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Simulation of Cu precipitation in Fe-Cu dilute alloys with cluster mobility
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H I G H L I G H T S

• Extension of Slezov et al.'s cluster dy-
namics theory with cluster mobility

• Effects of model parameters of the new
model on precipitation kinetics

• Accurate modeling of the Cu precipita-
tion in Fe-Cu dilute alloys

• Discussion of impurity effects on Cu pre-
cipitation kinetics
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Goodman et al. (1973) 1.4 at.% Cu APT and TEM
Kampmann and Wagner (1986) 1.38 at.% Cu SANS
Lê et al. (1992) 1.32 at.% Cu TEM
Osamura et al. (1993) 1.17 at.% Cu SANS
Grande and Barbu (1994) 1.34 at.% Cu SANS and TEM
Charleux et al. (1996) 1.21 at.% Cu TEM and SAXS
Mathon et al. (1997) 1.34 at.% Cu SANS
Perez et al. (2005) 1.23 at.% Cu TEP and SAXS
Warczok et al. (2011) 1.5 at.% Cu APT and SANS
Ahlawat et al. (2019) 1.4 at.% Cu APT and SANS
This work 1.34 at.% Cu
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Cu precipitation kinetics in Fe-Cu alloys

Slezov’s cluster dynamics = −
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Cu-rich precipitates formation is associated with the precipitation hardening of Fe-Cu based steels and the em-
brittlement of reactor pressure vessel steels under neutron irradiation. The accurate modeling of the time evolu-
tion of Cu-rich precipitates is therefore of fundamental importance for the design of Fe-Cu based steels and the
prediction of the irradiation induced shift of the ductile to brittle transition temperature of reactor pressure ves-
sels. This work applies cluster dynamics with mobile Cu monomers and clusters to model Cu precipitation in di-
lute Fe-Cu alloys at several temperatures. Optimizedmodel parameters can be used to simulate themean radius,
number density, volume fraction, and matrix composition evolution during isothermal annealing with reason-
able accuracy. The possible reduction of the mobility of Cu-rich clusters due to additional alloying elements in
Fe-Cu based steels is discussed.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Precipitation of Cu-rich phases has important effects on themechan-
ical properties of Fe-Cu based steels. Cu addition is known to strengthen
structural steels due to the precipitation of Cu clusters after thermal
heat treatment [1–3], and thus Cu containing steels can provide com-
bined high strength, good impact toughness, promising weldability,
and corrosion resistance [2,3]. However, residue amount of Cu (about

0.1 at.%) in reactor pressure vessel (RPV) steels induces the formation
of fine scale Cu-rich precipitates (CRPs) under neutron irradiation
which causes an undesirable radiation embrittlement of RPVs [4–6].
The understanding of the mechanisms and kinetics of Cu precipitation
in Fe-Cu based steels under both thermal aging and irradiation is, there-
fore, of fundamental importance in the further advancements of various
technological applications.

Developing physical model to predict the precipitation kinetics of
CRPs and further the mechanical properties of Fe-Cu based steels is
one of the key approaches to gain insight into the role of Cu in Fe-Cu
based steels. A fundamental step is to develop precipitation model for
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Cu in dilute body centred cubic (bcc) Fe solution, and as a representative
problem for precipitation modeling, there are many previously devel-
oped mesoscale models for Cu precipitates evolution in bcc Fe. More
specifically, previous mesoscale approaches include the modified
Langer and Schwartz (MLS) method [7], the Kampmann and Wagner
numerical (KWN) model [8,9], the cluster dynamics (CD) models
[10–18], and other precipitation models [19–21].

However, most of these simulation works [7,8,10,12,14,16,17,19–21]
cannot accurately and simultaneouslymodel the time evolution of all the
precipitation properties including number density, matrix composition,
mean radius, aswell as volume fraction. This issue stems from the nature
of Cu precipitation kinetics in bcc Fe. Instead of forming the so-called

“growth region”with the rate law of R∝t
1
2, the experimentally measured

mean radius of Cu precipitates follows the R∝t
1
3 growth law starting at

the very early aging stage [8,22]. This feature agrees with the growth
lawof the “coarsening region” as predicted by the Lifshitz-Slyozov-Wag-
ner (LSW) theory [23,24]. In fact, to mitigate the difference between the
model-predicted and measured mean radius of Cu precipitates, large
values of Cu diffusivity (typically 10−18 to 10−19 m2/s at 500 °C, which
is about 102 to 103 times larger than the expected value according to ex-
periments) were used to shift the predicted coarsening region to an ear-
lier time to match the experimental data [7,10,12,14,18–20]. Even with
this unreasonable Cu diffusivity, these modeling works still generally
predicted lower coarsening rates than experiments and/or erroneous
volume fraction of Cu precipitates at the early aging stage.

Recent kinetic Monte Carlo (kMC) simulations by Soisson and Fu
[25] indicated that lacking the physics of Cu cluster mobility is a likely
source of the issues seen in many models of Cu precipitation. Jourdan
et al. [15] demonstrated that the CD theory with mobility of Cu clusters
can model the kinetics of CRPs formation in Fe-Cu alloys with an exam-
ple alloy Fe-1.34 at.% Cu at 500 °C. Even though the agreement to the ex-
perimental precipitation kinetics was substantially improved, their
model parameters were only fitted to the kMC results as derived by
Soisson and Fu [25] and comparison to additional experimental data
sets would be useful to demonstrate that all the physics is really in the
model. In a more detailed work, Stechauner and Kozeschnik [9] took
into account the physics of particle coalescence and showed an accurate
modeling of Cu precipitation in bcc Fe, however, they used the KWN
model. Although the KWN model has much higher computational effi-
ciency compared to CD, it used the classical nucleation theory, and
therefore only clusters larger than the critical nucleus are considered,
and a quasi-equilibrium particle size distribution is assumed at the out-
set, and the detailed information of each sized clusters are not precisely
tracked. In addition, multiple kMC [25–31] studies had been done for Cu
cluster mobility in dilute Fe-Cu alloys, but the kMC method has many
computational challenges in treating large length and time scales.

Due to the advantage in efficient and highly flexible modeling of
large time scale evolution of complex clusters and point defects in ma-
terials, the CDmodel was extensively utilized to study the precipitation
of Cu in bcc Fe under both thermal aging and irradiation aimed to un-
derstand the precipitation kinetics of CRPs in RPV steels and other Fe-
Cu based alloys [10–18]. However, only limited experimental data sets
were utilized in these modeling works. There is little evidence that the
calibrated model parameters are representative in a wide enough com-
position and temperature range or at the service condition of RPV steels.
It should be noted that the version of CD model used by Jourdan et al.
[15] is different from that of Slezov et al. [32,33] which is widely used
particularly for multicomponent stoichiometric phase precipitation
modeling. However, the CD theory of Slezov et al. [32,33] is only limited
to monomers with mobility, thus further development of the CD theory
to include the physics of cluster mobility is required for the purpose of
multicomponent precipitationmodeling in Fe-Cu based alloys. It should
be noted that the recentwork by Liu et al. [34] combined the Slezov's CD
model with Jourdan et al.'s definition of fluxes for mobile clusters to

model cluster evolution with cluster mobility in ion-irradiated 3C-SiC
materials. However, the paper offered few details about the model
and did not provide their derivation or the resulting equations, made
it unable to serve as a foundation for the modeling of mobile clusters
in the Slezov's CD formalism.

Therefore, the goal of the present article is to develop a new CD
model for Cu evolution in bcc Fe to handle the above discussed issues.
To be specific, the model will (i) include the physics of mobile Cu clus-
ters, which has been demonstrated to play a critical role in Cu cluster
evolution, (ii) be built within the widely adopted CD framework of
Slezov et al. [32,33], (iii) be explored phenomenologically to support a
better understanding of the roles of key parameters, (iv) be fitted to
and validated against multiple data sets to help assure the accuracy of
the fitted values and the model robustness.

This paper is arranged as follows. Section 2 describes the generaliza-
tion of the Slezov model to include cluster mobility. Section 3 describes
themodelingwork, including the simulationmethods (Section 3.1), the
specific parameters determined for the modified CD model
(Section 3.2), the results of a phenomenological study of how the key
CD model parameters impacting the cluster evolution (Section 3.3),
and the results and discussions of the detailed comparisons of the
model predictions to the experimental data (Section 3.4). Section 4 pro-
vides a general discussion of what this modeling effort teaches us about
Cu and CRPs in Fe-Cu alloys and Section 5 gives a final summary and
conclusions.

