Scanning Probe Microscopy for Nanoscale Characterization of Electrical and Magnetic Properties

Olivia Maryon
Boise State University

Kari Higginbotham

Medha Veligatla
Boise State University

Armen Kvryan
Boise State University

Peter Müllner
Boise State University

See next page for additional authors
Authors
Olivia Maryon, Kari Higginbotham, Medha Veligatla, Armen Kvryan, Peter Müllner, Mike Hurley, and Paul H. Davis

This student presentation is available at ScholarWorks: https://scholarworks.boisestate.edu/under_conf_2019/105
Scanning Probe Microscopy for Nanoscale Characterization of Electrical and Magnetic Properties

Olivia Maryon,1 Kari Higginbotham,2 Medha Veligatla,1 Armen Kvryan,1 Peter Müllner,1 Mike Hurley,1 and Paul H. Davis1

1Micron School of Materials Science & Engineering, 2Department of Mechanical & Biomedical Engineering

Atomic Force Microscopy (AFM)

AFM is a nanoscale scanning probe microscopy (SPM) technique useful for obtaining topographical maps of surfaces while simultaneously characterizing and mapping out their associated nanomechanical properties. To do this, an extremely sharp (few nm radius of curvature) probe is brought in contact (or near-contact) with the sample and rastered across its surface.

Magnetic force microscopy, or MFM, employs a magnetized AFM probe tip to detect magnetic force interactions between the tip and the sample, thereby mapping out the magnetic structure of the sample surface. Kelvin probe force microscopy, or KPFM, measures the Volta potential difference between a conductive AFM probe and the sample surface, which can be related back to the work function of the material and correlated with co-localized elemental mapping via energy dispersive spectroscopy (EDS). Both MFM and KPFM use an interleaved lift-off mode where the probe will first map out the topography and then lift off the surface to a designated height and retrace the surface topography while measuring the electromagnetic property of interest.

Magnetic Force Microscopy (MFM)

Our MFM studies on Ni-Mn-Ga, a magnetic shape memory alloy (MSMA), connect experimental data and computational modeling to understand the growth of twins in response to bending. MSMAs can be deformed by an applied magnetic field, or conversely can reorient their easy magnetization axis in response to an applied force via crystal twinning.

The 3D image above at left shows the topographical relief arising from the twin boundaries on a Ni-Mn-Ga sample. The 2D image at right above is the corresponding MFM phase, orientation predicted by the simulation (colored map above) can clearly be seen in the MFM phase data, validating the computational modeling prediction.

Kelvin Probe Force Microscopy (KPFM)

KPFM studies can be informative for predicting and understanding the nanoscale mechanisms underpinning galvanic corrosion initiation and propagation. Studies were conducted on a Cu-Ag braze and a case-hardened stainless steel engineered for bearing applications in high performance jet engines destined for operation in corrosive marine environments (Pyrowear 675, or P675). KPFM revealed voltage potential differences (VPDs) between the phases present in each sample, giving insight into the thermodynamic driving force for galvanic corrosion. In the case of P675, differing carburizing treatments resulted in different corrosion behavior and resistance in 1M NaCl as seen below, where attack along grain boundaries in the carbo-nitrided (CN) sample led to etching of the matrix surrounding the carbides.

References:

1. AFM schematics adapted from Bruker.

Author:

Olivia Maryon
Undergraduate Research Assistant
Surface Science Laboratory
Materials Science & Engineering
olivia.maryon@boisestate.edu

Co-Authors:

Kari Higginbotham, karliveringston@u.boisestate.edu
Medha Veligatla, medhaveligatla@u.boisestate.edu
Armen Kvryan, armenkvryan@u.boisestate.edu
Peter Müllner, petermullner@boisestate.edu
Mike Hurley, mikehurley@boisestate.edu
Paul H. Davis (mentor), pauldavis2@boisestate.edu

Funding: NSF MRI Award #1727026.