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Abstract 

 A new N2S ligand bis(pyridyl)(2-mercapto-1-methylimidazolyl)methane (2, Py2MeImS) 

has been synthesized and characterized. Treatment of this ligand with bromide and triflate salts of 

Zn(II) results in the complexes (Py2MeImS)ZnBr2 (3) and [(Py2MeImS)2Zn](OTf)2 (4), 

respectively. The solid-state structure of (Py2MeImS)ZnBr2 shows bidentate N,N-coordination of 

Py2MeImS to the zinc ion, with the sulfur atom of the 2-mercaptoimidazole moiety uncoordinated. 

Two conformers of 3 rapidly interconvert in solution at room temperature, and variable 

temperature NMR studies and DFT calculations were used to help assign the likely identity of 

these conformers. In contrast, the crystal structure of [(Py2MeImS)2Zn](OTf)2 exhibits a zinc ion 

with a distorted octahedral geometry where the two sulfur atoms of the two ligands are coordinated 

to the zinc center in a cis-configuration. Even though the cis-isomer (4-cis) is calculated to be 

lower in energy than the trans-isomer (4-trans), the low temperature 1H NMR spectrum of 4 

reveals a single symmetric species that is inconsistent with the cis-isomer observed in the solid-

state structure. DFT calculations propose alternative higher energy structures, including a trans-

configuration of the coordinated S-atoms of the two Py2MeImS ligands, as well as structures in 

which the 2-mercaptoimidazole groups are no longer coordinated to the zinc(II) center. These 

studies provide valuable insight into the potential binding modes of this new ligand and its 

behavior in solution. 
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1. Introduction 

 The coordination chemistry of zinc ions complexed with ligands capable of binding 

through a sulfur and two nitrogen donors has attracted attention because of its relevance to 

modeling zinc-containing enzymes with [N2S] structural binding motifs. For instance, 

bacteriophage T7 lysozyme [1], peptide deformylase (in plants PDF1A) [2], and bovine 5-

aminolevulinate dehydratase [3] all contain active sites consisting of a pseudo-tetrahedral zinc ion 

bound to a cysteine and two histidine residues with the fourth binding site occupied by a water 

molecule. The combined nitrogen and sulfur ligation is an important component for tuning the zinc 

center and activating the water nucleophile. As such, the development of new [N2S] ancillary 

ligands to support the synthesis and study of model complexes is crucial to the further 

understanding of these biological compounds. 

Synthetic efforts to prepare zinc complexes with a [N2S] facial binding motif have 

primarily used heteroscorpionate-based ligands containing alkyl or aryl thiolates. These ligands 

have been successfully used to make tetrahedral [N2S]ZnX complexes, where X = halide, –CH3, –

hydroxamate or –SR′ [4]. Alternatively, new heteroscorpionate ligands where mercaptoimidazolyl 

groups have replaced alkyl and aryl thiolates as the sulfur atom donor(s) have been successfully 

used to model sulfur-rich active sites [5]. The sulfur atom of the mercaptoimidazolyl moiety is 

expected to have a significant negative charge similar to thiourea (charge = −0.37 e) [6] and, as 

such, have been coined by Vahrenkamp [7] as a “tame” thiolate donor. An example of an [N2S] 

ligand containing a mercaptoimidazolyl group is the ligand bis(pyrazolyl)(2-mercapto-1-

methylimidazolyl)hydroborato ligand (BpMtMe, Chart 1) [8]. 

 



For the purpose of comparison, we chose to prepare and examine the coordination 

chemistry of a new tridentate ligand bis(pyridyl)(2-mercapto-1-methylimidazolyl)methane  

(Py2MeImS, Chart 1) that is closely related to BpMtMe. Py2MeImS does not contain a central boron 

atom, which should allow us to explore the influence of the charge of the ligands on the structures 

and electronic properties of the complexes. Here, we describe the coordination chemistry of the 

Py2MeImS ligand with zinc salts containing coordinating and weakly-coordinating anions. These 

new complexes provide important insight into both the solid-state and solution-phase behavior of 

the ligand and its potential binding modes. Computational studies provide further insight into the 

properties of the Py2MeImS ligand and how they compare to existing ligand systems. 

 

2. Experimental Section 

2.1. General  

All reactions were performed using standard Schlenk techniques under an atmosphere of 

dry nitrogen gas.  Solvents and reagents were obtained from commercial sources in analytical 

grade quality and used as received unless noted otherwise. The solvents tetrahydrofuran (THF), 

methanol (MeOH), and dioxane were dried with CaH2 and distilled prior to use. NMR spectra were 

recorded on a Bruker AVANCE III 600 MHz NMR or Bruker AVANCE III 300 MHz NMR. 

Chemical shifts were expressed in parts per million (ppm) and referenced to residual solvent as 

the internal reference for 1H (CDCl3: δ = 7.26 ppm or CD3OD: δ = 3.31 ppm) and 13C (CDCl3: δ 

= 77.16 ppm and CD3OD: δ = 49.00 ppm). The NMR probe temperatures were calibrated using 

the chemical shift separation between the CH3 and the –OH peaks of a solution of 4% CH3OH in 

CD3OD. IR spectra were measured using a Perkin Elmer Spectrum 100 spectrometer. Elemental 

analyses were performed by Atlantic Microlabs of Norcross, GA. High resolution mass 

spectrometry (HRMS) of Py2MeImS (2) was obtained using an ultrahigh resolution Maxis QTOF 



(Bruker Daltonics) instrument. The compound bis(2-pyridyl)bromomethane was made by a 

previously reported procedure [9]. 

 

2.2. Synthesis and characterization 

2.2.1. Preparation of [Py2MeImH]Br (1) 

To a solution of bis(2-pyridyl)bromomethane (2.21 g, 8.86 mmol) dissolved in dioxane (50 

mL) was added 1-methylimidazole (0.73 g, 8.86 mmol). The solution was refluxed overnight, 

which resulted in a tan brown precipitate. The precipitate was collected, washed with ether (2 x 10 

mL) and then dried under reduced pressure (1.55 g, 53%).  1H NMR (CDCl3, 300 MHz): δ 10.40 

(br dd, 1H), 8.55 (d, J = 4.9 Hz, 2H), 8.20 (s, 1H), 8.19 (dd, J = 1.7, 1.7 Hz, 1H), 7.80-7.68 (m, 

4H), 7.35 (dd, J = 1.7, 1.7 Hz, 1H), 7.30-7.22 (m, 2H), 4.05 (s, 3H). 13C{1H} NMR (CDCl3, 150 

MHz) δ 154.7, 149.7, 137.6, 137.4, 124.3, 123.9, 123.7, 122.0, 66.3, 36.9. IR (ATR, cm-1): 3091 

(m), 3041 (m), 2994 (m), 1680 (w), 1588 (m), 1571 (m), 1548 (m), 1474 (m), 1446 (w), 1428 (s), 

1321 (m), 1210 (w), 1162 (s), 1082 (m), 1052 (m), 994 (m), 950 (w), 883 (w), 848 (m), 770( s), 

752 (s), 738 (s), 689 (m), 670 (s).  

