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Abstract

Lightly loaded structures underneath expansive soils encounter severe damage due to the
swell/shrink nature of expansivesoils resulting frommoisture variations. Billions of dollars are
spenteveryyearto repair the damages caused by these soils in the United States and worldwide.
Designingstructures to accommodate the swelling strains is a major challenge as predicting the
swelling potential of these soils accurately is noteasy. A wide variety of swell prediction models
have been introduced by various researchers to predict the behavior of these often-problematic
expansive soils. These models include various properties of soils such as, plasticity
characteristics, compaction conditions, consolidation characteristics, moisture content
variations, matric suction and clay mineralogical characteristics. However, these models are
generally developedwith typical moderate to high plastic soils in mind whose plasticity indices
range from 25 to 45. Their applicability to soils that have liquid limits in the order of 200% is
not well understood. In this paper, the ability of these models to predict the behavior of
excessively high plastic soils with plasticity indices ranging from45 to 85 were evaluated. For
this purpose, four existing analytical prediction models that use combinations of above-
mentioned properties were selected and used to predict the one-dimensional and three-
dimensional swelling strains on three high swelling soils. These predictions were verified by
conducting one-dimensional and three-dimensional swell tests on the three soil types. The swell
testswere conducted at three different initial moisture contents to observe how well the modek
could predict different levels of moisture absorption. The ability of each of the four selected
methods in predictingboth 1-D and 3-D swell strains was discussed and their relative merits and
demerits are highlighted. In addition, finite element modeling was performed to simulate one-
dimensional and three-dimensional swell tests by using material models thatuse volumetric and
suction changes with moisture contents to simulate expansive soil behavior within the finite
element model. The results indicated that while the analytical prediction models gave reasonable
results the finite element analysis predicted results were closest to the laboratory measure soik
in case both 1-D and 3-D analyses. Among other analytical models the ones that incorporated
mineralogical and suction data exhibited better results.

Introduction

The need for construction on expansive soils for infrastructural development possesses several challenges.
Swell/shrink behavior of the expansive soils due to moisture variations/pore water pressure change induces
considerable volume change — damaging the infrastructure built on them(Nelson and Miller 1992; Vu and Fredlund
2004). The distresses due to expansive soil causes higher financial loss than earthquake, floods, hurricanes, and
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tornadoes combined (Jones and Holtz 1973; Nelson and Miller 1992). The damage alone by expansive sail to the
structures constructed on them in the US was reported to be $13 billion/year in 2009 (Puppala and Cerato 2009).
Efficacy of stabilization techniques proposed for counteracting damages caused by expansive soils is contingent on
the accuracy of prediction of swell pressure and soil heave over the design life of infrastructure (Vanapalli and Lu
2012).

Several correlations exist to predict soil movement asa function of soil state variables/indexproperties butsoik used
forvalidation of suchmodel haveplasticity indexgenerally within 45 (Ademand Vanapalli 2013; Puppala et al. 2014,
2016; Vu and Fredlund 2004; Yilmaz 2006). However, in some areas, the plasticity indexfor these soils could be
higher than 70. For example, expansive soils along highway US 95 along Idaho-Oregon border between mile posts
4.5 and 18.0 exhibited liquid limits in the range 0f 85 to 164 and plasticity indices ranging from35 to 110 (Chittoori
etal. 2016). Predicting the swelling capabilities of these types of soils is notstraight forward using existing modek as
the swelling characteristics of these soils is beyond the range of values used to develop the current models. It is
important to know which of the current models are versatile enough to capture the swelling behavior of these very
high plastic clays. Forthis purpose, four models that differed in theirapproach to predict one-dimensional (1-D) and
three-dimensional (3-D) swelling in expansive soils were selected for predicting the swelling behavior of three
naturally occurring high swelling soils. This papercompares the applicability of each ofthese models in predicting
swelling strains. Three different soils with varying plasticity indices were tested in this research. The input parameters
required to predict the 1-D and 3-D swell for the respective models were determined from various laboratory tests
conducted as part of this research. In addition to the analytical models, finite element modeling was performed to
determine 1-D and 3-D swelling strains and compare these with a laboratory tested results. The comparison of
predicted/simulated output with a laboratory tested data offers clarification of performance and applicability of the
model for high plasticity clays.

