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Abstract: Objective: to characterize the county variability of the impact of smoking elimination on
rates of smoking-related cancers and explore whether common environmental indices predicted
which metropolitan counties would experience high rates of smoking-related cancers even after
smoking was eliminated. Methods: Surveillance, Epidemiology, and End Results Program (SEER)
and Environmental Protection Agency (EPA) data were obtained. County level cancer rates for
257 metropolitan SEER counties, including the observed rates and those predicted after eliminating
smoking, were derived via multilevel regression modeling and age standardized to the 2016 SEER
population. Associations between the EPA’s Environmental Quality Index (EQI) scores and “Low
Benefit” counties (counties that remain above the top 20th percentile of post-smoking elimination
incidence rates) were explored via logistic regression. Results: Reductions in smoking-related cancer
incidence ranged from 58.4 to 3.2%. The overall EQI (OR = 1.96, 95% CI [1.34, 2.86]) and the air quality
index (OR = 5.99, 95% CI [3.20, 11.22]) scores predicted higher odds of being a “Low Benefit” county.
Conclusions: Substantial inequities in the post-smoking elimination cancer rates were observed; air
pollution appears to be a primary explanation for this. Cancer prevention in metropolitan counties
with high levels of air pollution should prioritize pollution control at least as much as tobacco control.

Keywords: smoking-related cancers; environmental pollution; county level analysis; environmental
quality index

1. Introduction

Smoking is the single most important modifiable cause of cancer [1], and the sub-
stantial declines in smoking rates in the U.S. over the past few decades have resulted in
impressive reductions in the incidence of cancers of the lungs and other smoking-related
types [2]. In a previous paper [3], we confirmed these findings using multilevel regression
methods to estimate the association between county level smoking prevalence and cancer
incidence data for 612 of the approximately 3100 counties in the U.S., which provided data
for the Surveillance, Epidemiology, and End Results (SEER) program for 12 types of cancer
that are known to be caused by tobacco.

We found that, if smoking was entirely eliminated, the incidence of these 12 types of
cancer would decrease by about 40%, which would translate to a 16.3% reduction in all
types of cancer combined [3]. This finding is in good agreement with other authors using
different methods [1]. Our previous paper went beyond confirming this substantial role of
tobacco in cancer, however. The county data and multilevel regression methods allowed us
to estimate the county-by-county variability in tobacco’s contribution, and to observe that
not all counties would benefit equally from smoking elimination [3].

Some counties would see only modest reductions in the incidence of smoking-related
cancers, according to this modeling approach. These “low benefit” counties tended to
be in metropolitan areas, which suggested that perhaps carcinogenic exposures such
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as air pollution or occupational agents might be “offsetting” the potential benefit that
would be expected if smoking could be eliminated. The five counties with the highest
predicted cancer rates in 2016 after eliminating smoking were all in the metropolitan areas
of large cities: Jefferson County KY (Louisville); Wayne and Macomb counties MI (Detroit);
Campbell County KY (Cincinnati); and Jefferson Parish LA (New Orleans). If smoking
was eliminated, we predicted that these five counties would see only an approximate 8%
reduction in their rates of smoking-related cancers—far less than the overall average of
about 40% after total smoking elimination.

In the current paper, we investigated the question of why some counties would retain
high rates of smoking-related cancers if smoking was eliminated. Specifically, we tested
hypotheses that these low-benefit counties would have higher exposures to environmental
carcinogens. Likely candidates included PM2.5 and other carcinogenic components of urban
air pollution.

2. Materials and Methods
2.1. Cancer Data

Cancer incidence data for 2016 were obtained from the Surveillance, Epidemiology,
and End Results (SEER) program of the National Cancer Institute (NCI) [4]. The program
includes 18 cancer registries from across the United States. Sixteen registries were included
in this analysis (Alaska and Hawaii were excluded); these 16 registries cover approximately
20% of the 2016 US population. SEER data contain cancer incidence information, as well as
patient demographics. Population data are also provided by the SEER program. As the
SEER incidence data provide county of residence information, the county was the unit of
analysis (as it was in our previous analysis). Because our previous study found that the
“low benefit” counties were all in metropolitan areas, the present analyses were restricted
to the 257 SEER counties classified as metropolitan by the US Department of Agriculture
(Rural and Urban County Codes 1, 2, and 3) [5]. These constitute 42% of the 612 counties in
the previous SEER analyses. Counties identified as metropolitan, regardless of population
size, were grouped into a single “metropolitan” category.

