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Abstract 

Hydrological models contain parameters whose values cannot be directly measured in many 
field-scale projects, hence need to be meaningfully inferred through calibration against historical 
records. Much progress has been made in development of efficient search algorithms in order to 
find optimal parameter values and their underlying uncertainty distributions. Yet, relatively little 
is known about the effects of calibration data (or error residual) transformations on the 
identifiability of model parameters and reliability of model predictions. Effects of calibration 
data transformations on the posterior parameter distribution and predictive capability of two 
parsimonious hydrological models are analyzed herein. Our results depict that calibration data 
transformations significantly influence parameter and predictive uncertainty estimates. Data 
transformations that distort the temporal distribution of calibration data, such as flow duration 
curve, normal quantile transform, and Fourier transform, considerably deteriorate the 
identifiability of hydrological model parameters derived in a formal Bayesian framework with a 
residual-based likelihood function. Other transformations, such as wavelet, BoxCox and square 
root, while demonstrating some merits in identifying specific model parameters, would not 
consistently improve predictive capability of hydrological models in a single objective inverse 
problem. Multi-objective optimization schemes, however, may present a more rigorous basis to 
extract several independent pieces of information from different data transformations. Finally, 
data transformations might offer a greater potential to evaluate model performance and assess 
specific sections of model behavior, than to calibrate models in a single objective framework. 

Keywords: data transformation, hydrological signatures, Bayesian inference, MCMC, parameter identifiability, 
prediction reliability. 

1 Introduction and Scope 

Rainfall-Runoff (RR) models are simplified representations of complex bio-geophysical processes in a watershed 
transforming climatic forcing into runoff that emanates from catchment outlet [Zhang et al., 2012, Sadegh et al., 2015, 
Tasdighi et al., 2017]. Such models are utilized for two general purposes: scientists scrutinize them to better understand 
hydrological behavior of watersheds, and engineers utilize them as predictive tools for decision making and policy 
planning [Jakeman et al., 2006]. Parameters of (conceptual) hydrological models are often not directly measurable, at 
the scale of interest, and need to be tuned to optimally fit model simulations to measured data [Yapo et al., 1996, 
Reshma et al., 2015]. 

There is an extensive body of literature on optimization, parameter estimation, and uncertainty analysis methods 
[Thiemann et al., 2001; Reed et al., 2003; Tolson and Shoemaker, 2007], but input, structural and measurement errors 
overburden the identifiability of unbiased parameter distributions. Such errors lack an inherent probability distribution 
that can inform formulation of an explicit likelihood/objective function [Vrugt and Sadegh, 2013]. The commonly 
used likelihood/objective functions in the literature are based on some assumptions regarding error residuals [Sadegh 
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and Vrugt, 2014]. In order to satisfy these assumptions, a common practice is to transform simulated and observed 
data or error residual time series prior to evaluating the objective function [McInerney et al., 2017]. Data 
transformation is usually adopted either to satisfy predefined assumptions about the distribution of a time series of 
data [Dotto et al., 2014; Madadgar and Moradkhani, 2014], or to efficiently extract desired information from data that 
highlight different aspects of model behavior in a given domain [Bennett et al., 2013]. 
 
Signature-based analysis proposed by Gupta et al. [2008] suggests hydrological models should be calibrated against 
historical data presented in a “context” rather than their original (raw) format. Gupta et al. [2008] argue that “data” is 
not identical to “information”. “Information” is one’s understanding of the data presented through a filter of a 
“context”. The appropriate “context” yields most relevant information of the observations which has “clear and 
compelling diagnostic power” to reconcile a model with measurements [Gupta et al., 2008]. This has been postulated 
as a potentially beneficial approach to calibrate models, and to ensure models are able to mimic key characteristics of 
the hydrological system of interest. 
 
This paper aims to evaluate if data transformations can help better understand hydrological behavior of watersheds, 
and consequently improve information extraction from available calibration data in a Bayesian framework. In this 
study, a range of commonly used transformations with widespread applications in hydrological modeling have been 
scrutinized, including square root, BoxCox, flow duration curve and normal quantile transformations, as well as 
spectral and wavelet spectral analysis. For each different transformation the posterior parameter distributions of 
hydrological models are estimated using a state-of-the-art hybrid-evolution Markov Chain Monte Carlo (MCMC) 
algorithm within a Bayesian framework. Posterior model parameter and prediction distributions are employed to 
assess the applicability of each data transformation. Two lumped conceptual hydrological models, namely GR4J and 
HyMod, are used to analyze three catchments in the United States. Overall, our results show while some 
transformations might offer promise to improve model parameter identifiability and predictive capability, a multi-
objective framework is necessary to harness all available independent pieces of information obtained from different 
transformations as suggested by Yilmaz et al., [2008]. Moreover, some data transformations, such as flow duration 
curve, normal quantile, and Fourier transform, leave detrimental imprints on the inverse modeling results in a formal 
Bayesian context. 
 

2 Materials and Methods 
 
In a common forward modeling practice, a set of describing equations and physical constraints are used to simulate 
the response of a system to a cohort of drivers. A rainfall-runoff model, 𝑀𝑀, for example, translates a set of inputs, 𝑰𝑰�, 
including precipitation, 𝑷𝑷�, and potential evapotranspiration, 𝑷𝑷𝑷𝑷𝑷𝑷� , to streamflow, 𝑫𝑫, at the catchment outlet given a 
parameter set, 𝜽𝜽: 

𝑫𝑫 = 𝑀𝑀�𝜽𝜽, 𝑰𝑰�� + 𝒆𝒆.           (1) 

In this equation, 𝒆𝒆 represents error residuals stemming from the difference between model hypothesis, 𝑀𝑀, and the 
underlying “true” unknown streamflow generating process, 𝐾𝐾, as well as input, calibration data and parameter errors 
[Sadegh and Vrugt, 2013]. 
 