Selected Analytical Models

This section describes the analytical models selected for this research. A brief description of the approach and its
salient points are discussed here. The readers are encouraged to refer the original papers of these models for further
details about them.

Puppala et al. (2016): This method predicts the swell behavior of expansive soils through Mechanical Hydro
Chemical Parameter (MHCP) which is dependent on both matric suction and clay mineralogy. This framework
combines unsaturated soil behavior with clay mineralogy using hydro-mechanical parameter (o) and chemical factor
(C) factorrespectively. The plasticity indexvalues for the soils usedin developing this framework ranged from 11 to
49.

Adem and Vanapalli (2013): This method is termed Modulus and Elasticity Based Model (MEBM). It is based off
on simplification of the constitutive equation by Fredlund and Morgenstern (1977). The maximum potential heave
which is a function of soil structure compressibility moduli, change in net normal pressure and change in matric
suctionas per Fredlundet al. (1980). The modelwas validated with Vu and Fredlund (2006) model which used Regina
clay of PL 38%.

Vanapalli et al. (2010): Considering the limitations of time-consuming laboratory tests involved in the previous two
methods, a simplified method proposed by Vanapalli et al. (2010) was selected. This method predicts soil swelling
using both Fredlund (1983) and Hemberg & Nelson (1984) methods. In this method, three parameters, namely,
corrected swelling index,Cs, suction modulus ratio, Cw, and correction parameter, K was used to determine the
swelling potential. All the three parameters could be determined using empirical relations between plasticity and
change in moisture content.

Yilmaz (2006): Thisis another simplified model that uses statistical analysis to predict the swelling in expansive soik.
Multiple regression analysis was used on two major soil property, namely, liquid limit (LL) and cation exchange
capacity (CEC)to predict swelling. It is well-known fact that LL and CEC are two influencing parameters that control
volume change in expansive soils (Johnson and Snethen 1978; O’Neill and Ghazzaly 1977; Puppala et al. 2016;
Weston 1980). The LL datarangedfrom11 to 86, CEC ranged from23 to 85 while the % 1-D swell ranged from1to
13 for the data points used in the multiple regression analysis.
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Laboratory Testing

Laboratory testingwas performed on thesoil samples obtained fromthe distress locations along the US-95 highway.
These soils were identified to have very high plasticity index values and exhibit high swelling pressures upon
remolding (Hardcastle 2003, Chittooriet al 2016). The soilsamples were collected between mile posts 4.5and 18.0.
Soil samples were named as Soil-1, Soil-2, and Soil-3 with increasing order of their plasticity indices.

Based on the input parameters required for the models selected in this paper, authors conducted several laboratory
teststodetermine the properties of the three selected soils. Tests such as Atterberg Limit test (ASTM D4318), Standard
Proctor Compaction test (ASTM D698/AASTHO T99), Gradation of the soil (ASTM D6913), No. 200 Wash sieve
(ASTM D1140-17), Hydrometer analysis (ASTM D7928-16e1) and 1-D swell test (ASTM D4546-96) were conducted
to determine the physical properties of the soil. Tests were conducted as perthe corresponding American Standards
for Testingand Materials (ASTM) test procedure givenin the brackets next to the test name in the previous sentence.
In addition to these tests, Cation exchange capacity (CEC) and Specific surface area (SSA) test were conducted to
determine the percentage of major clay minerals in the soils samples. CEC was determined based on Methyleneblue
index (MBI) of clay as per ASTM C837-09. SSA was measured using ethylene glycol monoethyl ether (EGME)
method as per Cerato and Lutenegger (2002). The method suggested by Chittoori (2008) was used to determine the
amount of major clay minerals in the soils. The soil properties determined after conducting the above-mentioned tests
are given in Table 1. Additionally, authorsalso developed soil water characteristic curve (SWCC) to relate the water
variation with matric suction dataof the soil samples as per ASTM D 5298 (Filter Paper method). Whatman#42 ashless
filter paper was used to determine the SWCC of the three soils tested in this research.