 

2.2.2 Preparation of Py2MeImS (2) 

To a solution of [Py2MeImH]Br (1) (1.48 g, 4.49 mmol) dissolved in methanol (50 mL) 

was added elemental sulfur (0.36 g, 11.22 mmol) and potassium tert-butoxide (0.50 g, 4.49 mmol). 

The solution was refluxed overnight before being cooled to room temperature and water (20 mL) 

added. The solution was then extracted with dichloromethane (5 x 20 mL), dried with anhydrous 

MgSO4, filtered and the solvent removed under reduced pressure. Crude Py2MeImS (2) was 

purified by column chromatography (silica gel; DCM followed by EtOAc) to afford Py2MeImS 



(2) as a yellow oil (0.27 g, 21%).  1H NMR (CDCl3, 600 MHz): δ  8.59 (d, J = 4.8 Hz, 2H), 7.72 

(td, J = 7.7, 7.7, 1.6 Hz, 2H), 7.64 (s, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.27 (d, J = 2.5 Hz, 1H), 7.24 

(dd, J = 7.4, 5.0 Hz, 2H), 6.67 (d, J = 2.5 Hz, 1H), 3.64 (s, 3H). 13C{1H}  NMR (CDCl3, 150 MHz): 

δ 163.5, 157.0, 149.5, 137.5, 124.2, 123.2, 117.6, 117.2, 65.5, 35.4. IR (ATR, cm-1): 3053 (w), 

3005 (w), 1682 (s), 1582 (m), 1568 (m), 146 6(w), 1430 (m), 1315 (s), 1280 (m), 1241 (m), 1227 

(m), 1182 (w), 1150 (w), 1090 (w), 1047 (w), 993 (s), 944 (s), 827 (m), 784 (m), 743 (s), 694 (m), 

661 (s). HRMS (ESI, Pos) calculated for [C15H14N4S1 + Na]+: 305.0831, found 305.0844. 

 

2.2.3 Preparation of (Py2MeImS)ZnBr2 (3) 

To a solution of Py2MeImS (2) (0.13 g, 0.46 mmol) dissolved in methanol (25 mL) was 

added anhydrous ZnBr2 (0.105 g, 0.46 mmol). The solution was heated to reflux, resulting in a 

white precipitate, and stirred overnight. The white solid was collected by filtration, washed with 

diethyl ether (3 x 5 mL) and dried under reduced pressure to afford (Py2MeImS)ZnBr2 (3) (0.174 

g, 74%). Colorless crystals suitable for crystallographic characterization were obtained by diethyl 

ether diffusion into dichloromethane at room temperature. 1H NMR (600 MHz, CDCl3, −48 °C), 

conformer 3a: δ 8.81 (2H), 8.38 (1H), 8.04 (1H), 7.91 (4H), 7.52 (2H), 6.91 (1H), 3.73 (3H); 

conformer 3b: δ 8.92 (2H), 8.23 (1H), 8.11 (4H), 7.83 (1H), 7.75 (2H), 6.68 (1H), 3.62 (3H). IR 

(ATR, cm-1): 3528 (w), 3173 (w), 3133 (w), 3104 (w), 2810 (w), 1602 (s), 1575 (m), 1467 (s), 

1455 (s), 1436 (s), 1390 (s), 1359 (m), 1337 (w), 1298 (w), 1232 (s), 1162 (w), 1136 (m), 1100 

(m), 1062 (m), 1026 (s), 914 (w), 868 (m), 828 (s), 767v(m), 766 (s), 716 (s), 681 (s).  Analysis 

Calculated for C15H14Br2N4SZn: C, 35.49; H, 2.78; N, 11.04%. Found: C, 35.34; H, 2.95; N, 

10.50%. 

 



2.2.4 Preparation of [(Py2MeImS)2Zn](OTf)2 (4) 

To a solution of Py2MeImS (2) (0.10 g, 0.35 mmol) dissolved in methanol (14 mL) was 

added Zn(OTf)2 (0.064 g, 0.18 mmol). The solution was stirred for 18 hr before the volume was 

reduced to 5 mL under reduced pressure. The addition of diethyl ether (15 mL) resulted in the 

formation of a white solid, which was collected, washed with diethyl ether (3 x 10 mL) and dried 

under reduced pressure to afford [(Py2MeImS)2Zn](OTf)2 (3) (0.089 g, 54%). Colorless crystals 

suitable for crystallographic characterization were obtained by diethyl ether diffusion into 

dichloromethane at room temperature. 1H NMR (CD3OD, 10 mM, -35 ºC): δ  8.55 (d, J = 4.4 Hz, 

2H), 7.90 (t, J = 7.7 Hz, 2H), 7.48 (s, 1H), 7.44 (dd, J = 7.0, 5.2 Hz, 2H), 7.29 (dd, J = 7.7, 4.8 Hz, 

2H), 7.12 (d, J = 2.2 Hz, 1H), 7.09-7.06 (m, 1H), 3.61 (s, 3H).  13C{1H}  NMR (CD3OD, 10 mM, 

-35 ºC): δ 163.7, 158.2, 150.5, 139.3, 125.2, 124.8, 120.0, 117.4, 67.0, 35.4. IR (ATR, cm-1): 3170 

(w), 3115 (w), 1602 (m), 1578 (w), 1487 (w), 1466 (w), 1436 (m), 1400 (w), 1367 (w), 1252 (s), 

1224 (s), 1153 (s), 1100 (w), 1065 (w), 1029 (s), 910 (w), 898 (w), 833 (w), 762 (m), 678 (m). 

Anal. calcd for C32H28ZnN8O6S4F6: C, 41.40; H, 3.04; N, 12.07%. Found: C, 41.14; H, 3.03; N, 

11.83%. 

 

2.3. X-ray Crystallography 

Crystals suitable for X-ray diffraction were obtained from slow vapor diffusion and 

mounted on a glass fiber using hydrocarbon oil and cooled under a nitrogen stream to 150(1) K. A 

Nonius Kappa CCD diffractometer (Mo Kα radiation; λ = 0.71073 Å) was used for data collection. 