2. Extension of the CD model with cluster mobility

The CD theory was originally developed by Farkas et al. [35–39] to
treat the nucleation kinetics of water from vapor without considering
coalescence and splitting and including just single molecular H2O mo-
tion (i.e., no clustermobility). Even for CDmodelswithout clustermobil-
ity, coalescence, and splitting, there are different versions available in
the literature, which depend on the detailed form of the absorption
and emission coefficients. CD models have also been extended along
two key directions, to treat multi-component (species) and to treat mo-
bile clusters, coalescence, and splitting. With respect to multi-
component (species), the CD theory was further developed by Slezov
et al. [32,33] to model single and multi-component (species) stoichio-
metric compound precipitation. Another version of CD model was pre-
sented in a review paper by Clouet et al. [40], which can be used to
model precipitation for single component (species) phases. With re-
spect to mobile clusters, coalescence, and splitting, Binder et al. [40,41]
generalized the nucleation theory to consider cluster coalescence and
splitting mechanisms. Jourdan et al. [15] then extended Clouet et al.'s
CD model to study the Cu precipitation in Fe-1.34 at.% Cu alloys with
the effects of mobile clusters and their coalescence included. It is
worth noting that a new continuity equation was proposed by Jourdan
et al. [15] to account for clusters up to a size nmax being mobile through
diffusion. Althoughwritten somewhat differently, the equation is math-
ematically equivalent to that presented by Clouet et al. [40]. From this
brief summary it is clear that the extensions of CD to multi-component
(species) and to mobile clusters, coalescence, and splitting have taken
separate paths and there is presently no clearly derived and articulated
CD framework which includes them both. Therefore, in the present
work, we utilize the CD theory in the framework of Slezov et al.
[32,33] and extend the theory to include mobile clusters, coalescence,
and splitting. We start from a brief introduction of the CD theory from
Slezov et al. [32,33], and then include the new developments.

Assume the nucleation and growth of clusters happen by aggrega-
tion or emission of single mobile particles in a dynamic equilibrium.
The flux (J) of clusters with size of n to clusters with size of n + 1 in a
single component precipitate phase can be written as [32,33]:

J nð Þþ 1ð Þ; nþ1ð Þ ¼ w þð Þ
nð Þþ 1ð Þ; nþ1ð Þ f n; tð Þ−w −ð Þ

nþ1ð Þ− 1ð Þ; nð Þ f nþ 1; tð Þ ð1Þ
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where the coefficient wðþÞ
ðnÞþð1Þ;ðnþ1Þ is the rate of clusters with size of n

that absorb single particles (atoms) to form clusters with size of

n + 1,wð−Þ
ðnþ1Þ−ð1Þ;ðnÞ is the rate of clusters with size of n + 1 emit single

particles to degrade to clusters with size of n, and f(n, t) is the distribu-
tion function of clusters with size of n, containing n single particles, at
time t. f(n, t) has the implication of temporal concentration of clusters
of size n and can be treated as the number of clusters of size n per unit
volume at time t. The absorption coefficient equals the rate of surface
mobile particles of the considered component reaching the precipi-
tate/matrix interface in one step of motion. The surface concentration
of mobile particles is derived by the continuity of the surface diffusion
flux and bulk diffusion flux. Considering spherical precipitates, the ab-
sorption coefficient is given as [32]:

w þð Þ
nð Þþ 1ð Þ; nþ1ð Þ ¼ 4πR2 D

�
1

α1β
c1β

1

1þ D�
1

D 1ð Þ

� �
R

α1β

� �� �
8>>><
>>>:

9>>>=
>>>;

ð2Þ

where R= Rn + R1 is the capture radius with Ri the radius of clusters of
size i (in Slezov et al.'s original derivation R= Rnwas used and the con-
tribution of R1 was assumed to be negligible), D�

1 is the partial diffusion
coefficient of single particles near the precipitate/matrix interface (note
that this quantity does not enter the final model for diffusion-limited
precipitate growth), α1β is the radius of single particles in the matrix
phase or the characteristic length scale, c1β is the volume concentration
of single particles in the matrix phase, and D(1) is the partial diffusivity
of single particles in the bulk. Note that in the present work the partial
diffusivity is taken to be the intrinsic diffusivity, which is approximately
equal to the related tracer diffusivity times thermodynamic factor∅.∅
is typically close to 1 for a dilute solution [42,43], so tracer diffusivity
will be used in this work. Furthermore, impurity diffusivities are the
limiting values of tracer diffusivities of solutes in dilute alloys, so it
will in fact be impurity diffusivities that are used as diffusivities of sol-
utes throughout this paper.

For diffusion-limited growth of precipitates (1≪
��

D�
1

Dð1Þ

��
R

α1β

��
)

[32],

w þð Þ
nð Þþ 1ð Þ; nþ1ð Þ ≈ 4πRD 1ð Þc1β ð3Þ

At the initial state, c1β ¼ x1β
Ω

, when the number of particles per unit

volume is used as concentration. x1β is the mole fraction of single parti-
cles in thematrix phase, andΩ is the averaged volumeof single particles
in the matrix.

The relationship between emission coefficient and absorption coeffi-
cient has been derived from equilibrium or constraint equilibrium clus-
ter size distributions and applying detailed balance to thermodynamic
nonequilibrium states (the traditional approach) [44,45], or internal
equilibrium assumption of both matrix and precipitate phases (local
equilibrium assumption) and the concepts of virtual and real states of
the matrix phase [32], both yielding equivalent results. According to

Slezov et al. [32,33], wð−Þ
ðnþ1Þ−ð1Þ;ðnÞ ¼ wðþÞ

ðnÞþð1Þ;ðnþ1Þ exp
�Δg
kBT

�
and Δg is

the total change of the Gibbs free energy in the transfer of a considered
particle from the virtual state to the real state, kB is the Boltzmann con-
stant, and T is temperature in Kelvin. Although Selzov et al.'s virtual
state based derivation [32,33] ismore rigorous, here we avoid the intro-
duction of the virtual state and the real state concepts for simplicity and
the traditional approach is used, since both derivations lead to the same
conclusion. According to detailed balance, the flux in Eq. (1) at equilib-
rium condition is 0 (J(n)+(1), (n+1)

eq=0), fromwhich one can derive the
relationship between emission coefficient and absorption coefficient as

[32]:

w −ð Þ
nþ1ð Þ− 1ð Þ; nð Þ ¼ w þð Þ

nð Þþ 1ð Þ; nþ1ð Þ exp
ΔG nþ 1ð Þ−ΔG nð Þ

kBT

� �
ð4Þ

where ΔG(n) is the Gibbs energy of formation of α phase clusters of size
n (n N 1) from thematrix phase βwith the state of single particles in the
matrix phase or monomers as reference state, and ΔG(n) is given as:

ΔG nð Þ ¼ n μa
1−μβ

1

� �
þ σA nð Þ ð5Þ

where μp
1 is the chemical potential of single particles in the ambient p

phase, σ is the interfacial energy per unit area (can be also cluster size

dependent), and AðnÞ ¼ 4πRn
2 is the surface area of clusters with size

n. It should be noted that Eq. (5) does not consider the pressure differ-
ence between the matrix and clusters due to lattice strain, since coher-
ent precipitates are formed with little lattice mismatch in the present
paper. Otherwise, a pressure term may need to be considered.

