specific 272, parent 33), 203.6 mg ALH 84100 (specific 425,
parent 15), 206.7 mg GRA 06100 (specific 49, parent 47), 202.8 mg LEW 85311
(specific 78, parent 3), 209.3 mg LEW 90500 (specific 79, parent 2), 201.1 mg LON
94102 (specific 29, parent 15), 204.4 mg Murchison (USNM 5451.1), and 207.7 mg
RBT 04133 (specific 21, parent 0). Each powdered meteorite sample was placed
into a MicroDIST sample tube of the distillation apparatus (Lachat Instruments)
along with 5.8 mL ultrapure water. 750 μL of 9 M H2SO4 was added to the sample
tube as a releasing agent for cyanide and 1.5 mL of 0.08M NaOH was added to the
top of the tube as a trapping solution for cyanide. The sample tube was separated
from the NaOH trapping solution by a gas-permeable membrane within the tube.
The distillation tube was sealed with a press (Lachat Instruments) and placed into a
hot oil bath with a temperature range of 134–142 °C for 30 min. The final distillate
volume in the top tube after distillation was ~2–3 mL.
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Fig. 2 High resolution ESI mass spectra. a Mass spectrum of LEW 85311
meteorite extract along with simulated isotope pattern of [FeII(CN)3]−.
b Mass spectrum of LEW 85311 meteorite extract along with simulated
isotope pattern of [H2FeII(CN)5(CO)]−. c Mass spectrum of LEW 85311
meteorite extract along with simulated isotope pattern of [HFeII

(CN)4(CO)2]−. Accurate mass measurements and isotope patterns
support the identification of two iron cyanocarbonyl complexes and a
shared fragment ion. H+ serves as counterions which reduce the overall
charge of these species to −1. Simulated isotope patterns (in red) were
generated using a Gaussian profile and a mass resolution of 65,000
resolution (full-width at half-maximum) in the Thermo Scientific XCalibur
software
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Control samples were run in parallel with the meteorites, which included
procedural (reagent) blanks, a serpentine blank (a hydrated magnesium silicate),
and KCN standards.

Derivatization. Supplementary Figure 1 shows the derivatization scheme for
cyanide using naphthalene-2,3-dicarboxaldehyde (NDA) and glycine. The
meteorite and control sample distillates were processed using the following opti-
mized conditions: derivatization for 15 min at room temperature using a mixture of
50 μL 0.1 M glycine, 50 μL 10 mM sodium borate buffer (pH 9.1), 50 μL meteorite
extract or control sample, and 50 μL 1mM NDA (modified from prior studies49,50).
Glycine and sodium borate buffer solutions were dissolved in ultrapure water, KCN
standards were dissolved in 0.08M NaOH, and NDA was dissolved in methanol.
Glycine, KCN, and NDA standard solutions were made fresh daily from the
powder. We determined that the NDA-cyanide derivative showed <1% degradation
after 2.25 h and <15% degradation after 17.5 h at room temperature. Due to the
stability of the derivative, we derivatized and immediately analyzed one sample at a
time to result in optimal response.

Total cyanide analysis. We used a Waters Acquity ultra performance liquid
chromatograph coupled to a Waters Acquity fluorescence detector and Waters LCT
Premier time-of-flight mass spectrometer for total cyanide analysis. Chromatographic
separation was achieved using a prefilter and guard column followed by an Acquity
BEH C18 2.1 × 50mm column (1.7 μm particle size) and an Acquity BEH Phenyl
2.1 × 150mm column (1.7 μm particle size) with a 25 μL injection volume. Samples
were eluted using an isocratic flow of 35% 50mM ammonium formate buffer (pH 8)
with 8% methanol and 65% methanol at a flow rate of 150 μLmin−1 and column
temperature of 30 °C. The fluorescence excitation wavelength for the NDA-cyanide
derivative was 252 nm and the emission was monitored at 483 nm. MS settings were
as follows: positive ion mode, ESI capillary voltage +3.5 kV, cone voltage 30 V,
desolvation temperature 350 °C, and source 120 °C. The N2 cone and desolvation
gases were flowed at 50 L hr−1 and 650 L hr−1, respectively. Mass spectra were
acquired in V-mode (mass resolution ~5000) with a range of m/z 50–500. Cyanide
identification in the meteorite was made by comparison of the fluorescence and single
ion mass peak (m/z 251.08 ± 0.03, which corresponds to the protonated molecular
ion) retention times to standards. Cyanide concentration was calculated by comparing
the fluorescence and mass peak areas of the sample to our standard
concentration curve.

Measurement of cyanide in standard solutions. We performed a seven-point
linearity study using non-distilled solutions of KCN with a concentration range of
0.01–2 μM (or 60 fmol–12 pmol on column). The curve was highly linear for
fluorescence (R2= 0.9997) and for single ion mass detection at the theoretical
protonated mass of 251.08 ± 0.03 Da (R2= 0.9989) (Supplementary Fig. 3). The limit
of detection was 0.1 nmol CN·g−1 meteorite (60 fmol on column) with a signal-to-
noise-ratio of 3:1. The 0.5 μM KCN standard was processed through the entire

method from acid-digestion and distillation to derivatization and analyzed using LC-
FD/ToF-MS in order to determine recovery. The average recovery for cyanide was
99% based on eight measurements with mass and fluorescence detection.

