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Abstract Abstract 
Remote sensing plays an important role in understanding the structure and function of global terrestrial 
ecosystems. In this project our research focus was to characterize the dryland vegetation structure and 
function in the western US. Sparse distribution of vegetation, low amount of leaves on the canopies and 
the bright soil underneath the canopy make remote sensing of drylands a challenging task. To achieve our 
research goal we collected aerial and ground based optical hyperspectral and lidar data concurrent to our 
field campaign. We studied the potential and limitations of these sensors to retrieve canopy biochemistry 
and structure and to map the vegetation cover at species level. 
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INTRODUCTION
Sparse distribution of vegetation, canopy cover, and the bright soil beneath 
the canopy make remote sensing of drylands a challenging task. Two 
common themes in hyperspectral remote sensing of vegetation are I) 
retrieving canopy biochemical variables (i.e. regression problem) and II) 
mapping vegetation cover (i.e. classification problem). Here we present the 
role of canopy spectral invariants (CSI) in both regression and classification 
approaches in drylands. Our work presents the potential limitations and 
applicatons of HyspIRI in drylands.

I) Regression 
Canopy structure and soil dominate the total canopy reflectance

• At the canopy scale the mean of i0 is 0.17, and at the plot scale, it is 
0.05.

• If we assume no additional interaction between photons from 
vegetation and soil, the total canopy and plot reflectance is 
composed of 17% and 5% information, respectively.  

Before correction for structure and soil After correction for structure and soil
Ensemble

BR PLS_ref
Ensemble

BR PLS_refPLS SVM RFPLS SVM RF
Smoothed
R2 0.61 0.49 0.37 0.37 0.51 0.19 0.18 0.16 0.18 0.08
CV 16.87 21.90 22.6 18.3 19.1 26.54 26.7 30.3 23.7 27.38
Log transformation
R2 0.60 0.62 0.37 0.47 0.52 0.18 0.19 0.16 0 0.08
CV 18.74 19.63 22.3 16.4 19.4 26.57 26.9 30.5 26.9 27.36
First derivative
R2 0.57 0.54 0.61 0.35 0.42 0.17 0.16 0.15 0 0.07
CV 19.79 19.46 16.2 18.3 21.6 26.58 26.7 30.1 26.3 27.46
Log transformation of the first derivative
R2 0.58 0.74 0.67 0.36 0.52 0.12 0.16 0.17 0 0.05
CV 18.27 14.21 15.4 16.1 19.2 26.52 26.5 30.3 27.0 27.41

II) Classification
Canopy structure can improve classification

• Whereas traditional classifications such as SAM fail to 
separate spectrally similar classes, the canopy spectral 
invariant space may offer improvements.

• In this example, the aspen and riparian classes are 
linearly separable in canopy spectral invariant space. 

• Overall accuracy improved from 60% to 83%.
Ground truth
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Aspen 2015 553 143 2 2713 0.44 0.74
Riparian 2411 1806 316 64 4597 0.63 0.39
Douglas fir 95 500 2083 105 2783 0.80 0.74
Juniper 7 0 46 636 689 0.78 0.92
Total 4528 2859 2588 807 10782 --- ---
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THEORY OF CANOPY SPECTRAL INVARIANTS (CSI)
• The structure of the canopy can be represented by a spectrally 

independent parameter known as the recollision probability (p).
• Recollision probability can be interpreted as the probability of a photon 

scattered from part of the canopy to interact with the canopy again. 
• In the generalized theory of CSI, the assumption of non-reflecting soil is 

relaxed. 

Retrieving foliar nitrogen using regression 
Since nitrogen is not explicitly represented in 
radiative transfer models, statistical methods 
have been used as an alternative. Common 
statistical methods are partial least squares 
regression (PLS), random forest  (RF), 
support vector machine (SVM) etc. 

Classification of vegetation species in drylands
The environmental gradients in semi-arid ecosystems result in a range of 
challenges for classification. Soil and canopy structure in xeric areas have 
significant contributions to the total canopy radiation budget. On the 
converse, dense riparian areas along mesic areas represent complex 
interactions between different species and are characterized by high spectral 
variability. 

𝐵𝐵𝐵𝐵𝐵𝐵𝜆𝜆 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵 � 𝑊𝑊𝜆𝜆

𝐵𝐵𝐵𝐵𝐵𝐵𝜆𝜆 =
𝜌𝜌(Ω)𝑖𝑖0(Ω0)𝜔𝜔𝜆𝜆

1 −𝜔𝜔𝜆𝜆𝑝𝑝

p recollision probability 
i0 canopy interceptance
ρ escape probability 
ω(λ) leaf albedo 

𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵 = 𝜌𝜌 Ω
𝑖𝑖0

1 − 𝑝𝑝

Directional area scattering factor (DASF) is an estimate of the ratio 
between the total one-sided leaf area and the canopy boundary leaf area 
seen from a given direction

where 𝑊𝑊𝜆𝜆 is the canopy scattering. 

METHODS
Our study area is the Great Basin, western, USA. We collected airborne 
and field data.

Hyperspectral data 
- AVIRIS-NG (1.6 m pixel size)
- FieldSpec Pro Spectroradiometer 
Regression methods 
PLS, SVM, RF and Bayesian 
Classification methods
Spectral angle mapper (SAM)
Approach
- We used spectral invariants to 

correct BRF for canopy structure 
and soil and developed regressions

- Spectral invariants space was used 
to improve classification of dense 
canopies

RESULTS

Correction for canopy structure and soil leads to no N-BRF 
correlation

• Canopy scattering coefficients mimic leaf scattering and 
showed no correlation with N.

• Result is inconsistent with theory of counter factuals.
• Functional association between N and BRF do not 

always lead to correlation. 
• One solution is using data assimilation. Our initial results 

with the ED2 vegetation model shows good agreement 
between measured and simulated N.

Figure 1. The concept of photon interceptance, recollision 
probability and escape factor

Figure 2. Field data were collected across five 
sites across the Great basin during 2014 and 2015

Figure3. Boxplots of spectral invariants 
P_{LL}: recollision probability 
between leaf-leaf
P_{LS}:  recollision probability 
between leaf-soil
P_{SL} : recollision probability 
between soil-leaf

Figure 4. Simulation of canopy 
radiation budget for a green and dry 
shrub. The larger contribution of soil in 
dry shrub is observable.

Table 1. Regression 
methods may fail after 
correction for canopy 
structure and soil

Table 2. Classification 
results using SAM: there 
is a great confusion 
between aspen and 
riparian

Figure 5: spectral invariants space can separate aspen and riparian

IMPLICATIONS 
• Canopy structure and soil impact increases at coarser 

spatial resolution such as HyspIRI [60 m]
• Spaceborne lidar such as GEDI integrated with HyspIRI

can help to elucidate the role of canopy structure and soil. 
• CSI theory is an alternative to 3-RTMs in dynamic 

vegetation models such as ED 2. 
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