Unit cell parameters were determined from 10 data frames with an oscillation range of 1 deg/frame 

and an exposure time of 20 sec/frame. Indexing and unit cell refinement based on the reflections 

from the initial set of frames were consistent with monoclinic P lattices for 3 and 4.  The intensity 



data for each compound was then collected. These reflections were then indexed, integrated and 

corrected for Lorentz, polarization and absorption effects using DENZO-SMN and SCALEPAC 

[10]. The space group for each compound was determined from the systematic absences in the 

diffraction data. The structures were solved by a combination of direct and heavy atom methods 

using SIR 97 [11]. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. All hydrogen atoms were placed in ideal positions and assigned isotropic displacement 

coefficients U(H) = 1.2U(C) or 1.5U(Cmethyl) and allowed to ride on their respective carbons using 

SHELXL-97 [12]. A summary of the crystallographic data and parameters for 3 and 4 are found 

in Table 1.  

 

2.4. Computational Methods 

Calculations were completed with Gaussian 09W [13] using the ωB97X-D functional [14] 

unless otherwise noted. This range-separated hybrid meta-GGA functional with empirical 

dispersion correction has been shown to have excellent success in reproducing geometries and 

other properties for metal complexes [15]. Optimized geometries were obtained using the 

Stuttgart-Dresden (SDD) basis set and effective core potential [16] for zinc and the 6-31+g(d,p) 

basis set [17] for all other atoms (genecp keyword). For all isomers of complex 3, solvent effects 

were modeled in the geometry optimizations and all single-point calculations with the CPCM 

solvation model [18] and chloroform as the solvent, while methanol solvation was used for all 

conformers of complex 4. Optimized structures were confirmed as minima by the absence of 

imaginary frequencies in subsequent analytical frequency calculations unless otherwise noted. All 

optimizations were completed using tight convergence criteria and the ultrafine grid (opt=tight, 

int=grid=ultrafine keywords). Solvated single-point energy calculations were completed for 



optimized structures using the SDD basis set and effective core potential for zinc and the 6-

311+g(2d,p) basis set [19] for all other atoms. Natural population and bond orbital (NBO) 

calculations [20] were performed on selected complexes using this same basis set combination.  

Solvated free energies for selected structures were obtained by using the thermodynamic 

correction factors from the frequency calculations at 298.15 K and 1 atm with the higher level 

single-point electronic energies. NMR spectra were calculated with the hybrid B3LYP functional 

[21] using the GIAO method [22] with the 6-311+g(2d,p) basis set for all atoms. This method has 

been shown to provide good agreement between experimental and calculated NMR parameters 

[23]. Calculated NMR chemical shifts are reported relative to TMS and were scaled according to 

the method of Pierens [24] using the appropriate solvent. CF3SO3
− anions in the experimental 

systems were not modeled in these calculations.  

 

3. Results and Discussion 

3.1. Synthesis and Characterization of Py2MeImS Ligand 

The ligand Py2MeImS (2) was prepared by a two-step procedure (Scheme 1). Formation of 

the imidazolium salt [Py2MeImH]Br (1) in a 53% yield was achieved by heating a dioxane solution 

of Py2CHBr and 1-methylimidazole. A diagnostic property for formation of the imidazolium cation 

of 1 is a peak at 10.4 ppm in the 1H NMR spectrum for the acidic proton at the C2 position of the 

imidazolium ring. Deprotonation of 1 with KOtBu in the presence of S8 in methanol resulted in 

formation of 2, which was purified by column chromatography. Ligand 2 was fully characterized 

by 1H and 13C NMR and IR spectroscopy and mass spectrometry (HRMS).  

In addition to potential bidentate pyridyl N-donor atoms, this ligand possesses a 2-

mercaptoimidazole moiety that can potentially exist in both thione and thiolate tautomers. As 



discussed by Parkin [5], the related tris(2-mercapto-1-R–imidazolyl)hydroborato ligands are 

generally described as possessing primarily thione character. However, natural bond orbital (NBO) 

calculations predicted that there is significant anionic thiolate character to the S-atom in these 

ligands (charge = −0.36 e). NBO calculations for both the Py2MeImS ligand and the analogous 

bis(pyrazolyl)(2-mercapto-1-methylimidazolyl)hydroborato ligand (BpMtMe, Chart 1) were 

performed to compare the potential electronic properties of these related ligands and the impact of 

the anionic charge on the boron atom. First, DFT optimizations with chloroform solvation predict 

that there are two principal rotamers for Py2MeImS that have slightly different properties (Chart 

2): Rotamer a with the 2-mercaptoimidazole group cis to the bridging C–H proton, and Rotamer b 

with the 2-mercaptoimidazole group trans to the bridging C–H proton. Rotamer a is more stable 

than Rotamer b by ~27 kJ/mol and possesses a slightly longer C–S bond (1.699 versus 1.693Å). 

This lengthened C–S bond yields a lower calculated Wiberg C–S bond index (1.35 versus 1.38) 

and a larger calculated negative charge on the S-atom (−0.405 e versus −0.375 e). These properties 

are indicative of slightly greater thiolate character for Rotamer a and could potentially be related 

to a weak S•••H–C bond interaction with the bridging C–H proton (the S•••H distance is 2.60 Å). 

The enhanced stability of Rotamer a might also affect whether the ligand binds in a bidentate or 

tridentate fashion.  

By comparison, the anionic bis(pyrazolyl)(2-mercapto-1-methylimidazolyl)hydroborato 

ligand is also predicted to have two principal rotamers, with the cis rotamer also being more stable 

than the trans rotamer by ~25 kJ/mol. However, unlike the Py2MeImS ligand, there is no direct 

S•••H–B bond interaction detected in the cis rotamer that would account for the increased stability. 

The NBO-calculated charge for the S-atom of cis and trans rotamers of the BpMtMe ligand is 

−0.465 e and −0.446 e, respectively. Therefore, the S-atom of the anionic BpMtMe ligand possesses 



15–19% more negative charge than the neutral Py2MeImS counterpart, which could lead to 

significant differences in the behavior of these two ligands. For comparison, it is informative to 

note that NBO calculations on thioformaldehyde, with a C=S bond length of 1.61Å, predict the S-

atom to be nearly neutral (charge = +0.025 e) and to have a C=S Wiberg bond index of 2.04. Given 

this comparison, both the Py2MeImS and BpMtR ligands can be considered to possess significant 

anionic thiolate character. 