If both the matrix and precipitate phases are multicomponent, the
above discussed equations can be applied approximately by defining
structural units having the same composition as the clusters and with
a total of one particle included. With this generalization the absorption

coefficient is defined aswðþÞ
ðnÞþð1Þ;ðnþ1Þ ≈ 4πRnD(1)

eff c β, whereD(1)
eff is the

effective diffusivity and cβ is the total volume concentration of the ma-

trix phase. The effective diffusivity is given by
�
∑k

i¼1
viα2

xiβD
i
ð1Þ

�−1
with

viα, xiβ, and Di
ð1Þ are the stoichiometric coefficient of component i in

the precipitate phase, mole fraction of i in the matrix phase, and partial
diffusivity of component i in thematrix phase, respectively. Here viα ≤ 1
is presumed. The formation energy of clusters with size n (n N 1) refer-
enced to monomers is then given as:

ΔG nð Þ ¼ n
Xk
i¼1

viα μa
i −μβ

i

� �
þ σA nð Þ ð6Þ

whereμp
1 is the chemical potential of i single particles (atoms) in the am-

bient p phase.
The ordinary continuity equation which describes the time evolu-

tion of the distribution function (or number density) of clusters with
size n in the cluster size space (this “space” is the set of integers,
which describe the sizes of clusters in the system.) is given as:

∂ f n; tð Þ
∂t

¼ −∇ J ð7Þ

If only monomers are mobile,
∂ f ðn; tÞ

∂t
¼ Jðn−1Þþð1Þ;ðnÞ− JðnÞþð1Þ;ðnþ1Þ.

Here we extend the CD theory in the framework of Slezov [32,33] to
allow for mobile clusters, and we assume clusters have finite diffusivity
up to a cluster size of nmax. With this assumption, the continuity equa-
tion is the total fluxes that reach clusters of size nminus the total fluxes
that leave clusters of size n, it requires to count all the possible kinds of
cluster pairs related to clusters of size n. There are various possible for-
malisms attempting to describe the continuity equation in the literature
[15,40,41,46,47]. Here we use a continuity equation with the form:

∂ f n; tð Þ
∂t

¼
Xmin n−1;nmaxð Þ

m¼1

J n−mð Þþ mð Þ; nð Þ−
Xnmax ;nþm≤ntotal

m¼1

J nð Þþ mð Þ; nþmð Þ

−
X
m¼1

ntotal−n
J mð Þþ nð Þ; mþnð Þ

ð8Þ

where J(n)+(m), (n+m) is the flux from clusters of size n to clusters of size
n+m, and ntotal is the total number of cluster classes considered during
the simulation. If all the clusters are diffusive, then the continuity
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equation is given as:

∂ f n; tð Þ
∂t

¼
Xn−1

m¼1

J n−mð Þþ mð Þ; nð Þ−
Xntotal−n

m¼1

J nð Þþ mð Þ; nþmð Þ−
Xntotal−n

m¼1

J mð Þþ nð Þ; mþnð Þ

ð9Þ

The first summation in Eqs. (8) and (9) takes into account all the
possible reactions due to two clusters with sizes smaller than n that
may generate clusters of size n. The second summation includes all
the reactions of size n clusters with mobile clusters of size m to form
n + m sized clusters which may consume clusters of size n. The third
summation accounts for the reactions of all the possible size of clusters
that react with mobile clusters of size n and may induce a decrease in
the number of clusters of size n. By combining these three terms to-
gether we can effectively account for all the clusters that are diffusive
at the level of binary coalescence. But it should be noted that
Eqs. (8) and (9) only consider the coagulation reactions of two particles
to one and it is possible to add terms which include three or more par-
ticles coalescing to form another particle. However, for thiswork it is as-
sumed that three or more particle coagulations are rare and can be
neglected.

Note that Eqs. (8) and (9) naturally consider the fact that part of the
particle size distribution for n N ntotal is not included in the numerical
modeling. Thus, events that form particles with n N ntotal will not be
treated correctly. Meanwhile, there are fluxes missing for n near ntotal
due to the boundary conditions used for computing. To reduce the im-
pact of this limitation one should take ntotal ≫ nmax to make sure the
cluster size distribution function does not reach the region close to ntotal.
And one should also check that further increasing ntotal has no influence
on the simulated results.

In Eqs. (8) and (9), the flux term J(n)+(m), (n+m) has a corresponding
definition to J(n)+(1), (n+1) given as:

J nð Þþ mð Þ; nþmð Þ ¼ w þð Þ
nð Þþ mð Þ; nþmð Þ f n; tð Þ−w −ð Þ

nþmð Þ− mð Þ; nð Þ f nþm; tð Þ ð10Þ

where the coefficientwðþÞ
ðnÞþðmÞ;ðnþmÞ is the rate of clusters of sizen that ab-

sorb single mobile clusters of sizem to form clusters of size n+m, and

wð−Þ
ðnþmÞ−ðmÞ;ðnÞ is the rate of clusters of size n+m emit singlemobile clus-

ters of size m to degrade to clusters of size n.
In Eq. (10), clusters with size m must be diffusive, otherwise the

equations do not make sense. In the case where both the two reactants
are mobile, the fluxes J(n)+(m), (n+m) and J(m)+(n), (m+n) are the fluxes of
cluster reaction between mobile clusters of size n and m to clusters of
size n + m by processes involving each cluster as mobile. Specifically,
J(n)+(m), (n+m) involves forming clusters of size n + m by clusters of
size n absorbing single mobile clusters of size m and forming clusters
of size n by clusters of size n + m emitting single mobile clusters of
sizem. Similarly, J(m)+(n), (m+n) involves absorbing and emitting single
mobile clusters of size n. It should be noted that in this approach there
appears to be double counting in cluster reactions as (m) + (n),
(m+ n) appears similarly to (n)+ (m), (n+m), but they represent dif-
ferent flux terms as the order in the second index specifies which clus-
ter is mobile. Thus, there is no double counting in the overall fluxes.

As in the casewhere onlymonomers are diffusive, the absorption co-
efficient is again defined as the rate of the considered mobile particles
near the surface of precipitate reaching the precipitate interface by
one step of motion. However, the absorption process is considered sep-
arately for each mobile species for simplification. In other words, each
absorption coefficient only including the diffusivity of one class of clus-
ters. Following the previous approaches [15,46], Eq. (2) is nowextended
for mobile clusters, and we define the absorption coefficient

wðþÞ
ðnÞþðmÞ;ðnþmÞ as:

w þð Þ
nð Þþ mð Þ; nþmð Þ ¼ 4πR2 D

�
m

αmβ
cmβ

1

1þ D�
m

D mð Þ

� �
R

αmβ

� �� �
8>>><
>>>:

9>>>=
>>>;

ð11Þ

where R is the capture radius approximated as the sum of cluster radii
(Rn + Rm) [40,48], D

�
m is the diffusivity of clusters with size m near the

precipitate/matrix interface, αmβ is the particle radius of clusters of
size m in the matrix phase or more precisely the characteristic length
scale, cmβ is the volume concentration of clusters of sizem defined anal-
ogous to c1β, andD(m) is the diffusivity of mobile clusters of sizem in the
bulk. When Rm is negligible, the capture radius term can be approxi-
mated as Rn or one may want to use Rn initially. Following the detailed
balance assumption as used in the case of monomers are diffusive, the

emission coefficient wð−Þ
ðnþmÞ−ðmÞ;ðnÞ is given as:

w −ð Þ
nþmð Þ− mð Þ; nð Þ ¼ w þð Þ

nð Þþ mð Þ; nþmð Þ exp
ΔGm nþmð Þ−ΔGm nð Þ

kBT

� �
ð12Þ

whereΔGm(n) is the Gibbs free energy of formation of clusters with size
n from clusters with sizem, and is defined as:

ΔGm nð Þ ¼ G nð Þ−n
m

G mð Þ ð13Þ

where G(n) is the free energy of clusters with size n.
If we insert Eq. (13) into Eq. (12), the following relation is obtained:

w −ð Þ
nþmð Þ− mð Þ; nð Þ ¼ w þð Þ

nð Þþ mð Þ; nþmð Þ exp
G nþmð Þ−G nð Þ−G mð Þ

kB
T

� �
ð14Þ

Furthermore, consider the similar definition of G(n) that consistent

with Eqs. (5) and (6), that is GðnÞ ¼ n
Pk

i¼1 viαμ
a
i þ σAðnÞ for n N 1.