We wish to estimate model parameters, 𝜽𝜽, through an optimization algorithm that tune them to minimize the 
discrepancy between model simulation, 𝑫𝑫, and streamflow observation, 𝑫𝑫� . 
 
2.1. Bayesian Inference 
 
Bayesian inference systematically incorporates new information, as they become available, to update the probability 
of a hypothesis [Bae et al., 2017]. Bayes’ theorem conveniently assumes model parameters are the sole source of 
uncertainty, and estimates posterior probability of a hypothesis, 𝑝𝑝�𝜽𝜽,𝑫𝑫��, through multiplication of prior probability, 
𝑝𝑝(𝜽𝜽), likelihood value, 𝐿𝐿(𝜽𝜽|𝑫𝑫�), and inverse of evidence, 𝑝𝑝(𝑫𝑫�), 

𝑝𝑝�𝜽𝜽,𝑫𝑫�� =  𝑝𝑝(𝜽𝜽)𝐿𝐿(𝜽𝜽|𝑫𝑫�)
𝑝𝑝(𝑫𝑫�)

.          (2) 

In this equation, evidence, 𝑝𝑝(𝑫𝑫�), is a constant value, and can be conveniently excluded from the formula if estimation 
of posterior probability of the hypothesis is merely intended, 
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𝑝𝑝�𝜽𝜽,𝑫𝑫��  ∝  𝑝𝑝(𝜽𝜽)𝐿𝐿(𝜽𝜽|𝑫𝑫�).          (3) 
 
In the field of environmental science, it is a common practice to assume a uniform prior distribution for model 
parameters,𝑝𝑝(𝜽𝜽), in the absence of any useful information [Thiemann et al., 2001]. Likelihood function 𝐿𝐿(𝜽𝜽|𝑫𝑫�) 
characterizes the distance between model simulations and observations. There is a lot of discussion in the literature 
on how to formulate the likelihood function that sufficiently describes the probabilistic characteristics of forcing, 
model, and calibration data errors [Schoups and Vrugt, 2010]. However, a simple likelihood function that assumes 
error residuals are uncorrelated, homoscedastic, Gaussian distributed with zero mean is probably most widely used in 
the field of hydrology and environmental science [Thyer et al., 2009]. Such a residual-based Gaussian likelihood 
function is formulated as, 

𝐿𝐿�𝜽𝜽�𝑫𝑫�� =  ∏ 1
�2𝜋𝜋𝜎𝜎�2

𝑛𝑛
𝑡𝑡=1 exp �− 1

2
𝜎𝜎�−2��̃�𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡(𝜽𝜽)�2�,       (4) 

where 𝜎𝜎� signifies measurement error, 𝑛𝑛 denotes length of observational data, and �̃�𝑑𝑡𝑡  and 𝑑𝑑𝑡𝑡(𝜽𝜽) represent observed 
and simulated streamflow at time 𝑡𝑡. 
 
Analytical solution to the Bayes’ equation is not always warranted. Hence, a numerical solution is often required to 
estimate the posterior distribution of model parameters given the observed data. Markov Chain Monte Carlo (MCMC) 
simulation has emerged as a powerful statistical tool to sample from high dimensional, multimodal, complex 
distributions [Andrieu and Thomas, 2008], and can be readily applied to solve the Bayes’ rule. In this paper, we 
employ the state-of-the-art hybrid-evolution MCMC algorithm of Sadegh et al., 2017 (Algorithm 1) that utilizes 
adaptive proposal distributions, namely Adaptive Metropolis (AM), Differential Evolution (DE), and snooker update, 
to search the prior space. 
 
In words, this algorithm starts as random search with 20 ∗ 𝑑𝑑 samples (𝑑𝑑: number of model parameters) selected 
through Latin Hypercube Sampling (LHS). These samples then drive the RR model and calculate the associated 
likelihood value. Next step is to randomly assign these samples to 𝑁𝑁 = 2 ∗ 𝑑𝑑 complexes, in which the best sample 
(highest likelihood) is selected as the starting point for Markov chains. Then, parallel (with a probability of 90%) and 
snooker (with a probability of 10%) direction updates are employed to propose new samples, acceptance/rejection of 
which is determined through Metropolis ratio. To diversify the jump algorithm, we assign one chain to use Adaptive 
Metropolis and the rest to employ Differential Evolution. Finally, Gelman-Rubin ℛ�  statistics is used to monitor the 
convergence of Markov chains [Gelman and Rubin, 1992]. 
 
2.2 Data Transformations 
 
In principle, there are infinite number of data transformations. In this paper, we restrict our attention to six commonly 
used class of transformations in the field of hydrology. 
 
2.2.1 Square Root Transformation 
 
Square root transformation is a simple square root of the discharge data, which help decrease the dominant effects of 
peak events in the calibration process, and is denoted by SQRT hereafter. 
 
2.2.2 Flow Duration Curve Transformation 
 
Flow duration curve (FDC) is a cumulative distribution function that depicts the relationship between magnitude of a 
certain flow event and its frequency. The FDC transformation exhibits the percentage of time that discharge equals or 
exceeds a particular value, and associates each discharge value to an exceedance probability [Vogel and Fennessey, 
1994]. 
 
According to Vogel and Fennessey, 1994, “FDC provides a simple, yet comprehensive, graphical view of the overall 
historical variability associated with stream-flow in a river basin”. However, removing temporal order of events can 
be regarded as a potential drawback of this transformation. In the field of hydrology and water resources, FDCs are 
widely used for planning purposes [Searcy, 1959; Gordon et al. 1992]. 
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Computing FDC involves the following steps: 

1) Sort discharge values in a descending order and rank them 1 to 𝑛𝑛 (sample size). 