 

3.2. Coordination Chemistry of Py2MeImS with Zinc Salts Containing Coordinating and Non-

Coordinating Anions  

To examine the coordination chemistry of the Py2MeImS ligand, two different Zn2+ 

complexes were prepared by stirring 2 in methanol with the appropriate zinc salt, as shown in 

Scheme 2. First, the reaction of equimolar amounts of ZnBr2 and Py2MeImS affords neutral 

(Py2MeImS)ZnBr2 (3), where the Py2MeImS ligand acts as a bidentate chelating N-donor ligand 

and the sulfur atom of the 2-mercapto-1-methylimidazole moiety is not coordinated to the Zn ion. 

In contrast, the reaction of Zn(OTf)2 with Py2MeImS, regardless of the stoichiometric ratio, affords 

the di-cation [(Py2MeImS)2Zn]2+ (4), in which the zinc(II) center is in a distorted octahedral 

coordination environment and the Py2MeImS ligand acts as a tridentate chelating ligand with a 

bound sulfur atom from the mercaptoimidazolyl substituent. Complexes 3 and 4 were 

characterized by NMR and FT-IR spectroscopy, elemental analysis (CHN) and single-crystal X-

ray crystallography. 

 

3.3. X-ray Structure of (Py2MeImS)ZnBr2 (3) 



The solid-state structure of 3 is shown in Figure 1, with the details of the crystallographic 

characterization summarized in Table 1. Compound 3 is a monomeric complex with a four-

coordinate distorted tetrahedral zinc ion. The zinc center is complexed by two bromides and the 

Py2MeImS ligand binds in a bidentate manner through the nitrogen atoms of the two pyridyl rings. 

Notably absent is any bonding interaction between the 2-mercaptoimidazole sulfur atom and the 

zinc center. The smallest bond angle is the N1–Zn1–N2 angle (89.56(13)°) and the largest is the 

Br1–Zn1–Br2 angle (116.96(2)°). The two Zn–Br distances (2.3305(6) and 2.3515(6) Å) are 

similar to other tetrahedral zinc complexes containing terminal bromides [25]. The average Zn–N 

distance of 2.043(4) Å compares well with the Zn-N distance of four-coordinated zinc-pyridine 

compounds [26]. The bidentate coordination of the Py2MeImS ligand results in the formation of a 

boat-like metallocycle, with the 2-mercapto-1-methylimidazole group attached to the methine 

carbon in an equatorial position. The X-ray structure of 3 is also shown overlaid with the DFT-

calculated structure in Figure 2, demonstrating good agreement between the calculated structure 

and the experimental geometry. Of particular note is the C–S bond length of 1.681 Å, which 

compares very well to the 1.686 Å predicted by DFT calculations. This bond length and the 

calculated charge of the S-atom in this complex (−0.338 e) indicate significant thiolate character 

for the sulfur, even though it does not bind to the Zn center.  

 

3.4. Solution-State NMR Spectroscopy of 3 

Although only a single conformer of compound 3 was characterized in the solid state (3a, 

Figure 3), two additional conformers can arise either from a rotation of the pyridyl rings (3b), or 

from a 180° rotation of the 2-mercaptoimidazole group (3c). Indeed, the 1H NMR spectrum of 3 

in CDCl3 at 25 °C contains broad signals indicative of a fluxional process. The variable 



temperature spectra measured from 25 °C to −48 °C are shown in Figure 4. Lowering the 

temperature to −48 °C resulted in the formation of two distinct sets of resonances in an 

approximately 1.5:1 ratio, indicating the presence of two species of relatively similar 

concentrations. A 2D-EXSY spectrum (Figure 5) at −48 °C allowed the identification of 

exchanging partners via cross peaks resulting from saturation transfer between the peaks 

representing protons exchanging positions in the interconverting conformers. Specific proton 

resonances were subsequently assigned based on the low temperature COSY spectrum (see Figure 

S1 in supporting information). 

To gain some insight into potential isomerization in solution and to aid in identification of 

the species present, all three conformers were studied using DFT in CHCl3 solvation. The 

calculated Gibbs free energies of the three species are very similar, with the calculated free 

energies of 3a and 3b being virtually equal (∆Gab = −0.4 kJ/mol), while 3c is slightly higher in 

energy (∆Gbc = 5.8 kJ/mol). The calculated ∆Gab value would yield an equilibrium ratio of 3b 

to 3a of approximately 1.2:1, while the calculated energy of 3c would lead to its equilibrium 

concentration in solution being less than 10% of 3b. Both of these results are consistent with 3a 

and 3b being the minor and major species observed experimentally in the 1H NMR spectrum, 

respectively.  

DFT-calculated 1H NMR spectra of all three conformers were also obtained with CHCl3 

solvation for comparison with experimental data (Table 2). As a baseline for comparison, 

calculated 1H NMR spectra of the free Py2MeImS ligand indicate that orientation of the 2-

mercaptoimidazole ring has a particularly dramatic effect on the chemical shift of the bridging C–

H proton (labeled Ha in Chart 3). Specifically, in ligand Rotamer a where there is close S•••Ha 

contact (2.60 Å), the chemical shift of Ha is 7.6 ppm. In contrast, in Rotamer b where there is no 



S•••Ha interaction, the proton resonance is shifted upfield to 6.5 ppm (Figure 6). Thus, close 

proximity of Ha to the 2-mercaptoimidazole sulfur results in a >1 ppm shift to lower field, similar 

to the effect observed for hydrogen-bonded protons [27]. Moreover, the calculated value of 7.58 

ppm for Ha in the most stable rotamer for free Py2MeImS (Rotamer a) is in good agreement with 

the value from the experimental 1H NMR spectrum of the ligand (7.64 ppm). The sensitivity of the 

chemical shift of Ha to its chemical environment could potentially function as a useful 

spectroscopic handle for determining the conformation and binding mode of the Py2MeImS ligand 

in solution. 

