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Abstract Abstract 
In environment monitoring,data from multiple sensors are critical. Transmitting all sensors data in timely 
fashion is difficult due to bandwidth constraint. So, it is critical to best utilize the bandwidth to transmit 
the data . We consider sensor networks where each sensor quantizes its local observation into one bit, 
and transmit it to a central node through the channel where the estimate of parameter is made based on 
the received data. We design optimal distributed system in Bayes framework under different channel 
quality setting. We demonstrate the robustness and efficiency of our designs via both theoretical 
derivation and numerical validation. 
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Optimal Bayesian Estimation in Sensor Networks
Santosh Paudel and Hao Chen

Department of Electrical and Computer Engineering, Boise State University

1. Abstract
Data from multiple sensors require large bandwidth and data are critical to vir-
tually all the applications. Transmitting data is difficult due to the bandwidth
constraint so it requires to best utilize the bandwidth to transmit the data. We
consider distributed sensor network where each sensor quantizes its local ob-
servation into one bit and transmit it through the channel and estimate parameter
of observation based on the received data. We design the optimal distributed es-
timation system for given observation in Wireless Sensor Networks(WSN) under
Bayesian framework. Further we investigate robustness of our design i.e. com-
pare design results under different settings of channel.

2. MOTIVATION

•WSN nodes: limited energy, power, lifetime, computing, and communication
capabilities
•Different quantization schemes exist from which an optimal system is to design

for given observations while meeting stringent power and bandwidth budgets..

3. DISTRIBUTED ESTIMATION SYSTEM

•Parallel Network Structure
– Local sensors send compressed observations to a fusion center (FC) & FC

makes an estimate
– In particular, we consider the most stringent case where sensor observa-

tions are quantized into single bits based on quantization rules (probabilistic
& deterministic)

•Distributed Estimation System Diagram

•Research Problems and Goals
– Unlimited choices of quantizer rules and estimators
∗Deterministic -Single threshold employed for qunatization
∗Probabilistic Noise added to signal before quantization, e.g., dithered quan-

tizer
– Identify how much information changes as a result of adjusting sensor deci-

sion rule under different channel settings
•Performance Matrices

– Mean square error (MSE)
– MSE lower bounded by its Cramer-Rao lower bound (CRLB)
– Maximum likelihood (ML) and Maximum a Posteriori (MAP) estimator

achieves CRLB asymptotically

4. DISTRIBUTED BAYESIAN ESTIMATION WITH
ONE-BIT QUANTIZATION

4.1 Estimation Problem

•Estimate θ from N sensors: Xi = θ +Wi, where θ is parameter to be esti-
mated with prior pdf pθ(θ), Xi : sensor observations, Wi : i.i.d noise with pdf
fw(.)

•Observation model

f (X/θ) =
N∏
i=1

f (Xi/θ)

•Quantizers
– Observation quantized to one-bit (0 or 1) with quantization rule γi(Xi) =
Pr(Zi = 1/Xi)

– Identical quantizers γ = γ1 = γ2 = ... = γN

4.2 Estimation Performance

•Determined by k(θ) = Pr(Z/θ) = EX/θ[Pr(Zi = 1/Xi)] =
∫
X[γ(x)f (x/θ)]dx [2]

•For an unbiased estimator θ̂,MSE is lower bounded, i.e., MSE = E(θ̂− θ)2 ≥
CRLB(θ, k, f ) = 1

I(θ,k,f ) [3] , where I(θ, k, f ):Fisher Information (FI)

•Normalized asymptotic MSE: N.MSE → ε(θ, k, f ) = Eθ(
1

I(θ,k,f )) =∫∞
−∞

[
pθ(θ)

1
I(θ,k,f )

]
dθ

•Optimization problem: γ0(x) = argminγ(.)ε(θ, k, f )

– determine an optimal γ0(x) that minimizes the error ε for any given pθ(θ) and
f (X/θ)

4.3 Performance Limit

•Full-Precision PL
– Unquantized CRLB , Zi = Xi

– Too loose (power and bandwidth constraints)
•Distributed Bayesian PL

–Xi = θ,noiseless, deterministic
– Perfect observation→best performance
– Monotone increasing increasing quantization rule

γ(Xi) = Pr(Zi = 1/θ) = k(θ) =
1 + sin(g(θ))

2

– FI in close form with adjusting sensor decision rule with channel of error,
(ρ):Ii(θ) =

(1−2ρ)2cos2g(θ)(g′(θ)2
(1−(1−2ρ)2sin2g(θ)) g

′
(θ) = c.p

1
3

θ(θ) where c = π

(2π)
1
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1
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– FI in close form with adjusting sensor decision rule with channel of error,

(ρ): Ii(θ) =
[ ddθk(θ)]

2

k(θ)[1−k(θ)] = (g
′
(θ))2, g′(θ) = c.p

1
3

θ(θ) where c = 2sin−1(1−2ρ)
(2π)

1
33

1
2

– optimization problem [1]

gI(θ) = argmin
g(θ)
{
∫ b

a

pθ(θ)(g
′
(θ))−2dθ}, s.t., g(θ)ε

[
−π

2 ,
π
2

]
, g,(θ) ≥ 0

– In full precision case, MSE for θ ∼ N(0, 1) and Wi ∼ N(0, σ2w) is σ2w
– In genie-aided MSE for θ ∼ N(0, 1) and Wi ∼ N(0, σ2w) equals to πσ2w

2

5. RESULTS

•Without adjusting sensor decision rule with channel

–PL =

(∫ b
a pθ(θ)

1
3dθ
)3

π2 , when
∫ b
a pθ(θ)

1
3dθ exists ,PL is achieved by k0(θ) = γ0(X) =

1
2

(
1− cos

(
π
∫ θ
a pθ(t)

1
3dt∫ b

a pθ(θ)
1
3dθ

))
[1]

•With adjusting sensor decision rule with channel of error probability ρ

–PL =

(∫ b
a pθ(θ)

1
3dθ
)3

4[sin−1(1−2ρ)]2, when
∫ b
a pθ(θ)

1
3dθ exists ,PL is achieved by k0(θ) = γ0(X) =

1+

[
2sin−1(1−2ρ)

∫ θ
a pθ(t)

1
3dt∫ b

a pθ(θ)
1
3dθ

−sin−1(1−2ρ)

]
2

6. SIMULATION RESULTS

-Prior: Gaussian θ ∼ N(0, 1)
-θ range: (−3, 3)

Figure 2: Performance comparison under ρ = 0, and ρ = 0.1 channel settings
with/without adjusting sensor decision rule

7. CONCLUSION

•Bandwidth and power efficient parameter estimation in distributed system un-
der the Bayesian criterion is considered
• Identified how system performance changes as a result of adjusting sensor

decision rule under different channel settings in terms of CRLB
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