Table 1: Properties of the soil samples

Soil Soil-1 Soil-2 Soil-3
Liquid Limit (%) 83 111 153
Plastic Limit (%) 41 40.4 66
Plasticity Index (%0) 42 70.6 87
Maximum Dry Density (KN/m?) 10.45 10.95 10.2
Optimum Moisture Content (%) 30% 32.6 % 29.6%
Clay Fraction (%) 64 69 82
1-D Swell Strain (%) 16% 17.9% 182 %
CEC(meg/100g) 110 120 130
SSA(mAQg) 464.27 500.23 522.89

FIG Llillustrates thewater content and matric suction relationship of the three soils. Volumetric swell testas described
by Chittoori (2008) was conducted to determine the 3-D dimensional swelling potential of the soil. Verticaland radial
swell strains were monitored using strain gauge and Pl tape respectively to determine the volumetric swell strain of
the three soils. All tests were conducted at room temperature. Volumetric change (%) and the water content (%)
relationship are given in FIG 2. Water content at the corresponding volumetric strain was determined by monitoring
the weight of the sample with time; it was assumed thatthe change in weightof the sample is only due to the absorption
of moisture.
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FIG 1 : SWCC of soil samples FIG 2 : Volumetric swell results

Prediction of Swell Strains

The soil properties determined from the laboratory testing were used in each of the models to predict the swelling
strains ofthese soils. Thefollowing sections detail the steps involved in predicting the swelling strains for each of the
model along with the final result obtained fromthe model.

Swell Prediction Using MHCP:

This model requires that the clay minerals be quantified in the clay fraction and change of void ratio with matric
suction ofthesaoil. Since, montmorillonite, kaolinite, and illite are the most common clay minerals (Mitchell and Soga
2005), these clay minerals were quantified usingthe CECand SSA as per Chittoori (2008) and the results are tabulated
in Table 2. The swell fraction (SF) as defined by Puppala et al. (2016) for montmorillonite(M) - SF4, illite (I)- SF, and
kaolinite (K) - SF; was taken to be 90, 9, and 1 respectively based on theirindividual double diffuse layer thickness
for a crystal of 1 A where total contribution was taken to be 100 (Mitchelland Soga 2005; Puppala et al. 2016). The
clay fraction (CF) was determined fromparticle size analysis as per ASTM D422. Chemical factor (C) is presented in
Table 3which is a function of clay fraction (CF), swell factor (SF) and particular mineral fraction in clay (fi) and was
determined as perequation (1). The hydro-mechanical factor (o) for each soil listed in Table 4 was determined from
the slope of idealized matric suction and void ratio plot during the swelling process. The computation of MHCP

parameter was done using equation (2) and respective swells were computed using equation (3) and equation (4). The
results are tabulated in Table 4.

C=CFxZSF*fi W
i=1

MHCP = m(a,C) )

€10, swen = 6.12 X MHCPY252 (R*=0.73) 3)

€30, 7kpa = 7.53 X MHCP®% (R?=0.77) 4)




This is an author-produced, peer-reviewed version of this article. Thefinal, definitive version of this document can be found online at PanAm
Unsaturated Soils 2017, published by American Society of Civil Engineers (ASCE). Copyright restrictions may apply. doi:

10.1061/9780784481707.019

Table 2: CEC, SSA, and mineral composition

Soil CEC SSA (m?/g) %M %I % K
(meg/ 100 g) (f2) (f2) (fs)
Soil-1 110 464.27 72.61 20.58 6.800
Soil-2 120 500.23 78.73 17.50 3.76
Soil-3 130 522.89 83.25 14.16 2.60
Table 3: Chemical Factor Calculation
Soail C CF SFixf SFxf SFsxfs Sum
1) @) (©) 4) ) (B to5)
Soil-1 43.05 64 65.35 1.85 0.07 67.27
Soil-2 50.00 69 70.85 157 0.04 72.46
Soil-3 62.50 82 74.922 1.27 0.03 76.22
Table 4: 1-D and 3-D swell prediction using MHCP model
Soail o C MHCP (a x C) €0 (%) €30, 7ka (%0)
Soil-1 047163 43.05 20.30 1351 15.98
Soil-2 044728 50.00 22.36 13.86 16.38
Soil-3 042928 62.50 26.83 14.54 17.14