Then we have:

w −ð Þ
nþmð Þ− mð Þ; nð Þ ¼ w þð Þ

nð Þþ mð Þ; nþmð Þ exp
σA nþmð Þ−σA nð Þ−σA mð Þ

kB
T

� �
ð15Þ

Like the derivation of Eq. (3), here we consider the diffusion-limited
phase transition kinetics and according to Eq. (11),

w þð Þ
nð Þþ mð Þ; nþmð Þ ≈ 4π Rn þ Rmð ÞD mð Þcmβ ð16Þ

When we treat f(n, t) as the number of clusters per unit site
(atomic) volume of the matrix phase, then cmβ becomes f(m, t)/Ω.
And the flux J(n)+(m), (n+m) is now:

J nð Þþ mð Þ; nþmð Þ ¼ 4π Rn þ Rmð ÞD mð Þ
Ω

f m; tð Þ f n; tð Þ−4π Rn þ Rmð ÞD mð Þ
Ω

exp
G nþmð Þ−G nð Þ−G mð Þ

kB
T

� �
f m; tð Þ f nþm; tð Þ

ð17Þ

In this paper, we treat the free energy changes in cluster reactions
with only monomers are mobile (nmax = 1) as follows to introduce
the solubilities of monomers to the equations:

ΔG nþ 1ð Þ−ΔG nð Þ ¼
Xk
i¼1

viα μa
i −μβ

i

� �
þ σA nþ 1ð Þ−σA nð Þ ð18Þ

Neglecting the Gibbs-Thomson effect on phase equilibrium, we have

the phase equilibrium condition: μa
i ¼ μβ

i , where μβ
i is the chemical po-

tential of i atoms in thematrix phase at equilibrium. The activities of sol-
utes in dilute matrix solution can be treated approximately following
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theHenry's law. Thenwe can obtain the following relationship between
emission and absorption coefficients:

w −ð Þ
nþ1ð Þ− 1ð Þ; nð Þ ¼ w þð Þ

nð Þþ 1ð Þ; nþ1ð Þ

Y
i¼1

k
xiβ

viαQ
i¼1
k xiβviα

exp
σA nþ 1ð Þ−σA nð Þ

kBT

� �
ð19Þ

where xiβ is the solubility limit of i in the matrix phase according to

phase diagram.
Qk

i¼1 xiβ
viαQk

i¼1 xiβviα
in Eq. (19) represents the chemical contribu-

tion to the precipitation process. Similar treatments are also done for
other cluster reactions including a monomer. Note in an alternative
way, the chemical potential can be directly calculated from the
CALPHAD type of thermodynamic database [49,50].

Of course, we may also assume monomers with α structure form in
the matrix first before entering the precipitates, the formed monomers
with α structure should be in (local) equilibrium with that in the ma-

trix:
Pk

i¼1 viαðμa
i −μβ

i Þ ¼ −σ1Að1Þ with σ1 is the composition depen-
dent specific interfacial energy of α structured monomers. σ1 then
plays a role similar as the chemical driven force for phase transforma-
tion and should be distinguished from σ. Then, Eq. (15) can be uni-
formly used.

As done in some other previous works [40,46,47], in Eq. (11) one
can use the sum diffusivity (D(m) + D(n)) instead of D(m), and simi-
larly (D�

m + D�
n) for D

�
m. In that case, Eq. (8) or (9) is suggested to be

used as continuity equation with modification, that is a scale factor of
1/2 for J(n)+(m), (n+m) if both clusters n and m are mobile (both D(m) N 0
and D(n) N 0). In this way, Eqs. (8) and (9) can recover to the case
when only monomers are diffusive. However, the model will be more
sensitive to interfacial energy.

One should notice that the situation for clusterswithmobility is sim-
ilar to the case that the number of particles in a structure unit nb=m as
described by Slezov [32] to generalize the CD theory tomulticomponent
precipitation. We can define different cluster size spaces denoted with
structure units (nbs). In nb cluster size space, all cluster reactionswill in-
clude a nb sized mobile cluster (structure unit). The nb = 1 cluster size
space is that where only monomers are mobile. The behavior of cluster
reactions in nb ≠ 1 cluster size spaces is analogous to that where only
single particles (atoms or monomers) are mobile since the number of
structure units nu (nu = n/nb) only changes by 1 for each reaction.
Thus, the properties of nb = 1 cluster size space is also followed by
other cluster size spaces. So, the generalization of the formalism and re-
lationship between emission coefficients and absorption coefficients
(Eqs. (11) and (12)) are reasonable.

The above complete a derivation of the extended version of the
Slezov's CD theory to mobile clusters. The new CDmodel should be ap-
plicable for both diffusion-limited and kinetically-limited kinetics, as
well as mobile clusters and multi-component (species) stoichiometric
phase precipitation. In addition, this model is also useful for modeling
pure coagulation process where there is no phase transition.

Finally, it isworth clarifying that onemaywant to follow theBinder's

definition of flux [41] (J(n)+(m), (n+m) = uðþÞ
ðnÞþðmÞ;ðnþmÞ f(n, t)f(m, t) −

uð−Þ
ðnþmÞ−ðmÞ;ðnÞf(n + m, t)), with the detailed balance assumption, if the

reference state of formation energy is always taken as the state of the
absorbed clusters as done in the presentwork and in the classical nucle-
ation theory, then the same formula as Eq. (17)will be derived. The only
difference is that the absorption coefficients need to be defined as:

uðþÞ
ðnÞþðmÞ;ðnþmÞ ¼ 4πðRn þ RmÞ

DðmÞ
Ω

, and the emission coefficients is then

given as: uð−Þ
ðnþmÞ−ðmÞ;ðnÞ ¼ 4πðRn þ RmÞ

DðmÞ
Ω

expðGðnþmÞ−GðnÞ−GðmÞ
kBT

Þ
f ðm; tÞ . Moreover, the presently extended CD theory in the case of
diffusion-limited kinetics is different with that by Clouet et al. [40] and
Jourdan et al. [15] by a factor term f(m, t) in the emission part of the
flux (J(n)+(m), (n+m)).

3. Modeling Cu precipitation in Fe-Cu alloys

3.1. Simulation methods

The set of coupled ordinary differential equations which govern the
temporal evolution of the distribution functions of Cu clusters in the CD
theory, as described in Section 2, are solved by the CVODE solver in the
SUNDIALS software package [51]. The emission coefficients for cluster
reactions that can emit clusters containing N5 atoms (see Eq. (17)) are
eliminated from the simulation work to speed up the calculations,
since the emission rates of these larger clusters are negligible, and
tests have shown that they have no impact on the simulation results.

3.2. Model parameters for Cu precipitation in Fe-Cu alloys

The major parameters for the model, as discussed in Section 2 with
regards to Fe-Cu dilute alloys, are the diffusivity of Cu, diffusivity of Cu
clusters, the solubility of Cu in Fe matrix, interfacial energy between
the precipitates and the matrix phase, and the lattice parameter of Fe
matrix. In this section, these parameters are discussed and/or deter-
mined from the literature information.

The diffusivity of Cu in dilute Fe-Cu alloys as an important input pa-
rameter that controls the mass transportation is analyzed first. In this
work, diffusivity of Cu is taken the value of its impurity diffusivity as
discussed before. All the original experimental measurements of impu-
rity diffusivity are critically reviewed, and the experimental data are
replotted in Fig. 1. The reported data from refs. [52–61] are consistent
in the whole range of the measurement temperatures and are consid-
ered as reliable data. The earlier data from Lindner and Karnik [62]
and Anand and Agarwala [63] did not show any apparent change of dif-
fusion coefficient at Fe bcc_A2/fcc_A1 transition temperature, which is
quite unreasonable to the knowledge of the present authors. While
the data from Lazarev and Golikov [64] showed a less significant change
at this transition temperature compared to the groupwe have identified
as reliable data. Thus, these data in refs. [62–64] are neglected in the
present evaluation. The experimental measurements are all at above
600 °C which is much higher than that often of interest for modeling
CRPs evolution, e.g., the operation temperature of RPVs is about
300 °C, so some low temperature guidance on reliable values are useful,
as discussed below.