In line with our previous study [3], we chose to study the 12 cancer types which are
deemed to be caused by smoking according to the U.S. Centers for Disease Control and
Prevention [6]. These 12 are:

1. Trachea, bronchus, and lung (ICD-O-3 codes C33.9–34.9);
2. Larynx (C32.0–32.9);
3. Oral cavity and pharyngeal (C00–14.8);
4. Esophagus (C15.0–15.9);
5. Stomach (C16.0–16.9);
6. Colon and rectum (C18.0–20.9);
7. Liver (C22.0);
8. Pancreas (C25.0–25.9);
9. Kidney and renal pelvis (C64.9–65.9);
10. Urinary bladder (C67.0–67.9);
11. Cervix (C53.0–53.9);
12. Acute myeloid leukemia (ICD-O-3 histology codes 9840, 9861, 9865–9867, 9869, 9871–

9874, 9895–9898, 9910–9911, and 9920).

While these cancers are associated with smoking, not all incidence of these cancer
types is caused by smoking. Previous research indicated [3] that the county level incidence
rates of these types of cancer would drop by approximately 40%, on average, if smoking
had been eliminated twenty years prior.

2.2. Smoking, Environmental, and Demographic Data

Independent variables were available at either the individual level or county level.
Individual level variables for each case include sex and age, examined in 5-year categories
(20–24, . . . , 80–84). As in the original analysis, race effects were not modeled (and all races
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combined were included in the dataset) because of the small numbers of non-whites in
many of the SEER counties.

Reliable individual smoking data are not available from SEER. Therefore, county level
smoking prevalence estimates were used instead. We used the age-standardized calendar
year- and sex-specific smoking prevalence obtained from the Institute for Health Metrics
and Evaluation [7]. These smoking prevalence estimates were based on Behavioral Risk
Factor Surveillance System (BRFSS) data, which were modeled to generate estimates of
county level smoking prevalence for the US between 1996 and 2012 for ages 18 and over.
Estimates for counties that had limited data for a given year were derived via spatial and
temporal smoothing techniques which included county and state-level covariates. The
smoking variable was defined as “prevalence of current daily cigarette smoking”. Smoking
prevalence estimates for 1996 were used as they allowed for a lag of 20 years for the analysis
of the 2016 SEER cancer incidence data.

We hypothesized that environmental exposures might explain why some counties
would expect low benefits in cancer reduction from smoking elimination. Candidate car-
cinogenic exposures included PM2.5 as well as other pollutants in air, water, and land.
County level PM2.5 data were gathered from the Center for Air, Climate, and Energy So-
lutions (CACES). These estimates were derived using spatially decomposed v1 empirical
models, as described in [8]. The earliest available year for these data was 1999; therefore,
this variable was lagged 17 years when used to model the 2016 SEER incidence data. For
other environmental exposures, we used the U.S. Environmental Protection Agency’s Envi-
ronmental Quality Index (EQI) [9]. The EQI was designed to measure overall environmental
quality at the county level, with the goal of improving the current understanding of the
relationship between environmental conditions and human health. This objective seemed
to fit well with our goal of investigating the role of environmental exposures in explaining
inequalities in the benefit of smoking elimination.

The EQI is composed of indices representing five environmental domains: air, water,
land, built environment, and sociodemographic. The earliest available data represent the
period 2000–2005, and these were used for the primary analyses to maximize the latency for
the 2016 cancer incidence data. The most recent data, 2006–2010, were used in a sensitivity
analysis investigating the impact of the choice of latency on the results.

Each of the five environmental quality scales was constructed by combining informa-
tion from a large number of environmental exposure variables using principal component
analysis [10]. The five resulting scales or sub-indices are unitless numbers which can be
considered county rankings of environmental quality. The overall EQI is a combined score
including all five domains. We hypothesized a priori that the air quality index (AQI) would
be the most important of the five in explaining variations in cancer rates because of the
well-established contribution of air pollutants to cancer risk [11,12]. The AQI combines data
on particulates (both PM2.5 and PM10) and the other EPA criteria air pollutants including ni-
trogen dioxide, sulfur dioxide ozone, carbon monoxide, as well as hazardous air pollutants
(HAPs) including a number of carcinogens such as 1,2-dibromo-3-chloropropane, benzidine,
carbon tetrachloride, chloroprene, ethylene dibromide, formaldehyde, trichloroethylene,
and vinyl chloride [10].