2) Compute exceedance probability associated with each discharge value: 

𝑃𝑃 = 100 × 𝑖𝑖𝑡𝑡
𝑛𝑛+1

,           (6) 

in which, 𝑖𝑖𝑡𝑡 is rank of discharge 𝑑𝑑𝑡𝑡. 
 
2.2.3 Normal Quantile Transformation 
 
Normal Quantile Transform (NQT), also referred to as Inverse Normal Score, is a strong statistical method to alter the 
form of a cumulative distribution, 𝑝𝑝(𝑫𝑫 ≤ 𝑑𝑑𝑡𝑡), in the field of hydrology [Hosking and Wallis, 1998]. NQT is usually 
denoted as [Montanari and Brath, 2004]: 

𝑁𝑁𝑃𝑃(𝑡𝑡) = 𝑄𝑄−1[𝑝𝑝(𝑫𝑫 ≤ 𝑑𝑑𝑡𝑡)]          (7) 

In which 𝑁𝑁𝑃𝑃(𝑡𝑡) is the modified Gaussian distribution, 𝑝𝑝(𝑫𝑫 ≤ 𝑑𝑑𝑡𝑡) is the marginal cumulative distribution of variable 
𝑑𝑑𝑡𝑡, and 𝑄𝑄−1 represents the inverse of the standard normal distribution. We follow Montanari and Brath [2004] in 
implementing NQT: 

1) Compute cumulative frequency 𝐹𝐹(𝑑𝑑𝑡𝑡) based on Weibull plotting position: 

𝐹𝐹(𝑑𝑑𝑡𝑡) = 𝑖𝑖𝑡𝑡
𝑛𝑛+1

.            (8) 

2) Compute normal quantile 𝑁𝑁𝑃𝑃(𝑡𝑡) for each frequency 𝐹𝐹(𝑑𝑑𝑡𝑡), and assign it to the associated 𝑑𝑑𝑡𝑡. 
 
2.2.4 BoxCox Transformation 
 
BoxCox transformation is a strong tool to eliminate the heteroscedasticity of data and stabilize the variance of a time 
series [Sorooshian and Dracup, 1980, McInerney et al. 2017]. Heteroscedastic model residuals are prevalent in 
hydrological modeling, in contrast to the homoscedasticity assumption of the statistical inference approaches. To solve 
this problem, and to alleviate the assumption of Gaussianity, it is assumed that there is a BoxCox transformation with 
an unknown parameter 𝜆𝜆 that generates a set of more likely normally distributed values with 𝑁𝑁 constant variances. 
BoxCox transformation is defined for positive values as [Box and Cox, 1964]: 

𝑑𝑑𝑡𝑡
(𝜆𝜆) = �

(𝑑𝑑𝑡𝑡
𝜆𝜆−1)
𝜆𝜆

,                when    λ≠0  
log(𝑑𝑑𝑡𝑡),             when    λ=0

.        (9) 

 
Our investigation showed that choice of 𝜆𝜆 = 0.3 is proper to stabilize the total error variance and reduce 
heteroscedasticity, confirming previous studies of  Misirli et al. [2003]; and Vrugt et al. [2006]. Note that 𝜆𝜆 = 0 and 
𝜆𝜆 = 0.5 simplify BoxCox transformation to Log and scaled SQRT transformations. 
 
2.2.5 Spectral Analysis 
 
One can adjust model parameters so that spectral properties of model simulations fit spectral properties of 
measurements, instead of fitting in the temporal domain [Pauwels and De Lannoy, 2011]. It is specifically useful in 
the case of scarce data or ungauged basins, as spectral properties of a process can be obtained through analyzing 
scarce, old and non-overlapping data [Montanari and Toth 2007]. Calibration in the spectral domain has been 
implemented by several researchers in the field of hydrology [Quets et al., 2010; Pauwels and De Lannoy, 2011]. 
 
Spectral properties can be computed through Fourier transform, 𝐹𝐹(𝑑𝑑𝑡𝑡), of time series of observations and simulations. 
In case of constant time step measurements and no missing data, one can use a Fast Fourier Transform (FFT) to 
decompose a time series to its spectral components. In our study, we use FFT to change the time domain into frequency 
domain. Fourier amplitude spectra of a variable is estimated through FFT, which is in turn defined as: 

𝑋𝑋𝑘𝑘 = ∑ 𝑑𝑑𝑡𝑡𝜔𝜔𝑡𝑡×𝑘𝑘𝑛𝑛−1
𝑡𝑡=0       𝑘𝑘 = 0,1,2, … ,𝑛𝑛 − 1

𝜔𝜔 = 𝑒𝑒
−2𝜋𝜋𝜋𝜋
𝑛𝑛                                                          

        (10) 
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in which, 𝑋𝑋𝑘𝑘 is the Fourier amplitude of the 𝑘𝑘th harmonic wave. To keep at least two samples for each wavelength, 
highest harmonic (𝑘𝑘) in this formula is chosen to be less than 𝑛𝑛

2
 [Quets et al., 2010], 𝑛𝑛 being length of measurement 

data. We calibrate hydrological models in the spectral domain following suggestions of Quets et al [2010]; and 
Pauwels and De Lannoy [2011] using Fourier amplitude spectra (denoted by FFT). 
 