In the previous modeling works, the diffusivity of Cu is either taken
as a fitting parameter [7,10,12,16], taken the fitting value from a
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Fig. 1. Impurity diffusivity of Cu in Fe (EPMA: electron probe microanalysis; LIBS: laser
induced breakdown spectrometry; APT: atom probe tomography).
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previously modeling work [14,19,20], derived from the fitting of high
temperature diffusivity data [11,17], taken as two times of Fe self-
diffusivity [9,21], or taken as 3.56 × 10−22 m2/s at 500 °C [15]. In the
present work, the diffusivity is extrapolated from the reliable high tem-
perature diffusivity data and takes into consideration of the atomistic
kMC simulation data [25] at low temperature, since these data are also
considered to be fairly reliable. The diffusivity of Cu in Fe used in the
present work is also shown in Fig. 1 indicated by the extrapolated
solid line, and can be approximated using an empirical equation sug-

gested by Ruch et al. [65] as DCu ¼ 3:3� 10−3 exp

 
−2:73
kB

T−
αM2

kB
T

!

m2/s, where α is about 0.1 to 0.2 eV and M is the magnetic long range
order parameter available from Crangle and Goodman [66]. In this
work, theα value of 0.15 eV is used to calculate Cu diffusivity, as the cal-
culated value passes through the reliable data sets identified above and
also is close to the low temperature kMC results [25].

Binder et al. [67,68] approximated the diffusivity of mobile clusters

as DðnÞ ¼ Dð1Þn
−
4
3 . The model was modified by Soisson and Fu [25]

based on their atomistic kMC simulation data for cluster sizes up to
150 atoms. Unfortunately, the modified model substantially overesti-
mates the atomistic kMC simulation data at small cluster size. Here,
the diffusivity of Cu clusters is taken from the modified model by
Soisson and Fu [25] for larger clusters, and the diffusivity for smaller
particles is fitted to the atomistic kMC simulation results [25] using an
exponential function. The diffusivity of clusters is then given as:

D nð Þ ¼ min D1;D2ð Þ ð20Þ

and D1 and D2 are presented as:

D1 ¼ DCun exp −0:0049Tþ3:28ð Þ

D2 ¼ 7:14� 10−5 exp
−2:65
kB

T
� �

exp
0:7
kBT

� �
n
−
4
3

Fig. 2 shows the calculated cluster mobilities of Cu according to
Eq. (20) comparedwith the atomistic kMC simulation results [25] at dif-
ferent temperatures. The predicted Cu cluster diffusivities by Eq. (20)
are used in the current simulationswith small adjustments to fit specific
data sets, as will be discussed in detail later.

The solubility of Cu varies during the precipitation process due to the
bcc to 9R, 9R to 3R, and 3R to fcc phase transitions [69,70]. The solubility
data of bcc Cu in bcc Fe solution is used and taken from the simulation

work by Soisson and Fu [25], and given in mole fraction as Csol
CuðFeÞ ¼

expð1Þ exp
�−0:545

kB
T
�
. The model fit is most accurate for bcc Cu pre-

cipitates which occur up to about 4 nm in diameter. Bcc Cu precipitates
are common in the important application of RPV steels and other pre-
cipitate strengthening Fe-Cu based steels, the most relevant for initial
stage of precipitation, and represent the sizes seen during most of the
time scales beingmodeled in the present work (provided one considers
the time in logarithm units). The approximation that phase transitions
of the precipitates have only modest quantitative effect on the growth
in the domains studied is therefore made in the present work.

According to the literature, the interfacial energy for Cu precipitates
in bcc_A2 solution is still poorly constrained. The interfacial energy used
in the literature for various precipitation simulations in the Fe-Cu dilute
alloys varies from0.15 to 1.2 J/m2 [9]. Theories that are generally used to
predict the temperature dependence of interfacial energy for solid-solid
interface including the Cahn-Hilliard theory [71] and the generalized
near-neighbor broken-bond theory [72], however, these two theories
can give quite different temperature dependent interfacial energy
[9,71]. It is also reasonable to consider the cluster size dependence of
the interfacial energy as described by Tolman [73]. Since the Cu interfa-
cial energy is poorly constrained and of critical importance, here interfa-
cial energy is treated as an adjustable parameter and the cluster size
dependence is neglected for simplification.

The lattice constant of dilute bcc Fe-Cu alloys is taken as 0.287 nm
[74,75].

3.3. Effects of model parameters on precipitation kinetics

In this section, the effects of interfacial energy, diffusivity, Cu solubil-
ity, initial Cu concentration in the matrix, and nmax on the precipitation
properties (matrix concentration,mean cluster radius, precipitate num-
ber density, and precipitate volume fraction) are examined for the cur-
rent CD model under isothermal condition. Since there are many
experimental measurements of Cu precipitates in Fe-Cu alloys with Cu
content close to 1.34 at.% at 500 °C in the literature [7,8,10,22,76–81],
here Fe-1.34 at.% Cu alloy is used as a model alloy for the study. Unless
specified, the simulation conditionwithin this sectionwill be the values
presented in Table 1.When parameters are explored, they generally en-
compass the typical ranges seen in the literature. In many cases we
compare parameter ranges for only mobile monomers (nmax = 1) and
for mobile clusters (nmax N 1). Ranges of other parameters in such com-
parisons may vary as we attempted to keep the physical behavior sim-
ilar and the model stable across such comparisons, both of which
aspects can be altered significantly by changes in nmax. It is worth noti-
fying that nmax = 50 maybe not a good approximation for Fe-Cu alloys
since clusters containing N50 Cu atoms are still highly mobile (see
Fig. 2). However, given the large number of runs needed to explore
the parameters studied in this section it is necessary to reduce the com-
putational time by a modest nmax. As the studies presented in this sec-
tion are just testing the effects of model parameters in the cases of
mobilemonomers andmobile clusters, a highly accurate representation
of Cu cluster kinetics is not necessary. In this section, only clusters
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Fig. 2. Calculated Cu cluster mobilities by Eq. (20) along with the kMC simulation results
[25].

Table 1
Model parameters utilized to study the CD model.

Temperature (°C) 500
Alloy composition (at.%) 1.34
Interfacial energy of Cu precipitates (J/m2) 0.50
Diffusivity of Cu monomers (m2/s) 1.55 × 10−21

bcc Cu solubility limit in bcc Fe (at.%) 0.076 [25]
Up limit of the size of mobile clusters, nmax (atoms) 50
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containing N64 atoms are counted when determining number density,
mean radius, and volume fraction, consistent with limitations of many
experimental measurements and following the approach of ref. [18].

3.3.1. Interfacial energy
The critical nucleus size, nucleation rate, growth rate, and coarsening

rate are interfacial energy dependent [82,83]. The effect of interfacial
energy is studied by varying it from 0.1 to 0.8 J/m2 for nmax = 1 and
from 0.38 to 0.54 J/m2 for nmax = 50. The simulated results are given
in Figs. S2 and S3 in the Supplementary data. For both nmax = 1 and
nmax = 50, increasing interfacial energy severely delays the depletion
process of Cu content in the matrix phase and increases the growth
rate. The mean radius also increases more steeply with annealing time
as interfacial energy increases due to the increased growth rate. For
nmax=1 the peak number density increases as interfacial energy varies
from 0.1 to 0.3 J/m2 and the number density sprout time shifts to a limit
value of about 2000 s. Further increase in interfacial energy induces a re-
duction in number density due to the large energy barrier to form pre-
cipitates. The volume fraction of precipitates shows the similar trend
as number density with varying interfacial energy.

There are plateaus in the diagrams for intermediate interfacial en-
ergy (0.35 to 0.45 J/m2) for nmax = 1. In particular, the first plateau in
the Cu concentration profile occurs because a population of small clus-
ters has reached a “near equilibrium”with themonomers in the matrix,
the monomer concentration does not change that much. The precipi-
tates then grow by coarsening. Eventually they reach a large enough
size their surface energy contribution drops significantly, and the system
is once again in supersaturation, and the Cu concentration starts to de-
crease again. For example, this occurs between times 102 and 104 s for
interfacial energy 0.4 J/m2. This process is hard to observe in the number
density, mean radius, and volume fraction plots in Fig. S2(b) to (d) since
theseproperties are only calculated for clusterswith N64 atoms,which is
larger than these initial small clusters that undergo coarsening. This
early stage coarsening prediction is consistent with the experimental
observations of coarsening at early stage by Hornbogen [84]. For the in-
terfacial energy (0.35 to 0.45 J/m2), the nucleation, growth, and coarsen-
ing dominated regions can be identified from themean radius evolution
profile, since there are clear regions where mean radius R scales with

time as R∝t
1
2 (growth dominated) and R∝t

1
3 (coarsening dominated). In

addition, the plateau in the radius and number density indicates that
there is a separation between times with significant nucleation and
coarsening, i.e., a time during which neither is very active [82]. For ex-
ample, for interfacial energy 0.4 J/m2, during about 105 to 106 s there
is little significant nucleation or coarsening. Note that the onset of strong
coarsening near 106 s is not inconsistent with the coarsening at earlier
times of 102 to 104 s described above, as this later time coarsening occurs
in a different regime formuch larger particles. For low interfacial energy,
i.e. ≤0.3 J/m2, nucleation and coarsening regions overlapwith each other.
The currentmodel shows similar features as themodel developed based
on classical nucleation theory [82].