The other four indices are water, representing overall water quality and chemical
contamination of surface and drinking water; land, which includes measures of land use,
pesticide use, presence of industrial facilities, and radon exposure; sociodemographic,
which represents socioeconomic factors including poverty and crime; and built environ-
ment, which includes data on pedestrian and highway safety, access to various businesses
including food, healthcare, and recreation and the quality of housing stock.

2.3. Modeling Actual and Simulated Cancer Rates

Statistical analyses were performed using multilevel mixed-effects regression models
in STATA/MP 16.0 [13]. We modeled cancer incidence rates by using observed cancer
counts as the dependent variable and population as the offset. The observed counts
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were modeled assuming a negative binomial distribution, based on the presence of over-
dispersion; incidence rate ratios and 95% confidence intervals were generated. The fixed-
effect part of the model included age, sex, and county level age-adjusted and sex-stratified
daily smoking prevalence, lagged 20 years. Smoking prevalence was modeled as a fixed
effect because we assumed the effect of smoking prevalence would be constant across
counties. County specific intercepts were included in the random component. Only
metropolitan counties were included in the model.

After fitting the model, we used STATA’s “predict” command to generate two pre-
dicted counts of cancers: one derived using the actual smoking prevalence values, the
second assuming smoking was completely eliminated (daily smoking prevalence = 0).
Values were then converted to the expected county rates using county population data.
The fixed- and random-effects model components were used to create the predicted values.
To allow for comparison across counties, each county’s rate was age standardized to the
sex-specific SEER population distribution for 2016.

2.4. Analyzing Environmental Predictors of Low-Benefit Counties

Counties which the model predicted would still have high rates of the 12 types of
smoking-related cancers, even after smoking was eliminated, were labelled “low benefit”
counties (Figure 1). Specifically, this term was assigned to those SEER metropolitan counties
in the top 20% of the distribution of cancer incidence rates after eliminating smoking
(the remaining counties were referred to as “high benefit” counties). This 20% cut point
corresponded to an incidence rate in 2016 greater than 235/100,000 after smoking was
eliminated (this cut point represented 19.8% of the metropolitan SEER counties, and those
counties included 22.0% of the entire SEER population in 2016).

Figure 1. Distribution of county-level incidence rates of 12 smoking-related cancers after smoking was
eliminated. Counties with rates in the top 20th percentile (greater than 235/100,000) were identified
as “Low Benefit”.

T-tests were used to evaluate differences in demographic variables, PM2.5, and EQI
scores by “low benefit” status. Logistic regression was used to examine associations
between being a low-benefit county and environmental quality indices. Bivariate and



Int. J. Environ. Res. Public Health 2022, 19, 15292 5 of 10

multivariate analyses were performed. Akaike’s information criteria (AIC) were used to
compare the model fit.

Finally, to determine whether differences in environmental variables by low-benefit
status was due to residual confounding by county level smoking status, we conducted
a sensitivity analysis to examine differences among counties near the mean of smoking
prevalence (within +/−0.67 standard deviations of the mean). This reduced the variance in
county level smoking prevalence and allowed us to compare results produced using all
metropolitan counties to this subset with similar smoking prevalence rates (Appendix A).

3. Results

There were 136,158 cases of smoking-related cancers identified in the 257 metropolitan
SEER counties in 2016. The population in these counties was 58,129,876, which represents
90.9% of the population in the full set of 607 counties included in the 16 SEER registries.

The base model used to generate the 2016 county cancer incidence rates showed the
anticipated strong associations between cancer incidence and age, gender, and smoking
prevalence (lagged 20 years) (Table 1). Males had higher rates of smoking-related cancers
than females (RR = 1.42, 95% CI 1.39–1.46), and the rates rose steadily across the five-year
age groups. Likewise, the rate of cancers increased steadily across the categories of smoking
prevalence, and the well-described strong contribution of smoking to the rates of these
12 cancer types is clearly evident.

Table 1. Incidence rate ratios for determinants a of 12 smoking-related types of cancer b in the
257 SEER metropolitan counties, 2016—results of a multilevel negative binomial regression model.