2.2.6 Wavelet Spectral Analysis 
 
Wavelet analysis provides time localized power spectra for each frequency/scale [Lane 2007], as opposed to spectral 
analysis which yields a power spectrum for each frequency and loses time localization. Wavelet transform is able to 
decompose a signal into scaled and translated versions of a mother wavelet which are defined in a three-dimensional 
space: time, scale/frequency and power [Lafrenière and Sharp, 2003]. As stated by Dhanya and Kumar [2011], 
“localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of 
the statistical properties of the observed data.”  Wavelet spectral analysis has become a very attractive tool in the field 
of hydrology to identify and analyze scale variability, long term oscillation and cycles of hydrological data [Labat et 
al., 2005; Dhanya and Kumar, 2011]. 
 
Continuous wavelet transformation of a discrete time series, 𝑑𝑑𝑡𝑡, with respect to a pre-specified wavelet function 𝑔𝑔(𝑡𝑡) 
is defined as [Torrence and Compo, 1998]: 

𝑊𝑊𝑡𝑡(𝑠𝑠) = ∑ 𝑑𝑑𝑡𝑡′ 𝑔𝑔∗ �
�𝑡𝑡′−𝑡𝑡�

𝑠𝑠
𝛿𝛿𝑡𝑡� ,𝑛𝑛−1

𝑡𝑡′=0          (11) 

where, 𝑔𝑔∗ represents a complex conjugate of wavelet function 𝑔𝑔, and 𝑠𝑠, 𝑡𝑡 and 𝛿𝛿𝑡𝑡 denote scale, time and measurement 
resolution, respectively. The so-called convolution (equation 11) should be repeated 𝑛𝑛 times for each scale, where 𝑛𝑛 
is the dimension of the time series. It is worth mentioning that wavelet transform can be implemented much faster in 
the Fourier space than the original domain. 
 
Two forms of wavelets namely Morlet wavelet (complex) [Lafrenière and Sharp, 2003; Labat et al., 2005] and 
Mexican Hat wavelet (real) [Lane, 2007] are most commonly in use in hydrological studies. These two wavelet 
functions will be utilized in this study.  It is a common practice to use a set of scales to generate a more comprehensive 
representation of the data set. Choice of scales for a wavelet transformation is arbitrary, and different suggestions can 
be found in the literature in this regard [Torrence and Compo, 1998; Lane, 2007]. A rough estimate of minimum scale 
for Morlet wavelet is 𝑠𝑠min = 2.06𝛿𝛿𝑡𝑡 and maximum scale is 𝑠𝑠max < 𝑛𝑛

2𝜖𝜖
𝛿𝛿𝑡𝑡 [Lane 2007]. Here, 𝛿𝛿𝑡𝑡 and 𝜖𝜖 denote 

measurement resolution and cone of influence, respectively. 𝜖𝜖 is here set to √2𝑠𝑠  for both Morlet and Mexican Hat 
wavelets [Torrence and Compo, 1998]. Cone of influence represents the edge effect of data transformation. Due to 
inherent cyclic assumption of data in wavelet transformation, it does not yield accurate transformed values for the 
edge parts of a time series. In order to alleviate the impacts of edge effect errors, we followed Torrence and Compo 
[1998] to pad zeros to both sides of time series before applying the transformation. Added values are cut off afterwards. 
 
In order to satisfy the computational efficiency, one can choose a set of integer scale values between the minimum 
and maximum thresholds [Lane, 2007]. Our investigations show a scale set of {2, 4, 8, 16, 32} seems appropriate to 
represent almost all features of our data set. Each scale provides a wavelet spectra series that complies with the length 
of the raw data set. In order to compare measurements with simulation results in our objective function, all the wavelet 
spectra with different scales are appended in one vector of length 𝑚𝑚 ∗ 𝑛𝑛, in which 𝑛𝑛 is the length of measurement data 
and 𝑚𝑚 is the number of scales (in our study 𝑚𝑚 = 6 
 
2.3 Rainfall-Runoff Models 
 
2.3.1 HyMod Model 
 
HyMod is a five-parameter parsimonious conceptual RR model, developed by Boyle [2001]. HyMod has been 
extensively used in the field of hydrological science. This model consists of a nonlinear soil moisture storage 
compartment and two parallel series of linear reservoirs, forming a total of five storage compartments. Soil moisture 
storage processes evapotranspiration and excess rainfall, and feed the parallel slow (one storage compartment) and 
quick (three serial storage compartments) routing reservoirs. Input forcing of this model include mean areal 
precipitation and potential evapotranspiration, and its outputs are simulated streamflow discharge and 
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evapotranspiration. For the sake of brevity, we refrain from explaining the model in more details and refer interested 
readers to Gharari et al. [2013] for more information. A schematic representation of HyMod is provided in Figure 1, 
and a short description of its parameters along with their feasible ranges are provided in Table 1. 
 
2.3.2 GR4J Model 
 
Perrin [2000] introduced GR4J as a parsimonious RR model with a great flexibility to simulate a wide range of 
watersheds’ response to mean areal precipitation and potential evapotranspiration forcing. GR4J consists of two 
storage compartments and a few transfer functions that are governed by a total of four tunable parameters and two 
fixed scalars. GR4J satisfies evapotranspirative demand first, and then routes net rainfall through a storage 
compartment (production store) that feeds two unit-hydrograph (UH) based transfer functions. One UH then feeds the 
routing store, whereas the other directly routes water to the catchment outlet. For a schematic representation of the 
GR4J model see Figure 1, and for a detailed description refer to Perrin et al. [2003]. Table 2 provides a short 
description of the GR4J parameters along with their feasible ranges. 
 