Swell Prediction Using MEBM

Change in matric suction, elastic moduli with respect to change in matric suction and poison’s ratio was used to
calculate 1-D heave. The change in matric suction (Aw) was calculated fromthe difference of final matric suction after
swelling has occurred (¥finai) and initial matric suction at the start of the test (winisar). The change in void ratio with
change in net normal stress was measured from1-D consolidation test for calculation of saturated Young’s modulus
of elasticity (Esat) as per Zhang (2004). The parameters 3 and a are fitting parameters which were taken as 2 and 0.1
respectively andPoisson’s ratio(lt) as 0.4 in accordance to Vanapalliand Oh (2010). These parameters were usedto
calculate Eynsarat the end of full swell. The value of Eunsat Was used for calculation of elastic modulus (H) with res pect
to final matric suction (¥finar). Strain was calculated as per equation (5). The values obtained are listed in Table 5.

&y = mj '(‘Pﬁnal - "Pinitial)Where mj = (1 + “/H(l - ll)) (6)
Table 5: Calculation of parameters for MEBM
Soil Aw = E sar de €0 H (kPa) m; £,(%)
Wrinal- Winitial (kPa) Aw
(kPa)
Soil-1 1556.50 13855.77 0.0019 | 1.78 69278.86 3.37E-05 5.24
Soil-2 3731.31 17937.89 0.0025 | 1.98 89689.45 2.60E-05 9.71
Soil-3 9342.53 39593.31 0.0023 | 2.12 197966.55 1.18E-05 11.01

Swell Prediction Using Vanapalli et al. (2010):

ModelfromVanapalliet al. (2010) is used to predict 1-D swell for given soil with their plasticity indices and variation
of water content. All the soils have plasticity index more than 30, so that the empirical correlations are used to find
the parameters for the model. In this empirical correlation, three parameters, namely, corrected swelling index (Cs),
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suctionmodulus ratio (Cw), and correction parameter (K) were used to determine the swelling potential. Psrepresents
the final stress state. Model parameters for the given soils are tabulated in Table 6. It was found that the predicted
swellis close to the swell found from 1-D swell test except for Soil-1 soil.

Table 6 Swell prediction using Vanapalli et al. (2010) method

PI AH (in) AH (in)
Soil (%) Cw Cs Ki Ki Pi (kPa) | (using Ki) (using Kiy)
Soil-1 42 0.024 8.2E-2 3.6E-3 4.3E-3 7 0.0560 0.0534
Soil-2 71 0.024 2.2E-1 2.6E-3 4.4E-3 7 0.1536 0.134
Soil-3 87 0.024 3.8E-1 2.2E-3 4.4E-3 7 0.2635 0.2204

Swell Prediction Using Yilmaz (2006):

The statistical model proposed by Yilmaz (2006) was used to predict the swell for three soils with the corresponding
liquid limit (LL) and cation exchange capacity (CEC) values . Multiple regression analysis was used forthe LL and
CEC forthe soilsamples. It was found that thepredicted swellis close to the swell strains found from1-D swell test
fromthe lab which is shown in Table 7.

Table 7 Swell prediction using Yilmaz (2006) method

Soil LL (%) (meg/El%Og) 1-D Svell (%)
Soil L 83 110 9.98
Soil-2 111 120 14.05
Soil-3 153 130 20.68

Finite Element Model Predictions:

A finite element software, ABAQUS® was used in this research as it was promising to replicate the realistic behavior
of complexproblems due its versatile built in material models including the application in transportation engineering
(Helwany 2007, Puppala et al. 2014). Simulation of expansive soils is especially tricky, since both volume changeand
strength behavioral changes with respectto moisture fluctuations need to be accounted for accurate predictions.
ABAQUS®, has built-in material models that can be used to simulate shrink and swell behaviors of expansive soik
by accounting for moisture content and suction related changes. The moisture swelling model assumes that the
volumetric swelling of the porous medium's solid skeleton is a function of the saturation of the wetting liquid in
partially saturated flow conditions (Dassault Systemes Simulia Corp. 2016). In case of partially saturated condition,
an initial saturation value and a consistent pore fluid pressure needto be defined for the analysis which must be lies
within the absorption/exsorption values for thatsaturation value. On the other hand, sorptionmodelis used to illustrate
the absorption/exsorption behavior ofthe porous element under partially saturated conditions. This modelis used for
coupled wetting liquid flowand porous mediumstress analysis in the porous medium. In partially saturated condition,
negative pore liquid pressure defines the capillary effect in the mediumwhich represents the absorption/exsorption
condition ofthat medium. The absorption/exsorption behavior is also a function of saturation. Thesetwo models can
only be used for the elements that allow pore pressure. Using these two models, one could successfully simulate
volume change behavior of expansive soils with moisture variation in finite element framework. These two modek
were used in this research to simulate expansive soil behavior.

The required data for each of the soils was determined during the laboratory testing phase of this research. The
moisture content vs suction data (FIG 1) was used as input data for sorption modelwhich replicates the soil suction
change with respect to moisture content. The volumetric swell vs moisture contentdataobtained from3-D swell test
(FIG 2) was used as input to sorption model. Saturation values and the corresponding moisture contents were input
into the FEM analysis. The material properties used to model expansive soils forboth 1-D and 3-D cases are presented
in Table 8. Optimum moisture contentand maximum dry density corresponding to the initial saturation were input as
initial conditions in the analysis. Two types of boundary conditions (BC) were utilized in this study: displacementBC
and pore water pressure BC. The displacement BCs were used to identify the free and fixed directions for the model
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movement while pore water pressure BC was usedto specify a source of water for the expansive soil. Bottomand the
outsideradius ofthe soil were restricted in all direction and water BCwas at thetopandbottomofthe soilto replicate
the 1-D swell condition.

Meshing criteria is one of the most important features in finite element analysis. The results of analysis can change
significantly due to the element’s type and size. 0.005 m element size and 8-noded brick with trilinear displacement
and trilinear pore pressure (C3D8P) element type were used forthe 1-D and 3-D analysis toallow pore pressure in the
system. A 7 kPa of pre-loading condition was used at the top of the soil to replicate the 1-D swell conditionin the lab.
FIG 3 (a) illustrates the 1-D swelling result of soil-3 fromnumerical analysis. In case of 3-D volumetric swell, bottom
BC was restricted to alldirections and water BC was applied at the top and bottomofthe soil. A confining pressure
of 7kPa was applied at the outer perimeter of the soil. In both cases, soil samples have reached full saturation
conditions. FIG 3 (b) and FIG 3 (c) shows the vertical and radial swell test result of soil-3 from numerical analyss.
Both 1-D and 3-D swell test results fromthe numerical analysis exhibit the similar trend compared to laboratory
results. However, numerical results are a bit higher than thelab results. Table 9 exhibits a brief detail of 1-D and 3-D
swell test results using numerical analysis.

Table 8 Engineering properties of soil used in the model

Sail Soail-1 Soil-2 Soail-3
Mass Density, p (kg/m?) 1045 1095 1020
Elastic Modulus, E (kPa) 13855 17937 39593
Poisson’s Ratio 0.4 04 0.4
Cohesion, ¢ (kPa) 46 60 131
Angle of Friction, ¢(°) 26 235 21
Angle of Dilation, y (°) 85 7.8 7
Initial Void Ratio, e, 1.39 1.52 164
Initial Saturation, So (%) 61 56 53
Permeability, k (m/s) 1E-9 1E-9 1E-9

(@) (b) (©)
FIG 3: Results from numerical analysis for Soil-1 (a) 1-D vertical swell (b) 3-D vertical Swell (c) 3-D radial
Swell
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Table 9 Swell Prediction using numerical analysis