The surface energy dependence of precipitation kinetics is substan-
tially altered by the introduction of cluster mobility. Increasing interfa-
cial energy with mobile clusters still has strong impact on the volume
fraction and concentration profiles and leads to shape change in the
profiles. The number density andmean radius are less severally affected.

3.3.2. Diffusivity
Both emission coefficients and absorption coefficients contain diffu-

sivity in the CD theory. The flux term J(n)+(m), (n+m) is proportional to
the diffusivity D(m), thus the diffusivity of clusters critically controls
the kinetics of precipitation. We perform simulations with nmax = 1
(σ = 0.4 J/m2) and nmax = 50 (σ = 0.5 J/m2) with a range of diffusion
coefficients to study the effects of diffusivity on precipitation kinetics.
The calculated results are shown in Figs. S4 and S5 of the Supplementary
data. It is not surprising to see that the precipitation process is enhanced

by increasing the diffusivity of clusters simultaneously to 3, 6, 9, and 12
times for both nmax = 1 and nmax = 50. The profile starting time and
number density peaking time both shift to shorter time with increased
diffusivity. There is no shape change for the mean radius, number den-
sity, and volume fraction versus time profiles when increasing diffusion
coefficients, but only a shift of the profile to an earlier time. This is con-
sistentwith the former simulated results by Robson [82] using the KWN
model based on classical nucleation theory. However, adding cluster
mobility alters the precipitation kinetics since the diffusion of mobile
clusters also can accelerate the precipitation process, this will be further
discussed later.We can easily draw the conclusion that the starting time
of mean radius, number density, and volume fraction profiles are very
sensitive to diffusivity.

3.3.3. Solubility
The solubility of Cu in Fe matrix is the parameter that relates to the

chemical driving force for Cu precipitation kinetics. As shown in
Eq. (19), the solubility of Cu takes part in the equilibrium solution prod-

uct (
Qk

i¼1 xiβ
viα ) and will have impact on the emission coefficients and

reduce the related flux term. The model-predicted results assuming
the solubility of Cu varies from 1 to 2 times the value from Table 1 are
shown in Figs. S6 and S7 in the Supplementary data with nmax = 1
(σ = 0.4 J/m2) and nmax = 50 (σ = 0.5 J/m2) respectively. The general
trends are the same for both cases, increasing the solubility will extend

the R∝t
1
2 growth period, decrease the peak number density, and delay

the volume fraction increase and Cu content depletion in the matrix.
However, the change in solubility limit seems does not much alter the
precipitation starting time. In addition, it is easy to see that the solubility
limit will affect the overlapping between nucleation and coarsening
since the plateau on number density profile is delayed and shortened
with increased solubility. In general, solubility has strong influence on
the shape of all the precipitation evolution parameters calculated.

3.3.4. Matrix composition
The supersaturation of solutes provides the chemical driving force

for nucleation and crystallization. Thus, supersaturation is required for
precipitation study. Supersaturation can be defined by either the differ-
ence or the ratio of instantaneous and equilibrium alloy composition in
thematrix. It can be changed bymodifying either or both the solute sol-
ubility andmatrix alloy composition. Section 3.3.3 can therefore be con-
sidered as a study of the effect of changing supersaturation through
changing solubility. Here, the alloy composition is varied to see the
changes in terms of the four key properties describingprecipitation evo-
lution (a study of the effects of changing supersaturation through alloy
composition). Figs. S8 and S9 in the Supplementary data show the cal-
culated results with nmax = 1 (σ = 0.4 J/m2) and nmax = 50 (σ =
0.5 J/m2) respectively. When only monomers are diffusive, there is no
noticeable precipitation in the time scale considered here for alloy
with up to 0.6 at.% Cu. This limit is reduced by adding cluster mobility
(for nmax=50) to about 0.4 at.% Cu.Matrix composition not only affects
the nucleation and growth rates but also influences the overlapping of
nucleation and coarsening regimes. For example, for nmax=1 clear pla-
teau in the number density-time evolution profile can be seen for alloy
composition of 1.0 and 1.2 at.% Cu but not others. However, these pla-
teaus do not show up for the cases including cluster mobility. Enlarging
the alloy composition as expected increases the peak number density,
volume fraction of precipitates, and the alloy response to annealing for
both nmax=1and nmax=50. The precipitation kinetics is also enhanced
by cluster mobility.

3.3.5. Cluster mobility
In metallic systems, it is generally thought that monomers are the

only particles that are mobile during the precipitation process. This is
true for some alloy systems like Al-Sc and Al-Zr [85]. However, as
noted in Section 1, there are both theoretical and numerical evidences
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that monomers are not the only mobile particles in Fe-Cu alloys
[9,15,25]. However, the exact size to which clusters aremobile is uncer-
tain, as solute pinning, phase changes, and other factors might play in-
creasingly important roles in cluster motion as size increases. Here we
take nmax as a variable to check its influence on the kinetics of Cu precip-
itation in Fe-1.34 at.% Cu alloy at 500 °C.

Fig. 3 shows the calculated results with nmax from 1 to 2500. It can be
notified from the diagram that the precipitation kinetics is substantially
enhanced by cluster mobility. When only considering the mobility of

monomers, the mean radius grows steeply and obeys the R∝t
1
2 law.

However, the volume fraction and number density of precipitates are
quite low compared to typical experimental results. With the introduc-
tion of cluster mobility, the matrix composition, mean radius, number
density, and volume fraction evolution profiles are substantially modi-
fied. Precipitation initiates at a much earlier time. The mean radius
and volume fraction also show shape change with enough variability.

Importantly, the mean radius can follow the R∝t
1
3 growth law from

early stage of precipitation, which is consistent with the experimental
observations. Meanwhile, the number density of precipitates can be
also modified with a much more reasonable peak value (about
1024 m−3) and profile shape like that measured by experiments. The
volume fraction of precipitates and Cu concentration in the matrix con-
vergence to a limiting profile as nmax increases. A similar convergence
happens at earlier times for mean radius and number density, but
both continue to have nmax dependence for times later than a nmax de-
pendent transition time ttran(nmax).

The behavior of all the four precipitation properties can be under-
stood by considering the impact of change in nmax. As nmax increases
it adds more mobile cluster classes, which will generally increase the
precipitation kinetics. However, the diffusivity of clusters given by
Eq. (20) gradually increases with cluster size to a maximum value
and then starts to decrease above about 100 to 150 atoms, for larger
clusters the cluster diffusivity becomes so small that it is not signifi-
cant on the time scales simulated here. This leads to the general as-
ymptotic behavior with cluster size for any practical time. More
importantly, larger clusters need time to form to contribute to the ki-
netics, which means that at earlier times larger mobile clusters play
no role. This leads to essentially no dependence on increasing nmax

for times short enough that the mobile cluster classes being added
in the increase in nmax are not present. This effect sets the value of
ttran(nmax), which increases with nmax and leads to nmax increase in-
dependent behavior for progressively longer times as nmax increases.
Note that due to the coupled impact of forming clusters and nmax on
the precipitation properties, if the cluster diffusivity is changed the
limiting profiles and ttran(nmax) will also be different. This phenome-
non is indeed diffusion-limited.