IRR † 95% CI ‡

Age Group
20–24 1 (Ref.)
25–29 1.85 1.62 2.10
30–34 3.42 3.03 3.85
35–39 5.78 5.15 6.48
40–44 9.28 8.30 10.38
45–49 15.82 14.18 17.64
50–54 30.69 27.57 34.17
55–59 46.94 42.19 52.22
60–64 67.21 60.43 74.75
65–69 93.44 84.02 103.90
70–74 124.34 111.81 138.28
75–79 152.63 137.22 169.77
80–84 173.00 155.48 192.50
Sex

Female 1 (Ref.)
Male 1.42 1.39 1.46

Smoking Prevalence
4.0%<10.1% 1 (Ref.)

10.1%<12.2% 1.14 1.02 1.28
12.2%<15.7% 1.21 1.09 1.34
15.7%<19.2% 1.28 1.15 1.43
19.2%<22.9% 1.39 1.24 1.56
22.9%<38.3% 1.66 1.47 1.88

† Incidence rate ratio 95% confidence interval; ‡ 95% confidence interval; a smoking-related cancer sites classified
according to [6]. b Estimates from a negative binomial regression model with random intercept on county and
random slope on year. SEER 16 registries, 2016, Alaska Native Tumor Registry excluded because of the lack of
information on county. Also excludes Hawaii.

3.1. Descriptive Statistics for All Metropolitan Counties

After fitting a model including age, gender, and smoking prevalence (similar to the
model in Table 1 except that the smoking prevalence lagged 20 years was coded as a
continuous value rather than in six levels), the average predicted cancer incidence rate
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for all 257 metropolitan counties was 275.1 per 100,000 (Table 2). After setting all county
smoking prevalences to zero, the model predicted an average incidence rate of 201.9, an
average reduction of 25.0%. The model predicted considerable variability from county to
county in the “post-smoking elimination” cancer rates, however, and the percent reduction
in cancer incidence rates after smoking elimination ranged as high as 58.4% to a low of
3.2%; post-smoking elimination incidence rates ranged from 137.0/100,000 to 292.0/100,000
(Figure 1).

Table 2. Incidence rates of 12 smoking-related types of cancer in the 257 SEER metropolitan counties,
2016, as observed and assuming smoking elimination, and covariates.

Mean Cancer Incidence and Covariates

All Metropolitan
Counties

Counties with Post-Smoking Elimination Incidence Rates
above and below the 20th Percentile *

Above Below t-Test
(Low benefit) (High Benefit)

(n = 257) (n = 51) (n = 206) p-Value

Cancer Rate per 100,000—Observed 275.1 301.5 268.6 <0.01
Cancer Rate—Smoking Eliminated 201.9 252.6 189.3 <0.01
Cancer Rate—Percent Reduction 25.0% 15.6% 27.3% <0.01

County Population 226,186 250,342 220,206 0.73
PM2.5 (µg/m3) 14.1 13.7 14.3 0.32

Environmental Quality Index 0.56 0.98 0.45 <0.01
Air Quality Index 0.74 1.24 0.62 <0.01

Water Quality Index 0.08 −0.05 0.12 0.28
Land Quality Index 0.18 0.26 0.16 0.46

Built Environment Quality Index ** 0.13 0.66 0.01 <0.01
Sociodemographic Quality Index ** 0.47 0.65 0.43 0.17

Smoking Prevalence (%, lagged 20 years) 21.8 23.1% 21.5% 0.03

Data are for 257 SEER metropolitan counties classified by their predicted smoking-related cancer rates after
smoking elimination. * Top 20th percentile: Incidence rate >235/100,000. ** Valences of the Built Environment and
Sociodemographic Indices are opposite the overall EQI, Air, Water, and Land Indices, and higher values indicate
better environmental conditions.

3.2. Comparing Low-Benefit and High-Benefit Counties

After simulating the complete elimination of smoking, some counties were predicted
to benefit only modestly (Figure 1 and Table 2). The one-fifth of metropolitan counties
(n = 51) with the highest predicted cancer rates post-smoking elimination (the “low benefit”
counties) would have cancer incidence rates only eight percent lower than the actual mean
rate for all SEER metropolitan counties in 2016. What distinguished these counties from
other metropolitan counties?

The concentrations of PM2.5, lagged 17 years, did not distinguish low- from high-
benefit counties (p = 0.32), nor was there an important difference in county population size,
which might have been a proxy for urban environmental hazards. However, the overall
EQI index was more than twice as high (poorer environmental quality) in the low-benefit
counties (0.98 versus 0.45, p < 0.001).