Case Soil Soail-1 Soil-2 Soil-3
1-D Initial Thickness ofthe soil, Hi (m) 0.0254 0.025%4 0.0254
Vfertical Displacement, AH (m) 4.3E-3 5.23E-3 5.6E-3
% Vertical Swell 16.9 20.5 22
3-D Initial Thickness ofthe soil, Hi (m) 0.1524 0.1524 0.1524
Initial Radius ofthe soil, Ri (m) 0.0381 0.0381 0.0381
Vertical Displacement, AH (m) 1.56E-2 1.85E-2 2.01E-2
Radial Displacement, AR (m) 3.4E-3 4.37E-3 4.74E-3
% Volumetric Swell 31.04 38.1 42.8
Discussion

FIG 4 presents a comparison of 1-D swell strains among all prediction models with the laboratory data. It can be
observed fromthis figure that all prediction models predicted lower swell strains for lower Pl soil and higher swell
strains for higher PI soil; although the exact magnitude was different the trends were accurate. A similar plot was
made for 3-D swell strains forthe two predictionsand the laboratory data. Both 1-D and 3-D swellstrains predicted
by the MHCP model were less than the laboratory results however, the difference in predicted swell strains was
minimal among the threesoils similar to the laboratory measure data. Higheramount of discrepancy could be observed
for 3-D swell prediction than 1-D. A potential reason for such discrepancy with laboratory swell value was attributed
to use the of moderated plasticity soil (Pl <45) in coming up with regression equation for MHCP model. The prediction
ofthe modelfor Soil-1 - low plasticity clay, had small discrepancy in comparison two other two soils. The amount of
discrepancy was found to be proportional to PI.

The parameters Eynsat required by MEBM, which is the function of matric suction, was calculated at end of swelling.
The 1-D swell predicted using MEBM \and observed in laboratory had similar trend but amount of swell value
predicted by the modelwas substantially less in comparison to the laboratory value and value fromMHCP model as
shown in FIG 4. These discrepancies could be attributed to the lack of consideration of soil mineralogical properties
which have significant effect on the swelling behavior. The higher difference between the swell predicted between
MHCP and MEBM in Soil-1 in comparisonto Soil-2and Soil-3was observed which could be dueto higher influence
of chemical parameters in swelling than hydro-mechanical for this particular soil.

Both Vanapalliet al. (2010) and Yilmaz (2006) modelshow increasing trend of % swell with the increase of plasticity
index which is shown in FIG 4. However, the amount of swell from both model provide lower value for soil-1 and
soil-2 and higher value for soil-3. The cause of the inconsistency of these models could be the absence of suction
property consideration. Additionally, Vanapalli et al. (2010) did not consider mineralogical properties of the soil which
may differ the results. Both model exhibit higher prediction for soil-3. Prime reason for this behavior could be the
high LL and Plvalue ofsoil-3. Vanapalli et al. (2010) empirical model consideredfor P1<80 whereas Yilmaz (2006)
regression model formulated for LL<90.

Numerical analysis result from ABAQUS® shows most consistent prediction forboth 1-D and 3-D swell compared
with other swell predictionmodels whichare shown in FIG4and FIG5 respectively. Swell phenomenonwas predicted
using moisture swelling and sorption model which accommodated actual suction change as well as volume change
with moisture variation. However, swell prediction was a bit higher for all cases.

In order to better visualize the differences in the swell predictions the difference between predicted and laboratory
swell strains was plotted for all the predictions. This data is presented in FIG6. It can be observed fromthis figure
that the finite element model was mostaccurate in predicting the swelling strains. The next bestmodel as perthis data
is the MHCP model. Both the remaining threemodels, MEBM, Vanapalliet al. (2010) and Yilmaz (2006), either over
predict or under predict the 1-D swell strain by 4 to 11 percent.
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FIG 6: Percentage swell difference between the prediction and the measuredlaboratory data for all three soils
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Summary

Fouranalytical swell prediction models whichwere developed for mediumPI soils were usedto predict 1-Dand 3-D
swell strains for threedifferent types of soil with high Pl values. The results fromthe analytical models were compared
with the laboratory data. Considerable amount ofaccuracy was observed in heave prediction by the selected models.

Althoughthemodel thatincorporates soil mineralogy and matric suction had better accuracy in prediction of theheave
than themodel thatconsiders only the role of matric suction, finite elementmodel was the most consistent in predicting
1-D and 3-D swell strain which considers suction change as well as volume change with moisture variation.
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