The effect of nmax on the time evolution of the cluster size distribu-
tion is also analyzed. The time evolution of the size distribution of clus-
ters with nmax = 50 shows the similar general features as that with
nmax = 1 (see Figs. S10 and S11 in the Supplementary data). However,
there are discontinuity (kink) on the distribution profiles of the cases
with nmax = 50 at about 0.52 nm which corresponds to a cluster size
of 50 atoms. This is likely due to the sudden drop of cluster diffusion co-
efficient to zero at 50 atoms due to our use of nmax = 50. This kink is a
boundary betweenmobile clusters and immobile clusters. It is therefore
somewhat analogous to the role played by size 1 when nmax = 1. It is
therefore not surprising that for longer times, the profiles started from
this boundary show approximately the same feature as the whole pro-
files for the case nmax = 1.
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Fig. 3. Effect of nmax on the time evolution of (a)matrix Cu concentration, (b)mean radius,
(c) number density, and (d) volume fraction of Cu precipitates in Fe-1.34 at.% Cu alloy at
500 °C with interfacial energy of 0.5 J/m2.
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3.4. Results and discussions

3.4.1. Fe-near 1.34 at.% Cu and Fe-0.69 at.% Cu at 500 °C
Fe-Cu alloy with Cu content close to 1.34 at.% is widely used as a

model alloy to study the precipitation kinetics in Cu containing steels
at 500 °C [7,8,10,22,76–81,86]. As discussed before, it is impossible to
model the precipitation properties simultaneously with only a physi-
cally reasonable Cu (monomer) diffusivity using either standard CD or
KWN methods [8–10]. Here we try to use a physically meaningful Cu
diffusivity to model the Cu precipitation behavior in Fe-1.34 at.% Cu
alloy with the currently developed CD model by also considering the
mobility of small clusters.

The available experimental information is summarized in Fig. 4. It
can be seen from the diagram that the experimental number density
and volume fraction are scatter but generally consistent except for the
data fromWarczok et al. [80] where very large number density was re-
ported at very short aging time and the calculated volume fraction is
also much larger compared to other works [8,10,76]. The measured
mean radius from different authors is consistent at long annealing
time (above 4 × 103 s). At short annealing time, the mean radii fall
broadly into two groups. One group is represented by Kampmann and
Wagner [8] and Perez et al. [22]. The other is Warczok et al. [80],
Charleux et al. [79], and Osamura et al. [78]. Considering all the data,
we believe that the experimental data from Warczok et al. [80] in the
early stage of annealing has a large uncertainty. Indeed, it is very hard
to control the annealing time to be as short as 200 s or less in a furnace
and the samplesmayneed some time to reach thermal equilibrium. Pre-
existing precipitates may already form before the aging experiments, or
very small clusters, which can be difficult to rigorously be identified as
precipitates, were counted. Impurity presence could also be a reason
for the fast kinetics in the early stage. Furthermore, maybe the small
precipitates formed athermally at the initial stage or at very different
condition which can also reach a very high number density.

Based on the results in Section 3.3, we select one set of parameters
that can give a good description of all the precipitation properties in
the time scale calculated up to 1.5 × 105 s. The parameters used are in-
terfacial energy of 0.5 J/m2, nmax=15000,DCu=1.55× 10−21m2/s, and
cluster diffusivity described by Eq. (20) with a cut off value of 10−20.5

(2.04 × DCu) m2/s for clusters containing N516 atoms. These parameters
are also listed in Table 2. The use of the cut off value indicates that the
cluster mobility as predicted by the modified model by Soisson and Fu
[25] at large cluster size needs to be modified. In the CD theory, the cal-
culations start from Cu as monomers, which is a useful consistent
starting point but likely different from experiments, which are expected
to start from some clustering. Following refs. [18, 87], clusters contain-
ingN44 atomsare considered to calculate themean radius, number den-
sity, and volume fraction of Cu precipitates to be correct for the limited
resolution of SANS and SAXS. It should be noted that, the value of this
cut off has a dramatic effect on the mean radius and number density
at short times when particles are very small (although, perhaps not on
volume fraction since tests with a cut off of 10 atoms showed almost
no impact on volume fraction values). The calculated results are also
shown in Fig. 4, and even though the bcc to 9Rphase changewhich hap-
pens at about the radius of 2 nm [69,70] is not considered, we can see
the model-predicted results still match well with the reliable experi-
mental data. This suggests that the developed model is suitable to
model the precipitation behavior of Cu precipitates and the detailed
phase transition can be neglected for the current purpose. However, it
should be noted thatwewould need to further adjustmodel parameters
(nmax, cluster diffusivity, etc.) to get good agreement between the sim-
ulated and experimental results at long time annealing (N1.5 × 105 s).
At the very early stage, there is discrepancy between the calculated
mean radius of 5 Å and the experimental one of 4 Å. The difference of
1 Å might depend on how rough or diffuse the interface is, or where
you define as the edge of the particle, or how spherical it is in experi-
ments, etc. The error of 1–2 Å in radius are likely not very meaningful.

The discrepancy in number density is very large, e.g. 103 s in Fig. 4 we
have a number density of 1024 and the experimental value is 1025, how-
ever this difference could be due in significant to the uncertainty in the
measurement of number density. For example, the data from Ahlawat
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Fig. 4. Calculated time evolution of (a) mean radius, (b) number density, and (c) volume
fraction of Cu precipitates in Fe-1.34 at.% Cu alloy at 500 °C compared with the
experimental data (TEM: transmission electron microscopy; SANS: small angle neutron
scattering; SAXS: small angle X-ray scattering; TEP: thermoelectric power).
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et al. [81] showed order of magnitude spread in number density for the
same annealing time. Errors in number density may also occur when
number density is determined indirectly from the measured mean ra-
dius and volume fraction, e.g. as occurred in the data from Perez et al.
[22] and Deschamps et al. [86].

To demonstrate the obtained model parameters are useful in a rela-
tively wide composition range, another simulation is carried out for Fe-
0.69 at.% Cu alloy using the parameters for 500 °C fromTable 2 and com-
pared with the isothermal annealing data at the same temperature by
Deschamps et al. [2,88]. The predicted results are shown in Fig. 5 with
reasonable agreement in the simulated time range. This indicates that
it is possible to model the precipitation kinetics of Cu precipitates for a
range of composition at this temperature using a single set of parame-
ters in the currently developed CD model.

3.4.2. Fe-0.977 and 1.14 at.% Cu at 550 °C
Two sets of experimental data are available at 550 °Cwith 0.977 and

1.14 at.% Cu respectively as shown in Fig. 6. There are apparent discrep-
ancies in the two experiments in terms of mean radius, number density,
and volume fraction. In thework of Buswell et al. [89], pre-existing large
sized fcc precipitates were shown in the as-quenched microstructure
before aging. The mean radius and number density of bcc Cu precipi-
tates (small sized) measured by Buswell et al. [89] are consistent with
that measured by He et al. [90] at long time annealing. The model pre-
dicted results are also shown in the figures for comparison. Since the
data set itself shows certain unreasonable features like large number
density and very small mean radius (b0.5 nm) at early stage precipita-
tion which indicates possibly large experimental errors, no cut off
value for cluster diffusivity is set. The measured volume fraction by He
et al. [90] is quite suspicious since it did not reach the expected theoret-
ical value at long time annealing which should be close to 0.0098 due to
mass balance. Overall, the results already show quite reasonable agree-
ment given the uncertainties and discrepancies in the data. The used
model parameters are listed in Table 2.

3.4.3. Fe-1.23 at.% Cu at 600 °C
The precipitation kinetics of Cu precipitates in Fe-1.23 at.% Cu alloy

at 600 °C was measured by Deschamps et al. [86] and Perez et al. [22]
using TEP and SAXS. The simulated results are shown in Fig. 7 together
with the experimental data. It can be seen from the diagram that the
mean radius, number density, and volume fraction of precipitates are
reasonably reproduced for time later than 103 s by the present model
coupled with the optimized parameters in the simulated time scale.
For times earlier than 103 s the model gets the correct volume fraction
but too high in mean radius and too low in number density. The exper-
imental number density was not measured directly but extracted from
themeasuredmean radius and volume fraction. Therefore, the observed
discrepancy just represents a discrepancy between the modeled and
measured mean radius, although the source of this discrepancy is not
clear. The used model parameters are listed in Table 2.