2.3.3 Snow Module 
 
A snow module is used in this study to classify precipitation into snow and rainfall categories based on observed 
temperature, before driving RR models. Precipitation accumulates as snow, if mean daily temperature is less than a 
freezing threshold, 𝑇𝑇0, and pass as rainfall when temperature is above the freezing threshold (𝑇𝑇0 = 0 degree Celsius, 
in this study). Snow melts based on a tunable degree-day factor parameter, and cumulative sum of snowmelt and 
rainfall drives the RR model(s). For more details regarding the snow module, refer to AghaKouchak and Habib [2010]. 
 
2.4 Case Studies 
 
In this study, we analyze three watersheds from the MOPEX dataset with different hydrological behavior, including 
French Broad river catchment near Newport, Tennessee, U.S. (USGS ID: 03455000), Skykomish river catchment near 
Gold Bar, Washington, U.S. (USGS ID: 12134500), and Rogue river at Raygold near Central Point, Oregon, U.S.  
(USGS ID: 14359000). Historical data consists of daily mean areal precipitation (mm/day), potential 
evapotranspiration (mm/day), maximum and minimum daily temperature (℃) and streamflow (m3/s). Table 2 presents 
a concise description of these watersheds’ hydrological characteristics. We calibrate GR4J and HyMod RR models 
against five years of observed data (01/01/1949-12/31/1953) from each watershed, and evaluate the calibrated models 
against five years of out of sample independent observations (01/01/1954-12/31/1958). 
 
Bayesian inference was repeated for each model and watershed with all the aforementioned data transformations. In 
a quest for sufficient hydrological signatures, we transform observed and simulated streamflow data prior to likelihood 
evaluation. To further investigate the influence of data transformation on Bayesian inference, we also evaluate the 
performance of each transformation for synthetic data. We generate time series of synthetic data with known randomly 
selected parameter sets for each model and each watershed. These synthetic observations are in turn corrupted with a 
red noise (random error series drawn from a Gaussian distribution centered at zero with a variance of 20% of original 
flow values) to represent real-world errors. Similar time periods as that of the real-world observations are used for 
Bayesian analysis of the synthetic data. 
 

3 Results and Discussion 
 
In this section, we present results of numerical simulation of French Broad, Skykomish, and Rogue river basins with 
GR4J and HyMod models. Posterior distribution of model parameters for each watershed is inferred using a state-of-
the-art hybrid-evolution MCMC algorithm with 35,000 function evaluations with 5 chains, through calibration against 
synthetic and real-world observed data. Last 20% draws of Markov chains, satisfying the 𝑅𝑅�  convergence criteria 
[Gelman and Rubin, 1992] were used to construct the posterior distributions, which are in turn used for predictive 
analysis. 
 
In this study, we used a likelihood function based on a simple quadratic objective function of Sum of Square Residuals 
(equation 3) to minimize the influence of complex objective function assumptions on the posterior results; and to 
ensure that results are maximally reflecting the impacts of data transformations. We acknowledge that the underlying 
assumptions of our likelihood function (residuals being uncorrelated, homoscedastic, Gaussian distributed with mean 
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zero) influence the posterior results, but this is minimal compared to other choices. More complex objective functions 
would interact with data transformations, leaving detection of the pure impacts of data transformations very difficult, 
if not impossible. 
 
3.1 Synthetic Case Studies 
 
Figure 2 depicts posterior distribution of maximum capacity of the production store parameter (S1max) of GR4J 
calibrated against synthetic data of French Broad river catchment, using different data transformations. The “true” 
parameter value (used to generate the synthetic data) is portrayed in each plot with a red square. Each plot shows the 
results of one data transformation, as described in the title. Most conspicuous in this figure is the distorted posterior 
distributions of S1max in cases of FDC and FFT transformations. Indeed, FDC’s results show multimodality in 
posterior S1max parameter distribution, and FFT derived parameters are limited to a few samples. Latter observation 
might suggest that MCMC has reached premature convergence for the FFT transformed data, but a closer look (not 
presented herein) shows that Markov chains representing S1max parameter indeed have explored the entire prior space 
and converged to a few points without much diversity. We attribute this behavior to the impact of FFT transformation 
in distorting the information content of data, which in turn is manifested in rejecting almost all the proposed samples. 
 
It is also noticeable in Figure 2 that the posterior distributions of S1max parameter derived with no transformation 
(None), as well as BoxCox, SQRT and NQT transformations encompass “true” parameter value, demonstrated with 
red box in each plot. It is interesting that the mode of distribution, which represents the parameter with highest 
likelihood, coincides with the true parameter value using NQT transformation. This is a desired behavior, but further 
investigation of the results of NQT transformation reveals that the overall influence of this transformation is disruptive 
on the calibration results. We will revisit this issue later in this section. SQRT transformation and original data (no 
transformation) are both able to nicely recover the “true” posterior distribution of this parameter, with the most likely 
parameter (mode of the distribution) closely positioned around the “true” parameter value. Posterior distributions 
derived by both wavelet transformations (Mexican Hat, MexH, and Morlet, Morl, wavelets), on the contrary, fail to 
encompass the “true” parameter value. It is noteworthy, however, that posterior distributions of these transformations 
are very tight, partially explaining why wavelet transformation did not recover the “true” parameter value. Indeed, 
both wavelet transformations, in the employed format, significantly reduce the variance of the posterior parameter 
distribution for all watersheds and both models. 
 
Similar conclusions can be drawn for the HyMod model’s results. Figure 3 presents the residence time of quick flow 
reservoir (Rq) parameter of the HyMod model, calibrated against five years of synthetic data from the Skykomish 
river catchment in Washington, U.S. For this parameter, results of the original data (no transformation), as well as 
BoxCox and SQRT transformations nicely converge to the “true” parameter value, with distribution mode coinciding 
with the “true” parameter. NQT transformation also returns a desirable posterior distribution, whereas FDC and FFT 
transformations distort the parameter distributions, as also observed in Figure 2. Expectedly, Mexican Hat wavelet 
transformation derives a tight distribution without encompassing the “true” parameter value. Morlet wavelet 
transformation, however, shows a surprising behavior in yielding a bimodal posterior distribution with its mode 
coinciding with the “true” parameter value. 
 