With this in mind, the different environment for Ha in conformers 3a, 3b, and 3c would 

likely lead to differences in its chemical shift, particularly when comparing 3a/3b (where Ha is in 

contact with the S-atom) and 3c (where there is no S•••Ha interaction). Indeed, Ha is predicted to 

have very similar chemical shifts in 3a (8.16 ppm) and 3b (8.17 ppm), both of which have close 

S•••Ha contact (2.57 Å and 2.52 Å, respectively). These chemical shifts are significantly downfield 

from that calculated for 3c (7.57 ppm), consistent with no S•••Ha contact in this isomer. COSY and 

EXSY analysis of 3 in solution reveal chemical shifts for Ha of the interconverting species at 8.04 

and 8.23 ppm for the minor and major component, respectively. These values are in the range of 

those predicted for 3a and 3b, consistent with these two species being the interconverting isomers 

in solution. This is also supported by the low equilibrium concentration predicted for isomer 3c 

and the upfield chemical shift of Ha in its calculated 1H NMR spectrum. However, while the 

predicted shifts for Ha in 3a and 3b are in the range of the experimental shifts observed, the similar 

DFT-calculated values for these two isomers do not allow for a more conclusive determination of 

the major and minor species in the experimental system. 

 



3.5. X-ray Structure of [(Py2MeImS)2Zn](OTf)2 (4) 

The solid-state structure of the cationic portion of 4, along with selected bond distances 

and angles, is shown in Figure 7, with the most obvious difference from 3 being the direct 

coordination of the S-atom to the zinc(II) center. A summary of the X-ray crystallographic data 

and refinement parameters is provided in Table 1. The coordination environment of the zinc ion 

consists of a six-coordinate slightly distorted octahedron. The two Py2MeImS ligands facially 

coordinate the metal ion in a tridentate fashion, with the two sulfur atoms S1 and S2 adopting a 

cis-configuration (S–Zn–S angle of 80.43(2)°). The Zn–Npyridyl distances vary from 2.154(2) to 

2.210(2) Å and are unremarkable. However, the Zn–S distances of 2.5078(7) and 2.5353(7) Å are 

significantly longer than those in other zinc complexes with 2-mercaptoimidazole donors (Zn–S 

range of 2.30–2.37 Å) [28]. Instead the Zn–S distances in 4 are more typical of Zn–S distances 

observed in octahedral Zn(II) complexes containing thioethers [29].  Such long Zn–S bonds could 

also be indicative of weaker interactions, consistent with a lack of coordination for the S-atom of 

Py2MeImS observed in 3. 

 

3.6. Solution-State NMR Spectroscopy and Computational Studies of 4 

The solution-state behavior of 4 was studied in CD3OD using variable temperature NMR 

spectroscopy. The 1H NMR spectrum at ambient temperature contains broad peaks that sharpen 

upon cooling, suggesting that a dynamic exchange process is responsible for the broadness (Figure 

8). Two possible isomers exist for 4 in which the S-atoms remain coordinated: the cis-isomer 

observed in the solid state (4-cis) and a trans-isomer (4-trans) (Scheme 3). Rapid intramolecular 

and intermolecular isomerization of group 12 coordination complexes is well documented [29,30], 

and rapid isomerization between these different isomers at room temperature is a possible 



explanation for the dynamic NMR behavior. No efforts to distinguish between intramolecular and 

intermolecular processes were undertaken.  

If 4 retains the 4-cis structure in solution, two sets of proton resonances would be expected 

for each of the distinct pyridyl ring environments, yielding 11 total resonances for the aromatic 

region. However, cooling the solution to −38 °C (Figure 8a) produces a 1H NMR spectrum with 

only 7 resonances in the aromatic region. This is more consistent with a symmetric 4-trans 

structure having equivalent pyridyl rings, and in fact only 7 resonances are observed throughout 

the entire temperature range of the experiment, suggesting that no measurable amount of 4-cis is 

present in solution. Additional low temperature NMR experiments (13C{1H}, HMBC, HSQC and 

COSY; see supporting information Figures S2–S5) are also consistent with the presence of only a 

single species having equivalent pyridyl rings.  

DFT-optimized structures of the cationic portion of 4-cis and 4-trans were obtained with 

methanol solvation to gain further insight into the possible solution-phase behavior observed in 

the NMR experiments (Figure 9). Interestingly, 4-cis is calculated to be ~6 kJ/mol more stable 

than 4-trans, which would lead to 4-cis predominating in solution [31]. However, care should be 

exercised in interpreting this result since the relative solution-state free energies of these two 

species could be dramatically affected by interaction with the two weakly-coordinating triflate 

counterions (which were not explicitly modeled in these calculations), potentially leading to 

significantly different ratios being observed experimentally.  

Of greater usefulness to this analysis are the DFT-predicted NMR spectra of these two 

species. As was observed for complexes 3a–c, the chemical shift of the C–H proton for the bridging 

methine carbon (Ha) is an important indicator of the binding geometry of the ligand. The calculated 

1H NMR spectra of both 4-cis and 4-trans isomers with CH3OH solvation were compared to the 



experimental data for 4 (Table 3), and interestingly Ha is predicted to be the most upfield of all 

those in the aromatic region for both isomers (δ = 6.41 and 6.40 ppm, respectively), and not at all 

consistent with the ~7.5 ppm chemical shift observed for Ha in the low temperature experimental 

spectrum of 4. The predicted shifts of  4-cis and 4-trans are similar to the 6.47 ppm value reported 

for the C–H proton in the related tris(2-pyridyl)methane (TPYM) ligand in [Cu(TPYM)CO]ClO4, 

where tridentate N,N,N-coordination of the ligand produces no deshielding of the C–H proton 

[32]. Thus, with the presence of no S•••Ha interaction in 4-cis and 4-trans, the chemical shift would 

be expected to be similar to that observed for [Cu(TPYM)CO]ClO4. Instead, the experiments show 

the chemical shift of Ha in 4 to be more consistent with a solution-state conformation in which it 

is deshielded by closer proximity to the 2-mercaptoimidazole sulfur. 

Taken together, these results suggest that neither 4-trans nor 4-cis predominate in solution, 

but rather an alternative species is present in which the S-atom is no longer coordinated, yet which 

still retains equivalent pyridyl groups. Given the long Zn–S bond observed in the crystal structure 

of 4 and the lack of a Zn–S bond in 3, dissociation of the 2-mercaptoimidazole sulfur atom is a 

plausible scenario.  Figure 10 shows two such possible alternative structures for the 

[(Py2MeImS)2Zn]2+ cation in which the S-atom is not attached and where rotation of the 2-

mercaptoimidazole group would place Ha in close proximity to the sulfur (labeled 4′-trans a and 

4′-trans b). Again, it should be noted that direct coordination of the triflate anions to the zinc 

center of the [(Py2MeImS)2Zn]2+ cation would also be likely in such species under experimental 

conditions, given the roughly square planar ligand environment about the metal and similar 

coordination of triflate anions in related complexes [33,34]. Nevertheless, the predicted 1H NMR 

spectra of these cations contain a much more deshielded Ha, which suggest that these or similar 

species could be present in solution with an uncoordinated S-atom (Table 3) [35]. These results 



help to demonstrate the variable coordination geometry possible in solution with the Py2MeImS 

ligand and how 1H NMR could yield potential insight into these geometries. 