4. Discussion on CRPs in Fe-Cu steels

The behavior of CRPs in multicomponent Fe-Cu steels is practically
more important compared to pure Cu precipitates in binary Fe-Cu

alloys. Alloying elements have strong interactions with CRPs in Fe-Cu
based steels [3,88,89,91–101]. Both kinetics and thermodynamics can
lead Mn, Ni, Al, and Si to segregate on the interface between CRPs and
the matrix phase to form the core-shell or appendage type structures
during the precipitation process [3,89,92–96,98,101]. The shells or

Table 2
Model parameters utilized for the simulations.a

Temperature,
°C

Interfacial
energy, J/m2

nmax,
atoms

DCu, m2/s
α = 0.15 eV

Cluster diffusivity, m2/s

500 0.50 15,000 1.55 × 10−21 From Eq. (20) for
n b 517, else 2.04 × DCu

550 0.50 15,000 2.05 × 10−20 From Eq. (20)
600 0.47 15,000 1.66 × 10−19 From Eq. (20) for

n b 960, else 0.24 × DCu

a Other parameters are from Section 3.2.
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Fig. 5. Calculated time evolution of (a) mean radius, (b) number density, and (c) volume
fraction of Cu precipitates in Fe-0.69 at.% Cu alloy at 500 °C compared with the
experimental data.

10 S. Cui et al. / Materials and Design 191 (2020) 108574



appendages, with chemical composition close to that of Mn-Ni contain-
ing binary or ternary phases, are important heterogeneous precipitates
and we will be referred here as MNPs (Mn-Ni containing precipitates).

The precipitation kinetics of CRPs inmulticomponent steels could be
quite different due to the possible impurity pining and the shell or ap-
pendage structure formation. It is therefore interesting and of critical
importance to quantitatively determine to what extent CRPs are still
mobilewhen there is apparent segregation of solutes at precipitate/ma-
trix interfaces. There is evidence that Mn, Ni, and C can accelerate the
CRPs precipitation process [88,93,99,100] and the shells can decrease
the interfacial energy of CRPs [3].

Unfortunately, the measurements of CRPs precipitation in Fe-Cu
based steels under thermal annealing condition are still scarce. Here,
we take 500 °C as an example to check the issue of possible loss of clus-
ter mobility in multicomponent Fe-Cu based steels. A collection of the
measured mean radius, number density, and volume fraction of precip-
itates in Fe-Cu based alloys are shown in Fig. 8. The precipitation kinet-
ics showed strong composition dependence. The data from Osamura
et al. [102] showed an accelerated precipitation due to the alloy element
addition (the significantly larger radius than other studies suggests that
maybe diameter was reported as radius), however, the number density
of precipitates is still very similar to that in binary Fe-Cu alloys. There is
difference in themeasuredmean radius by Isheimet al. [95,96,103]with
about 1.2 at.% Cu. This difference could be due to the presence of Ni and
Al. The addition of Al, Ni, Mn, and Si can apparently increase the total
precipitates number density as can be seen by comparing the curves
in Fig. 8 for Fe-Cu based alloys to pure Fe-Cu alloys (the linewith nmax=
15,000). The measurements by Isheim et al. [3,95,96,103] exhibited
slower coarsening kinetics compared to binary system and did not fol-

low the R∝t
1
3 growth law as observed in Fe-Cu alloys. The recent atom-

istic simulation suggested that the delayed coarsening kinetics was
because of the addition ofMn, Ni, and Si/P [30]. These changes in precip-
itation properties with alloying of pure Fe-Cu alloys indicate that either
nmax ismuch smaller for CRPs precipitation in Fe-Cubased steels than Cu
precipitation in Fe-Cu binary alloys at 500 °C, or the changes in kinetics
are due to non-Cu containing precipitates formation.

Alongwith the experimental data onCRPs in Fig. 8, simulations for Fe-
1.82 at.% Cu alloy (refers to the data from Kolli and Seidman [3]) with
varying interfacial energy and nmax are carried out neglecting any role
for other alloying elements. The predictednumber density is broadly sim-
ilar to the experimental data sets. However, the predicted mean radius
can only reproduce the data by Kolli and Seidman [3] at short annealing
time (b105 s) before Cudepletion in thematrix, and the predicted volume
fraction is considerably smaller than the measured values. This result is
consistent with the MNPs forming similarly to the precipitation of Cu in
Fe-Cu binary alloys at early times but suggests significant deviation be-
tween pure Cu and CRP precipitate evolution at later times.

However, an examination of the experimental data fromBuswell et al.
[89] indicates that Ni addition (1.08 at.%) to Fe-1.13 at.% Cu alloy did not
significantly alter the precipitation kinetics of CRPs.Meanwhile, the addi-
tion of Mn (1.05 at.%) in Fe-0.78 at.% Cu alloys can slow down the CRPs
precipitation process at a low flux of irradiation [92]. In both cases, the

mean radius evolution still follows the R∝t
1
3 law, which indicates the Cu

cluster behavior qualitatively similar as in binary Fe-Cu alloys. These ob-
servations suggest thatwhile there aremost probably effective diffusivity
and solubility changes, there is little evidence for large qualitative
changes in the extent of mobile clusters in these ternary alloys.

Considering the experimental data [89,92,102], it is hard to make a
judgement whether CRPs have different mobility compared to that in
Fe-Cu dilute alloys. However, in general, the precipitation process in
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Fig. 6. Calculated time evolution of (a) matrix Cu concentration, (b) mean radius,
(c) number density, and (d) volume fraction of Cu precipitates in Fe-0.977 and 1.14 at.%
Cu alloys at 550 °C compared with the experimental data.
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multicomponent Fe-Cu based steels cannot be accurately modeled
simply as binary Fe-Cu alloys but insteadmust be treated as amulticom-
ponentmultiphase precipitation problem. The interaction effects on sol-
ute solubility and the chemical stability of each precipitate phases in Fe-
Cu based steels should be carefully studied for predictive precipitation
model development for technical applications.

5. Summary and conclusions

This paper studied Cu precipitation in dilute Fe-Cu alloys under ther-
mal annealing using the CD theory. The CD theory developed by Slezov
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Fig. 7. Calculated time evolution of (a) mean radius, (b) number density, and (c) volume
fraction of Cu precipitates in Fe-1.23 at.% Cu alloy at 600 °C compared with the
experimental data.
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Fig. 8. Calculated time evolution of (a) mean radius, (b) number density, and (c) volume
fraction of Cu precipitates in Fe-Cu based alloys at 500 °C compared with the
experimental data.
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et al. was extended with cluster mobility. The effects of interfacial en-
ergy, diffusivity, solubility, matrix composition, and cluster mobility
on the precipitation process of Cu precipitates were studied at 500 °C
for the new model, and the causes of different trends were identified.
When only monomers are diffusive, there is separation of nucleation,
growth, and coarsening at high interfacial energy (≥0.3 J/m2), and
these three stages overlap at lower interfacial energy. With cluster mo-
bility, no apparent separation of the three stages is observed in the sim-
ulated time scale. When all cluster (and monomer) diffusivities are
simultaneously scaled by the same factor, it does not alter the shape of
the simulated temporal evolution profiles, but instead only produces a
shift along the time axis. Solubility and matrix composition will also af-
fect the overlapping of nucleation and coarseningwhen onlymonomers
are mobile. The general kinetic features of the current CD model are
similar to that of the KWN model. Increasing nmax will eventually lead
to a convergence of the time evolution profiles of precipitate volume
fraction and Cu concentration in the matrix over all the time scales,
and for a time below a nmax dependent cut off formean radius and num-
ber density. The newly developed CDmodel with monomer and cluster
mobility can simultaneously model the time evolution of the mean ra-
dius, number density, andvolume fraction of Cuprecipitates in dilute bi-
nary Fe-Cu alloys using physically reasonable input parameters. The
optimizedmodel parameters showed good prediction in awide compo-
sition and temperature range, which indicates the developed model is
suitable for dilute Fe-Cu alloys. Furthermore, we believe this model
can serve as a foundation for modeling CRPs precipitation in RPVs
under irradiation and other Fe-Cu based steels, although more assess-
ments of the coupling of alloying elements with Cu precipitation kinet-
ics would be needed. Analysis of the data for CRPs in Fe-Cu based steels
indicated that alloying has a significant impact on the precipitation ki-
netics. This is likely due to at least changes in diffusivity and solubility,
and it was not clear whether there were any changes in number of mo-
bile cluster classes associated with alloying based on the limited avail-
able experimental information and our calculations.
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