Figure 4 shows the marginal distribution of the residence time of slow flow reservoir (Rs) parameter of the HYMOD 
model calibrated against synthetic data from the Rogue river basin in Oregon, U.S. SQRT transformation helps identify 
the “true” parameter value of Rs, while mode of posterior distribution of Rs derived with the original data and other 
transformations do not coincide with the “true” parameter value. Rs governs baseflow generation in HyMod, impacts 
of which are accentuated using the SQRT transformation. 
 
To further analyze the impacts of data transformation on the predictive performance of GR4J and HyMod models, 
Table 3 presents 95% predictive uncertainty ranges due to parameter and total uncertainty of the GR4J model for the 
Skykomish river catchment. This table also details the associated coverage of synthetic streamflow observations in 
the 95% parameter and total predictive uncertainty ranges, as well as root mean square error (RMSE) associated with 
best parameter set, and mean RMSE of model predictions driven by posterior parameters. These results also depict 
poor performance of FFT and FDC transformations in terms of predictive performance of the calibrated GR4J model. 
Best and mean RMSE values for both transformations in calibration and evaluation periods are significantly higher 
compared to the original data results. In more details, best RMSE value of FDC and FFT transformations manifest 
values of 118.30 and 94.30 m3/s, respectively, compared to that of 78.82 m3/s for the original data in the calibration 
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period. Coverage of synthetic observed streamflow in 95% predictive uncertainty ranges is also poor for both 
transformations. FDC and FFT’s total predictive uncertainty ranges cover 87.02% and 90.42% of observations, 
whereas the original data results cover 93.54% of observed data. Note, however, that the total predictive uncertainty 
ranges for these two transformations are also marginally smaller than that of the original data (None). 
 
Mexican Hat and Morlet wavelet transformations return comparable results in terms of best and mean RMSE in both 
calibration and evaluation periods to that of the original data. This moderates the concerns regarding the posterior 
parameter distribution of the wavelet transformed data not coinciding with the “true” parameter values seen in Figures 
2-4. However, in terms of predictive uncertainty ranges due to parameter uncertainties, both wavelet transformations 
return much tighter uncertainty ranges compared to the original data results in both calibration and evaluation periods 
(2.97 [2.97] m3/s for Mexican Hat and 7.78 [8.01] m3/s for Morlet wavelets, as opposed to that of 12.37 [12.46] 
m3/s for original data; evaluation period statistics are presented within brackets). This is accompanied with lower 
coverage of observed data (2.41% [1.92%] for Mexican Hat and 6.52% [5.59%] for Morlet wavelets, as opposed to 
that of 8.93% [7.56%] for original data; evaluation period statistics are presented within brackets), which shadows the 
superiority of tighter predictive uncertainty ranges of the wavelet transformed analysis. NQT transformation, contrary 
to the results of Figures 2-4, show a much higher 95% predictive uncertainty range due to parameter impacts compared 
to that of the original data (37.56 [39.83] m3/s versus 12.37 [12.46] m3/s), which is associated with higher coverage 
in the predictive uncertainty range. Higher best and mean RMSE values for NQT analysis compared to that of the 
original data (84.29 [88.02] m3/s versus 78.82 [80.41] m3/s), however, conclusively manifest the disruptive impacts 
of NQT transformation on Bayesian inference. Finally, SQRT and BoxCox transformations show a rather similar 
behavior to that of the original data in terms of predictive uncertainty ranges, and coverage of observed data within 
the 95% uncertainty range. RMSE values associated with the BoxCox and SQRT transformations are expectedly 
marginally higher than that of the original data, since they highlight sections of the streamflow distribution that might 
not necessarily hold highest weight for RMSE computation. Likelihood function of equation 3 intrinsically minimizes 
RMSE, and hence Bayesian inference with this objective function and original data yields the most preferred RMSEs. 
 
3.2 Real-world Case Studies 
 
We now focus our attention on the results of analyzing real-world data from these three watersheds. Figure 5 presents 
the convergence speed of MCMC simulation of GR4J model for the Rogue river catchment in terms of minimum 
RMSE in a moving window of 50 Markov chain samples. This figure reveals that MCMC simulation with original 
data (black solid line, “None” in the legend) converges to its stable state faster than any transformation-based analysis. 
 
Figure 5 also confirms our previous findings that FDC and FFT transformations distort information extraction from 
calibration data, leaving the model performance significantly inferior to that of the original data.  FDC transformation 
not only converges to a higher RMSE than other transformations and results in higher uncertainty spread, but also 
shows an erratic behavior in its convergence when calibration is repeated several times (results not shown herein). 
This behavior can be interpreted by time disaggregation property of FDC that prompts a substantial loss of information 
in the calibration procedure. Recent literature has shown a lot of interest in using FDC as one important hydrological 
signature for model inference and analysis purposes [Westerberg et al., 2011; Sadegh et al., 2016], but our results 
show that FDC is inadequate as main descriptor of hydrological behavior of watersheds.  Moreover, our results both 
for real and synthetic data and for both models show that FFT transformation degrades model performance in the time 
domain. We also attribute this behavior to the loss of information associated with temporal disaggregation in FFT 
transformation, as observed for FDC. 
 