The five sub-indices that comprise the EQI were studied separately for differences
between low- and high-benefit counties and the Air Quality Index showed the most striking
difference (1.24 vs. 0.62, p-value < 0.001), indicating substantially poorer air quality in
the low-benefit counties (Table 2). The only other notable difference was in the Built
Environment Index (0.66 vs. 0.01, p-Value < 0.01), in which the low-benefit counties actually
had a higher, meaning better, score.

Because the regression model including county smoking prevalence was used to
predict cancer rates under the hypothetical condition that smoking had been eliminated
(essentially “controlling for” effect of smoking), one might expect to find no difference in
smoking prevalence between low- and high-benefit counties. In fact, the low-benefit coun-
ties had modestly higher 20-year lagged smoking prevalence (23.1% vs. 21.5%, p = 0.03).
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This modest residual difference in smoking prevalence between low- and high-benefit
counties probably represents confounding effects of other factors that were correlated with
county smoking prevalence.

Bivariate logistic regression modeling found that both EQI and air quality index scores
predicted higher odds of being a low-benefit county (Part a of Table 3). A one standard
deviation increase in the EQI was associated with nearly double the odds of being a low-
benefit county (OR = 1.96, 95% CI [1.34, 2.86]); a one unit increase in the air quality index
indicated a six-fold increase in the odds of being a low-benefit county (OR = 5.99, 95% CI
[3.20, 11.22]). The Built Environment Quality Index was also associated with increased
odds of being a low-benefit county (OR = 2.70, 95% CI [1.68, 4.32]); however, of these
two sub-indices, AQI produced the better fitting model (AIC = 219.4 versus 237.2). When
the five sub-indices were included together in a single model, only the air quality index
remained an important predictor of low-benefit counties (adjusted OR = 4.43, 95% CI [2.14,
9.19]) (Part b of Table 3).

Table 3. (a) Association between environmental exposures and low-benefit county status for 257
SEER metropolitan counties, 2016—results of bivariate logistic regression models. (b) Association
between environmental exposures and low-benefit county status for 257 SEER metropolitan counties,
2016—conditional results from a multivariate logistic regression model.

(a)

Crude

Exposures OR † 95% CI ‡ AIC §

Environmental Quality Index 1.96 1.34 2.86 246.2
Air Quality Index 5.99 3.20 11.22 219.4

Water Quality Index 0.85 0.63 1.15 259.0
Land Quality Index 1.15 0.79 1.67 259.5

Built Environment Quality Index * 2.70 1.68 4.32 237.2
Sociodemographic Quality Index * 1.23 0.91 1.64 258.3

PM2.5 (µg/m3) 0.96 0.88 1.04 259.1
Smoking Prevalence 1.08 1.01 1.15 255.4

(b)

Adjusted

EPA Exposure Indices OR † 95% CI ‡ AIC §

Air Quality Index 4.43 2.14 9.19

223.4
Water Quality Index 0.80 0.56 1.14
Land Quality Index 1.00 0.62 1.61

Built Environment Quality Index * 1.59 0.90 2.82
Sociodemographic Quality Index * 0.96 0.67 1.37

* Valences of the Built Environment and Sociodemographic Indices are opposite the overall EQI, Air, Water, and
Land Indices, and higher values indicate better environmental conditions. † Odds ratio. ‡ 95% confidence interval;
§ Akaike’s information criteria.

Two additional analyses were conducted to evaluate potential limitations in the avail-
able data. First, it is well known that the epidemiologic assessment of environmental
carcinogens should take into account long latencies between exposure and disease. The EQI
datasets cover two time periods, either 2000–2005, which was used above, or 2006–2010.
Thus, the maximum available latency was 12 to 17 years. Using these data, the odds ratio
associating the AQI with being a low-benefit county in 2016 was 5.99 (Table 3a). When the
more recent AQI score was used, this odds ratio decreased substantially to 1.90 (results
not shown). This reduction may suggest that the longer latency was more appropriate, as
expected. However, caution is warranted in this interpretation because the Environmental
Protection Agency changed the makeup of the EQI measure between the two time periods,
making direct comparisons difficult.
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The second sensitivity analysis was conducted to investigate further the residual
difference in smoking prevalence between low- and high-benefit counties (Table 2). We
were concerned that this residual difference might be a proxy for important unmeasured
exposures. We therefore repeated the analyses in Table 2 using a restricted dataset of only
the metropolitan counties whose smoking prevalence was very close to the mean for all
metropolitan counties. Specifically, we limited the dataset to the 133 metropolitan counties
with smoking prevalence within 0.67 standard deviations of the mean (Appendix A). As in
the full analysis (Table 2), the AQI remained higher (poorer air quality) in the low-benefit
counties, and the magnitude of the difference with high-benefit counties actually increased
slightly. Thus, we conclude that the findings in Tables 2 and 3 on the importance of air
quality were not due to residual confounding by county smoking prevalence.