Inductively coupled plasma mass spectrometry. ICP-MS analysis was per-
formed in medium resolution (m/Δm= 4000 at 1% peak height) using a Thermo
Finnigan Element 2 ICP-MS in the Department of Geology Plasma Laboratory at
the University of Maryland. All samples, blanks, and standards were aspirated via
cyclonic nebulizer into the plasma source in 2% HNO3 using Ar and N2 carrier
gases with a flow rate of 100 μLmin−1. The source was flushed extensively with
ultrapure water between samples. The isotopes measured were: 23Na, 25Mg, 27Al,
39K, 43Ca, 47Ti, 49Ti, 56Fe, 57Fe, 59Co, 60Ni, 62Ni, 63Cu, 65Cu, 66Zn, 67Zn, 68Zn,
107Ag, 109Ag, 111Cd, 112Cd, 114Cd, 115In, 194Pt, 195Pt, 196Pt, and 197Au. Multiple
mass stations were monitored for elements most susceptible to isobaric inter-
ferences (even in medium resolution), and 115In spiked into each sample was used
to track instrumental drift. Supplementary Table 1 shows the summary of elements
measured in hot water and hot base extracts of LEW 85311.

High resolution mass spectrometry. Two samples of LEW 85311 (309.1 and
337.4 mg) were extracted under the following procedure: 500 μL of 0.08 M NaOH
was added to each powdered LEW 85311 sample in 2.5-mL glass ampoules, flame-
sealed, and put into an oven at 80 °C for ~20 h. A 0.08 M NaOH method blank was
run in parallel with meteorite extracts.

Sample extracts were analyzed using a Thermo Scientific Accela High Speed LC
coupled to a Thermo Scientific LTQ Orbitrap XL hybrid mass spectrometer.
Separation was accomplished by injecting 20 μL sample solution onto a SIELC
Primesep B2, 2.1 × 150 mm column (5 μm particle size). Mobile phase (A) was
100 mM ammonium acetate, pH= 4, mobile phase (B) was 100 mM ammonium
acetate, pH= 9, mobile phase (C) was ultrapure water, and mobile phase (D) was
acetonitrile. The elution method was as follows: initial mobile phase composition
was set to 10% A, 70% C, and 20% D and held for 5 min, linear gradient to 50% B,
30% C, and 20% D over 15 min, mobile phase composition was returned to the
initial conditions at 15.1 min, and the column was re-equilibrated for 15 min to
finish the run. For optimal separation, the flow rate was set at 200 μLmin−1.

The Thermo Scientific LTQ Orbitrap XL hybrid mass spectrometer was
equipped with an electrospray ionization (ESI) source and operated in negative-ion
mode. Parameters for ESI were as follows: the nitrogen gas for desolvation of the
electrospray was set to 40 for the sheath gas, 5 for the auxiliary gas, and 1 for the
sweep gas (all in arbitrary units). The ion transfer capillary voltage and temperature
were −21 V and 275 °C, respectively. Full scan spectra in negative-ion mode were
acquired over a mass range of m/z 120–320 and automated gain control (AGC) was
set to 5 × 105 ions with a maximum injection time of 400 millisecond. The mass
resolution was set to 30,000 (which translates to a mass resolution closer to 60,000
at m/z 200) to obtain good chromatographic peaks (~14 mass spectra were
collected over a chromatographic peak width of 10 s). External calibration was
performed using a mixture of sodium dodecyl sulfate, sodium taurocholate, and
Ultramark 1621 in an acetonitrile-methanol-water solution containing 1%
acetic acid.

Elemental compositions were calculated from the negative ion using C, H, O, N,
Na, K, and Fe. Accurate mass measurements (usually <1 ppm mass error) enabled
assignment of molecular formulas, which were consistent with predicted isotope
patterns. While the orbitrap mass analyzer is known for its high mass accuracy and
resolving power, its spectral accuracy51 (i.e., accuracy in measuring the abundances
of isotopic peaks) has been known to underrepresent heavier isotopologues52,
which may be the case for a couple of low intensity isotopic peaks belonging to iron
cyanocarbonyl complexes. Nevertheless, accurate mass and distinct isotope
patterns with good spectral accuracy enabled confident molecular assignments in
our study.

Data availability
Data from this manuscript will be made available on Boise State University
ScholarWorks (https://scholarworks.boisestate.edu/). This includes raw data as well as
figures for both the main manuscript and the Supplementary Information. Alternatively,
raw data and figure image files are available on request from the corresponding author
M.P.C. The source data underlying Table 1, Supplementary Fig. 3, and Supplementary
Table 1 are provided as a Source Data file.
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