Poor performance of NQT transformation is most conspicuous in Figure 5, in which RMSE decreases to around 50 
m3/s in the beginning of the MCMC search, but then increases as search algorithm progresses, and converges to about 
70 m3/s. This is much higher than the best RMSE value of roughly 45 m3/s derived from model inference with the 
original data. Such behavior is explained by distortion of information content of calibration data through NQT 
transformation, which shadows parameter identifiability and degrades model performance. The SQRT and BoxCox 
transformations, in agreement with the results of synthetic analyses, both expectedly converge to a slightly higher 
RMSE than that of the original data 
 
To further demonstrate the influence of data transformations on model inference, Table 4 details the model 
performance in the calibration and evaluation periods for the GR4J model calibrated against real-world historical data 
from the Rogue river catchment. Expectedly, inferred model realization with original data outperform all data 
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transformation runs in terms of best and mean posterior RMSE in the calibration and evaluation periods, with one 
exception in the evaluation period in which Mexican Hat wavelet results marginally outperform the original data in 
terms of both best and mean posterior RMSE. This is a rather interesting result showing the consistency of model 
performance derived from wavelet analysis (with Mexican Hat mother wavelet) over the calibration and evaluation 
periods. Indeed, wavelet analysis shows a great promise, compared to other data transformations in this study, to 
improve model inference practice. However, given the results of synthetic analysis (Figures 2-4), in which posterior 
parameter distributions from the wavelet transformation analysis do not encapsulate the “true” parameter value, we 
suggest retaining a level of caution in employing wavelet transformed data as sole source of information in the model 
data synthesis practice. 
 
It is also noticed in the calibration period that SQRT and BoxCox results are marginally superior to that of original 
data in covering a higher percentage of observation data in the 95% parameter predictive uncertainty ranges (10.24% 
and 10.13% for SQRT and BoxCox, respectively, versus 5.37% for the original data). Moreover, SQRT’s results are 
superior to that of BoxCox, since a higher rate of coverage (10.24% for SQRT versus 10.13% BoxCox) is obtained in 
a smaller predictive uncertainty spread (7.84 m3/s  vs 9.13 m3/s). The superiority of SQRT and BoxCox 
transformations over original data, however, does not hold in the evaluation period, as results of the original data 
analysis outperform their SQRT and BoxCox transformed counterparts in coverage of observed streamflow in the 
95% parameter predictive uncertainty range (8.38% for the original data, versus 7.17% for SQRT and 5.31% for 
BoxCox). FDC, FFT and NQT transformations, as expected, consistently deteriorate model performance in terms of 
predictive uncertainty ranges and associated coverage of observational data, as well as best and mean posterior RMSE. 
 
To sum up, the choice of data transformation requires much attention. Data manipulation may not significantly help 
extract information more readily from the data, and the major influencing source of information for the calibration 
remains the original (raw) data. Some data transformations such as SQRT and BoxCox might improve model 
predictive performance in the calibration period, but this superiority does not extend to the evaluation period. Other 
transformations, such as wavelet families, reduce posterior parameter uncertainty ranges at the expense of not 
encapsulating the “true” parameter value (as in synthetic studies). Finally, some data transformations, such as FDC 
and NQT lose important pieces of information during the data manipulation process, returning significantly inferior 
results than that of the original data. The framework in which hydrological signatures (acquired through data 
transformation) are used for model inference also plays a pivotal role on the parameter identifiability and model 
predictive performance. Moreover, some data transformations in a single objective formal Bayesian context introduce 
parameter multimodality, and distort the marginal posterior parameter distributions. We suggest using data 
transformations within a multi-objective calibration framework that can separately capture and retain different pieces 
of information for model analysis [see also Yilmaz et al., 2008]. Finally, some data transformations might suggest 
more potential for model evaluation and analysis, than model calibration. 
 

4 Conclusions 
 
In this paper, we analyzed the impacts of data transformations on the posterior parameter distributions and predictive 
capability of rainfall-runoff models. Two relatively simple hydrological models were used to illustrate our results. Our 
analysis shows that calibrating a hydrological model in time domain, depending on the calibration framework, is 
generally superior to the spectral or wavelet spectral domains. Our results also convincingly demonstrate that 
transformations that disaggregate the temporal order of the calibration data are not recommended, as they deteriorate 
the model performance. One such transformation is FDC, which is finding increasing use in hydrological modeling as 
a hydrological signature. Sole use of this hydrological signature is not productive. Square root and BoxCox 
transformations can help solve the parameter identifiability problem, especially those parameters that hold low 
sensitivity in a quadratic objective function. It is most productive to use data transformations in a multi-objective 
optimization framework [Yilmaz et al., 2008] that can extract and retain multiple pieces of information. Finally, some 
data transformations might suggest more potential for model evaluation and analysis, rather than calibration. 
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Table 1. Parameter description of HYMOD and GR4J models, Snow Module, and their description and prior range. 
 

 Description Minimum Maximum Units 
 
HyMod 

Cmax Maximum storage in watershed 1 500 mm 
bexp Spatial variability of soil moisture storage 0.1 2.00 - 
𝛼𝛼 Distribution factor between two reservoirs 0.1 0.99 - 
Rs Residence time of slow flow reservoir 0.001 0.1 days 
Rq Residence time of quick flow reservoir 0.1 0.99 days 

 
GR4J 

S1max Maximum storage in watershed 0 1500 mm 
Exch Spatial variability of soil moisture storage -10 10 mm 

S2max Distribution factor between two reservoirs 1 500 mm 
UHB Residence time slow flow reservoir 0.5 8 days 

 
Snow Module 

DD Degree-day factor 0.01 7 mm/℃ 

 
 
Table 2. Description of watersheds used in this study, including their USGS ID, catchment area (km2), mean annual 
precipitation (P, mm), mean annual potential evapotranspiration (PET, mm), and mean annual runoff ratio (RR, -). 
 