4. Discussion

These analyses suggest that metropolitan counties with poorer air quality would
benefit less from tobacco control, and retain higher smoking-related cancer incidence rates,
than counties with cleaner air. There are, however, several limitations. We lacked individual
smoking data and were constrained to using county averages. Smoking data indicated
county prevalence; no measure of smoking intensity or duration was available. However,
as noted earlier, despite this limitation, the resulting estimate of the mean contribution of
smoking to the incidence of the smoking-related cancers was in good agreement with other
authors [1,3]. Another limitation was that the EQI data were not available with a 20-year
latency, which would have been preferable.

There are both strengths and limitations to the AQI being an integrated measure of
many different pollutants, considering not only particulate matter but also many organic
and inorganic pollutants including carcinogens. From a policy perspective, it may be
useful to have an overall measure of air pollution, albeit with the disadvantage that the
contributions of individual pollutants are not identifiable. We were able to separately
investigate the role of PM2.5, and the finding that the AQI was more strongly associated
with being a low-benefit county than PM2.5 points to the likelihood that there are other
important carcinogens in urban air besides particulate matter. In future work, we will use
more refined measures of air toxics to pursue this hypothesis.

The finding that counties with poorer air quality would benefit less from tobacco
control could be understood as simply another way to say that air pollution causes some of
the same types of cancers as tobacco, which is now well accepted [11,12]. For example, very
recent work by Swanton and colleagues has identified a potentially powerful mechanism
through which PM2.5 can contribute to non-small cell lung cancer (NSCLC) in non-smokers,
a disease with a high frequency of EGFR mutations (EGFRm). The authors found that PM
promotes precursor lung epithelial cells initiated by EGFRm [14].

What remains controversial is the question of the relative importance of environmental
exposures versus “lifestyle” factors in cancer prevention [3,15–17]. By simulating the
pattern of county cancer rates in a world without tobacco, we find that there would be
substantial inequities in the remaining cancer rates, and that urban air pollution, in all its
considerable complexity, appears to be a primary explanation for this.

5. Conclusions

Often, when the priorities for cancer prevention are discussed, the overall or average
contributions of tobacco, diet, occupational exposures, air pollution, etc., are compared,
with the conclusion that smoking is by far the most important. While this argument appears
logical, it overlooks the fact that there will be significant inequities in these contributions
depending on environmental conditions. More specifically, we conclude that cancer preven-
tion in metropolitan counties with high levels of air pollution should prioritize pollution
control at least as much as tobacco control.
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Appendix A Sensitivity Analysis

Table A1. Incidence rates of 12 smoking-related types of cancer in 133 SEER metropolitan counties,
2016, as observed and assuming smoking elimination, and covariates restricted to counties with
smoking prevalence close to the mean.

All Metropolitan
Counties

Counties with Post-Smoking Elimination Incidence Rates
above and below the 20th Percentile *

Above Above t-Test

Mean Cancer Incidence and Covariates (n = 133) (n = 36) (n = 97) p-Value

Cancer Rate—Observed 279.3 291.4 274.8 <0.01
Cancer Rate—Smoking Eliminated 205.9 252 188.8 <0.01
Cancer Rate—Percent Reduction 26.10% 13.60% 30.80% <0.01

Smoking Prevalence (lagged) 22 21.7 22.1 0.22
PM2.5 (µg/m3) 14.12 13.4 14.4 0.17

County Population 128,814 267,355 77,397 <0.01
Environmental Quality Index 0.34 0.95 0.11 <0.01

Air Quality Index 0.68 1.19 0.49 <0.01
Water Quality Index −0.28 −0.17 −0.32 0.42
Land Quality Index −0.04 0.2 −0.13 0.04

Built Environment Quality Index ** 0.06 0.63 −0.15 <0.01
Sociodemographic Quality Index ** 0.37 0.75 0.23 <0.01

Data are for 133 SEER metropolitan counties classified by their predicted smoking-related cancer rates after
smoking elimination. * Top 20th percentile: Incidence rate > 235/100,000. ** Valences of the Built Environment
and Sociodemographic Indices are opposite the overall EQI, Air, Water, and Land Indices, and higher values
indicate better environmental conditions.
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