 

4. Conclusion 

 A new N2S ligand bis(pyridyl)(2-mercapto-1-methylimidazolyl)methane (2, Py2MeImS) 

has been synthesized and characterized. Reaction of the ligand with ZnBr2 resulted in the complex 

(Py2MeImS)ZnBr2 (3). X-ray analysis of 3 shows bidentate N,N-coordination of the Py2MeImS 

ligand resulting in the formation of a boat-like metallocycle, where the uncoordinated 2-

mercaptoimidazolyl group is in an equatorial position. The 1H NMR spectrum of 3 at low 

temperature show two sets of peaks corresponding to two conformers, the likely identity and 

thermodynamic stability of which were examined using DFT.  

 Treatment of Py2MeImS (2) with zinc triflate resulted in the homoleptic complex 

[(Py2MeImS)2Zn](OTf)2. The solid-state structure revealed an octahedral zinc(II) center 

coordinated with two Py2MeImS ligands, where the sulfur atoms are in a cis-arrangement. 

However, variable temperature NMR studies indict a single species in solution that is highly 

symmetric and inconsistent with the cis-isomer observed in the solid-state. DFT calculations 

proposed alternative structures where the 2-mercaptoimidazole groups are no longer coordinated 

with the zinc(II) center and the two Py2MeImS are in a trans-arrangement. The computational 

studies also showed that the chemical shift of the C–H proton for the bridging methine carbon (Ha) 

is highly sensitive to whether the sulfur atom of the 2-mercaptoimidazole is in close contact to Ha, 

with the cis arrangement resulting in a larger downfield shift for Ha. As such, the large downfield 

shift for Ha in [(Py2MeImS)2Zn](OTf)2 in the 1H NMR provides evidence that the 2-

mercaptoimidazole groups are not coordinated in solution. This is not entirely unexpected based 



on the long Zn–S distances observed in the crystal structure. These studies provide valuable insight 

into the potential binding modes of this new ligand and its behavior in solution. 
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Table 1. Summary of X-ray crystallographic data and parameters.a 

 
Complex 3 4 
Formula C15H14Br2N4SZn • ½(CH2Cl2) C32H28F6N8O6S4Zn •1½(CH2Cl2)    

Fw 550.02 1055.62 
Crystal system Monoclinic monoclinic 
Space group P21/n  P21/n 
a (Å) 12.4751(2) 14.2728(2) 
b (Å) 13.1166(3) 12.82460(10) 
c (Å) 12.9107(3) 23. 8209(3) 
α (deg) 90 90 
β (deg) 112.9929(13) 96.2788(6) 
γ (deg) 90 90 
V (Å3) 1944.75(7) 

 
4334.09(9) 

Z 4 4 
Dcalc  (Mg m-3) 1.879 1.618 
T (K) 150(1) 150(1) 
Color colorless colorless 
Crystal size (mm) 0.20 x 0.15 x 0.13 0.35 x 0.33 x 0.20 
Abs coeff (mm-1) 5.623 1.023 
θ range (deg) 2.47-27.11 2.14-27.47 
Completeness to θ (%) 98.5 99.8 
Reflections collected 8083 19310 
Independent reflections 4222 9905 
Parameters 281 557 
R1/wR2 (all data)b 0.0588/0.1133 0.0605/0.1150 
Goodness-of-fit  1.059 1.020 
diff. peak/hole (e/Å -3) 0.797/-0.901 0.867/-0.814 
aRadiation used: Mo Kα (λ = 0.71073 Å). bR1 = S||Fo|-|Fc||/S|Fo|; wR2 = [S[w(Fo2-Fc2)2]/[S(Fo2)2]]1/2, 
where w = 1/[s2(Fo2)+(aP)2+bP]. 

 

 

 

 

 

 

 



Table 2. B3LYP-calculated 1H NMR chemical shifts for 3a–c with chloroform solvation (all data 

in ppm scaled [24] and referenced to TMS; experimental data for Py2MeImS (2) is given in 

parentheses for comparison; see Chart 3 for H-atom labels). 

 2 3a 3b 3c Minor Major 
Ha 7.58 (7.64) 8.16 8.17 7.57 8.04 8.23 
Hb 7.23 a (7.37) 7.13 a 8.16 7.12 7.91 8.11 
Hc 7.61 a (7.72) 7.84 a 7.96 7.71 7.91 8.11 
Hd 7.19 a (7.24) 7.44 a 7.56 7.41 7.52 7.75 
He 8.45 a (8.59) 9.00 a 8.78 8.84 8.81 8.92 
Hf 7.15 (7.27) 6.73 8.17 6.76 8.38 7.83 
Hg 6.46 (6.67) 6.82 6.35 6.80 6.91 6.68 
Hh 3.31 a  (3.64) 3.52 a 3.32 a 3.48 a 3.73 3.62 

aAverage calculated values. 

 

Table 3. Experimental 1H NMR chemical shifts for 4 and the B3LYP-calculated data for various 

isomers of 4 with methanol solvation (all data in ppm scaled [24] and referenced to TMS; see Chart 

3 for H-atom labels). 

  4 4-cis 4-trans 4′-trans a 4′-trans b 
Ha  7.48 6.41 6.40  8.48 8.19 
Hb  7.44 7.09, 7.77 7.67 a 8.25 a 7.53 
Hc  7.90 7.83, 8.03 7.97 a 7.98 a 7.91 
Hd  7.29 6.84, 7.30 7.41 a 7.38 a 7.33 
He  8.55 7.58, 8.93 8.48 a 7.82 a 7.93 
Hf  7.12 7.09 7.17 

 

7.16 7.12 
Hg  7.06 6.72 6.72 6.68 7.04 
Hh  3.61  3.28 a 3.12 a 3.45 a 3.59 a 

aAverage calculated values [35]. 
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Figure 1. X-ray structure of 3 with thermal ellipsoids drawn at 50% probability level and hydrogen 

atoms omitted for clarity. Important bond lengths (Å): Zn1–Br1 2.3305(6), Zn1–Br2 2.3515(6), 

Zn1–N1 2.039(3), Zn1–N2 2.046(3). Bond angles (°): Br1–Zn1–Br2 116.96(2), Br1–Zn1–N1 

113.87(9), Br1–Zn1–N2 114.03(9), Br2–Zn1–N1 106.45(9), Br2–Zn1–N2 112.54(9), N1–Zn1–

N2 89.56(13). 