Watershed USGS ID Area (𝐤𝐤𝐤𝐤𝟐𝟐) P (mm) PET (mm) RR (-) 

French Broad 03455000 4812.20 1402.64 771.25 0.40 

Skykomish 12134500 1385.64 2701.65 668.82 0.66 

Rogue 14359000 5317.25 1052.09 849.71 0.48 
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Table 3. Parameter and total predictive uncertainty spread (PUS and TPUS, respectively, m3/s) of 95% streamflow 
prediction ranges, and associated coverage of observation points, as well as best and mean RMSE (m3/s) of the 
posterior samples for the GR4J model calibrated against synthetic data from the Skykomish river basin. 
 

 PUS 
(m3/s) 

TPUS 
(m3/s) 

Coverage 
in PUS (%) 

Coverage in 
TPUS (%) 

Best RMSE 
(m3/s) 

Mean RMSE 
(m3/s) 

 
Calibration period 

None 12.37 225.29 8.93 93.54 78.82 78.93 
FDC 1.19 219.46 0.60 87.02 118.30 118.50 

BoxCox 10.22 206.34 6.13 93.43 81.97 84.25 
SQRT 9.66 213.74 5.70 94.41 80.44 81.45 
NQT 37.56 198.68 16.98 92.17 84.29 91.73 

MexH wavelet 2.97 219.65 2.41 93.70 78.94 79.09 
Morl wavelet 7.78 229.34 6.52 92.99 78.95 79.38 

FFT 32.49 218.33 13.03 90.42 94.30 101.74 
 
Evaluation period 

None 12.46 228.94 7.56 93.04 80.41 80.95 
FDC 1.13 220.44 0.16 86.36 113.96 114.26 

BoxCox 10.61 208.96 6.13 91.62 85.18 88.13 
SQRT 9.87 217.10 5.53 92.55 83.23 84.60 
NQT 39.83 200.40 17.96 90.69 88.02 96.96 

MexH wavelet 2.97 223.49 1.92 93.04 81.17 81.43 
Morl wavelet 8.01 233.21 5.59 93.59 80.77 80.95 

FFT 33.69 222.7 13.2 89.98 94.39 102.7 
 
 
Table 4. Parameter and total predictive uncertainty spread (PUS and TPUS, respectively, m3/s) of 95% streamflow 
prediction ranges, and associated coverage of observation points, as well as best and mean RMSE (m3/s) of the 
posterior samples for the GR4J model calibrated against real-world historical data from the Rogue river basin. 
 

 PUS 
(m3/s) 

TPUS 
(m3/s) 

Coverage in 
PUS (%) 

Coverage in 
TPUS (%) 

Best RMSE 
(m3/s) 

Mean RMSE 
(m3/s) 

 
Calibration period 

None 7.00 154.81 5.37 95.56 47.98 48.06 
FDC 2.14 159.01 2.57 94.30 55.68 56.13 

BoxCox 9.13 171.82 10.13 94.36 51.33 52.23 
SQRT 7.84 162.85 10.24 94.74 49.54 50.32 
NQT 35.73 155.85 14.07 93.76 63.49 67.66 

Mexh wavelet 5.27 155.16 2.85 95.24 49.80 50.47 
Morl wavelet 3.56 159.81 1.53 95.24 58.65 60.3 

FFT 10.94 192.04 7.28 94.74 70.91 72.76 
 

Evaluation period 
None 7.11 156.50 8.38 94.96 55.84 57.31 
FDC 2.20 160.65 2.46 93.32 68.20 69.08 

BoxCox 10.03 172.78 5.31 91.35 65.76 67.72 
SQRT 8.70 164.30 7.17 91.84 61.84 63.92 
NQT 38.69 159.72 15.39 97.43 60.82 65.16 

Mexh wavelet 6.17 157.24 5.31 96.00 53.46 53.93 
Morl wavelet 3.92 162.67 1.7 96.88 56.72 57.87 

FFT 13.17 192.53 8.11 92.77 83.41 86.46 
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Figure 1. Schematic representation of Snow Module, HyMod and GR4J conceptual RR models. 
 
 

 
 
Figure 2. Posterior distribution of first parameter (S1max, maximum capacity of the production store) of the GR4J 
model, inferred through MCMC simulation with different transformations of synthetic data from the French Broad 
river catchment. Red square on top of each plot shows the “true” parameter value used to generate the synthetic data. 
Each plot represents results of a data transformation, as described in the plot’s title. 
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Figure 3. Posterior distribution of fifth parameter (Rq, residence time of quick flow reservoir) of the HyMod model, 
inferred by MCMC simulation using different transformations of synthetic data from the Skykomish river catchment. 
Red square on top of each plot shows the “true” parameter value used to generate the synthetic data. Each plot 
represents results of a data transformation, as described in the plot’s title. 
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Figure 4. Posterior distribution of fourth parameter (Rs, residence time of slow flow reservoir) of the HyMod model, 
inferred by MCMC simulation using different transformations of synthetic data from the Rogue river catchment. Red 
square on top of each plot shows the “true” parameter value used to generate the synthetic data. Each plot represents 
results of a data transformation, as described in the plot’s title. 
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Figure 5. Evolution of moving minimum RMSE values derived from MCMC samples for the GR4J model analyzing 
the Rogue river catchment. Minimum RMSE in a sliding window of 50 Markov chain samples is presented in this 
figure, which is a proxy for the convergence speed of MCMC simulation. We only present, in this figure, the first 
10,000 iterations of the total 35,000 iterations used for inference, as Markov chains reach their stable state in this 
range. 
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