 

 

 



 

Figure 2. Overlay of the X-ray crystal structure of 3a (yellow) with the DFT-calculated structure 

(blue). 



Figure 3. DFT-calculated structures of three possible conformers of (Py2MeImS)ZnBr2 (3a–c) 

(optimized with CHCl3 solvation; only Ha shown for clarity). 

 

 

 

 

 

 

 



 

 

Figure 4. Aromatic region of the 1H NMR spectra of 3 in CDCl3 at a) −48 °C, b) −38 °C, c) −23 

°C, d) −3 °C, e) 12 °C and f) 25 °C. 

 

 

 

 

 

 



 

 

Figure 5. 2D-EXSY spectrum of the aromatic region of 3 in CDCl3 at −48 ºC. 

 

 

 



Figure 6. DFT-calculated structures of the two main rotamers of the Py2MeImS ligand with Ha cis 

to the 2-mercaptoimidazole S-atom (Rotamer a) and with Ha trans to the 2-mercaptoimidazole S-

atom (Rotamer b) (only Ha shown for clarity; relative change in Gibbs free energy shown in kJ/mol 

with CHCl3 solvation). 

 

 

Figure 7. Representation of the cationic portion of the X-ray structure of 4 with thermal ellipsoids 

drawn at 50% probability level and hydrogen atoms omitted for clarity. Important bond lengths 

(Å): Zn1–S1 2.5078(7), Zn1–S2 2.5353(7), Zn1–N1 2.210(2), Zn1–N2 2.163(2), Zn1–N5 

2.154(2), Zn1–N6 2.161(2). Bond angles (°): S1–Zn1–S2 80.43(2), N1–Zn1–S1 88.57(6), N2–

Zn1–S1 96.79(6), N5–Zn1–S1 93.31(6), N6–Zn1–S1 170.75(6), N1–Zn1–S2 89.32(6), N2–Zn1–

S2 173.17(6), N5–Zn1–S2 93.33(6), N6–Zn1–S2 90.52(6), N1–Zn1–N2 84.36(8), N1–Zn1–N5 

176.97(8), N1–Zn1–N6 93.27(8), N2–Zn1–N5 93.06(8), N2–Zn1–N6 85.26(8), N2-Zn1-N6 

85.26(8). 



 

 

 

 Figure 8. Aromatic region of the 1H NMR spectra of 4 in CD3OD at a) −38 °C, b) −8 °C and c) 

17 °C. 

 

 



 

 

Figure 9. DFT-calculated structures of the cis and trans isomers of the dication 

[(Py2MeImS)2Zn]2+ (4-cis and 4-trans) with coordinated S-atoms (optimized with CH3OH 

solvation; H-atoms omitted for clarity). 

 

Figure10. Two possible isomers of the dication [(Py2MeImS)2Zn]2+ (4) with uncoordinated S-

atoms (optimized with CH3OH solvation; only Ha shown for clarity). 

 

 

7. References 



[1] (a) M. Inouye, N.  Arnheim, R. Sternglanz, R. J. Biol. Chem. 248 (1973) 7247. (b) X. Cheng, 
X. Zhang, J. W. Pflugrath, F. W. Studier, Proc. Natl. Acad. Sci. 91 (1994) 4034.  

 
[2] A. Serero, C. Giglione, T. Meinnel, J. Mol. Biol. 314 (2001) 695.  
 
[3] A. J. Dent, D. Beyersmann, C. Block, S. S. Hasnain, Biochemistry 29 (1990) 7822. 

[4] Representative examples include: (a) P. Ghosh, G. Parkin, Chem. Commun. (1998) 413. (b) B. 
S. Hammes, C. J. Carrano, Inorg. Chem. 38 (1999) 4593. (c) B. S. Hammes, C. J. Carrano, 
Inorg. Chim. Acta 300 (2000) 427. (d) B. S. Hammes, C. J. Carrano, Dalton Trans. (2000) 
3304. (e) B. S. Hammes, C. J. Carrano, Inorg. Chem. 40 (2001) 919. (f) V. V. Karambelkar, 
R. C. diTargiani, C. D. Incarvito, L. N. Zakharov, A. L. Rheingold, C. L. Stern, D. P. Goldberg, 
Polyhedron 23 (2004) 471. (g) E. Galardon, M. Giorgi, I. Artaud, Dalton Trans. (2007) 1047. 
(h) N. G. Spiropulos, G. C. Chingas, M. Sullivan, J. T. York, E. C. Brown, Inorg. Chim. Acta 
376 (2011) 562. 

 
[5] G. Parkin, New J. Chem. 31 (2007) 1996. 
 
[6] F. H. Allen, C. M. Bird, R. S. Rowland, P. R. Raithby, Acta. Crystallogr. B53 (1997) 680. 
 
[7] J. Seebacher, M. Shu, H. Vahrenkamp, Chem. Commun. (2001) 1026. 
 
[8] (a) B. Benkmil, M. Ji, H. Vahrenkamp Inorg. Chem. 43 (2004) 8212. (b) M. Ji, M. Benkmil, 

H. Vahrenkamp, Inorg. Chem. 44 (2005) 3518. (c) M. Rombach, J. Seebacher, M. Ji, G. Zhang, 
G. He, M. M. Ibrahim, B. Benkmil, H. Vahrenkamp, Inorg. Chem. 45 (2006) 4571. 

 
[9] A. N. Vedernikov, J. C. Fettinger, F. Mohr, F. J. Am. Chem. Soc. 126 (2004) 11160. 
 
[10] Z. Otwinowski, W. Minor, W. Methods Enzymol. 276 (1997) 307. 
 
[11] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. 

G. Moliterni, G. Polidori, R. J. Spagna, Appl. Cryst. 32 (1999) 115. 
 
[12] G. M. Sheldrick: SHELXL-97. Program for the Refinement of Crystal Structures. University 

of Göttingen, Germany 1997.  
 
[13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. 

Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. 
Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. 
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 
Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, 
K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. 
Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. 
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. 
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. 
Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, 

 

 



J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, GAUSSIAN 09, Revision 
B.01, GAUSSIAN Inc., Wallingford, CT, 2009. 

 
[14] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 10 (2008) 6615. 
 
[15] Y. Minenkov, Å. Singstad, G. Occhipinti, V. R. Jensen, Dalton Trans. 41 (2012) 5526. 
 
[16] M. Dolg, U. Wedig, H. Stoll, H. J. Preuss, Chem. Phys. 86 (1987) 866. 
 
[17] (a) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J.  

A. Pople, J. Chem. Phys. 77 (1982) 3654. (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. 
Chem. Phys. 56 (1972) 2257. 

[18] V. Barone, M. J. Cossi, Phys. Chem. A. 102 (1998) 1995. 
 
[19] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650. 
 
[20] (a) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735. (b) A. E. 

Reed, F. Weinhold, J. Chem. Phys. 83 (1985) 1736. 

[21] A. D. Becke, Phys. Rev. A. 38 (1988) 3098. (a) A. D. Becke, J. Chem. Phys. 98 (1993) 
5648. (b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37 (1988) 785. (c) J. P. Perdew, K. 
Burke, Y. Wang, Phys. Rev. B. 57 (1998) 14999. (d) J. P. Perdew, K. Burke, Y. Wang, 
Phys. Rev. B. 54 (1996) 16533.  

 
[22] R. Ditchfield, Mol. Phys. 27 (1974) 789. (b) K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. 

Soc., 112 (1990) 8251. (c) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. 
Phys., 104 (1996) 5497. 

 
[23] G. K. Pierens, T. K. Venkatachalam, D. C. Reutens, Scientific Reports 7 (2017) 5605. 
 
[24] G. K. Pierens J. Comp. Chem. 35 (2014). 
 
[25] (a) R. Alsfasser, H. Vahrenkamp, Inorg. Chim. Acta 209 (1993) 19. (c)  N. Galván-Tejada, S. 

Bernès, S. E.Castillo-Blum, H. Nöth, R. Vicente, N. Barba-Behrens, J. Inorg. Biochem. 91 
(2002) 339. 

 
[26] A. Nimmermark, L. Öhrström, J. Reedijk, Zeitschrift für Kristallographie - Crystalline 

Materials 228 (2013) 311. 
 
[27 ] K. A. Haushalter, J. Lau, J. D. Roberts, J. Am. Chem. Soc. 118 (1996) 8891. 
 
[28] (a) H. M. Alvarez, T. B. Tran, M. A. Richter, D. M. Alyounes, D. Rabinovich, J. M. Tanski, 

Inorg. Chem. 42 (2003) 2149. (b) J. Nunn, I. Zahedi, G. Bauer, M. F. Haddow, S. N. Abdul 
Halim, A. Pérez-Redondo, G. R. Owen, Inorg. Chim. Acta 365 (2011) 462. (c) J. R. 

 

 



Miecznikowski, W. Lo, M. A. Lynn, B. E. O’Loughlin, A. P. DiMarzio, A. M. Martinez, L.  
Lampe, K. M. Foley, L. C. Keilich, G. P. Lisi, D. J. Kwiecien, C. M. Pires, W. J. Kelly, N. F. 
Kloczko, K. N. Morio, Inorg. Chim. Acta 376 (2011) 515.  

 
[29] (a) S. M. Berry, D. C. Bebout, R. J. Butcher, Inorg. Chem. 44 (2005) 27. (b) W. Lai, S. M. 

Berry, D. C. Bebout, Inorg. Chem. 45 (2006) 571. (c) D. C. Bebout, W. Lai, S. M. Stamps, S. 
M.; Berry, R. J. Butcher, Polyhedron 27 (2008) 1591.  

 
[30] (a) W. Yang, H. Schmider, Q. Wu, Y. Zhang, S. Wang, Inorg. Chem. 39 (2000) 2397. (b) A. 

Beitat, S. P. Foxon, C. Brombach, H. Hausmann, F. W. Heinemann, F. Hampel, U. 
Monkowius, C. Hirtenlehner, G. Knör, S. Schindler, Dalton Trans. 40 (2011) 5090.  

 
[31] While the highest symmetry point group possible for 4-trans is C2h, optimization with this 

symmetry constraint yielded a structure with a small imaginary frequency (−4.7 cm−1). 
Subsequent optimization with Ci symmetry yielded a minimum-energy structure with no 
imaginary frequencies and a lower energy than the C2h-symmetric structure (by 5.1 kJ/mol). 
A C2-symmetric minimum-energy structure was also found, but it is higher in energy than 
the Ci-symmetric structure by 3.6 kJ/mol. The relative energy of 4-cis and 4-trans isomers 
was therefore determined from the energy of the 4-trans isomer having Ci symmetry. The 1H 
NMR chemical shifts reported in Table 3 for 4-trans are for the Ci-symmetric structure, with 
average values given for inequivalent protons. Notably, these average values are very similar 
to the values obtained for the C2h-symmetric structure, indicating that the exact point group 
symmetry does not significantly affect the calculated chemical shifts in this complex.   

 
[32] M. Kujimi, T. Kurahashi, M. Tomura, H. Fujii, Inorg. Chem. 46 (2007) 541. 
 
[33] (a) J. Börner, U. Flörke, A. Döring, D. Kuckling, M. D. Jones, S. Herres-Pawlis, 

Sustainability 1 (2009) 1226. (b) W. Yang, H. Schmider, Q. Wu, Y.-S. Zhang, S. Wang, 
Inorg Chem. 39 (2009) 2397. 

 
[34] For the dication [(Py2MeImS)2Zn]2+, the calculated energies of the 4′-trans a and 4′-trans b 

conformers in solution are significantly higher than the most stable 4-cis structure [(by 78.8 
and 46.0 kJ/mol, respectively). However, likely coordination of the two triflate anions directly 
to the zinc(II) center in 4′-trans a and 4′-trans b in solution to yield a six-coordinate metal 
center could dramatically affect the energies of these and similar compounds relative to the 
six-coordinate 4-cis and 4-trans species in which the triflate anions are not coordinated to the 
metal center. Thus, the relative energies of the different conformers of 
[(Py2MeImS)2Zn]2+calculated without explicit treatment of the triflate anions is not 
necessarily indicative of their relative energies under experimental conditions. 

 
[35] As with 4-trans, both 4′-trans a and 4′-trans b can ideally possess C2h symmetry. However, 

optimization of 4′-trans a with C2h symmetry yielded a single small imaginary frequency 
(−24.0 cm–1). Optimization of 4′-trans a with Ci symmetry yielded a minimum energy 
structure with no imaginary frequencies, and the reported 1H NMR chemical shifts for this 
complex are listed. However, because all pyridyl protons are not exactly equivalent in this 
structure, average values of these are reported. These average values are similar to the values 
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obtained for the C2h structure, indicating that the exact point group symmetry does not 
significantly affect the calculated chemical shifts in this complex.  
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