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QUANTUM DEFORMATIONS OF FUNDAMENTAL GROUPS
OF ORIENTED 3-MANIFOLDS

UWE KAISER

Abstract. We compute two-term skein modules of framed oriented links in
oriented 3-manifolds. They contain the self-writhe and total linking number
invariants of framed oriented links in a universal way. The relations in a natural
presentation of the skein module are interpreted as monodromies in the space
of immersions of circles into the 3-manifold.

1. Introduction

Let M be a compact oriented 3-manifold (possibly with boundary). Throughout
“link” will mean framed and oriented link in M .

In [13] (see also [9]) J. Przytycki defines the quantum deformation of π1(M) in
the following way: Let L(M) be the set of isotopy classes of links in M . Let S(M)
(in [13] denoted by Sfr(M)) be the quotient of the free Z[q±1] =: R-module with
basis L(M) by the relations

K+ = q2K− and K(1) = qK.

Here K± are two links, which differ only inside a 3-ball in M by a crossing change.
The link K(1) is defined from K by introducing a positive twist into the framing of
one of its components. The pictures below show projections onto a plane contained
in some oriented 3-ball in M . We assume that framings are induced from the
projection plane.

K+ K− K(1) K

Let π̂(M) be the set of conjugacy classes of the fundamental group π1(M). For
each ring R let SRπ̂(M) be the symmetric algebra of the free R-module with basis
π̂(M).
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Theorem 1 (Przytycki). (a) If M has no non-separating 2-spheres and tori, then
S(M) is isomorphic to SRπ̂(M).

(b) If M contains a non-separating 2-sphere or torus, then S(M) has a torsion
element:

(i) If K is a link in M with intersection number with some 2-sphere equal to
k 6= 0, then (q2k − 1)K = 0 in S(M).

(ii) Let K ′ be a link in M with intersection number with some torus equal to
k 6= 0. Let K be a link obtained from K ′ by adding to K ′ a non-contractible
curve on the torus. Then (q2k − 1)K = 0 in S(M).

The results in (b) are proven in ([13], 1.3) by explicit construction and (a) has
been announced there. We will give a proof of Przytycki’s theorem in section 5.
A similar and related skein module based on homology of framed links has been
computed in [15]. This module has been described as the quantum deformation
of the first homology group of M in the same way as S(M) can be considered
as the quantum deformation of the fundamental group of M . Note that the ring
homomorphism R→ 1 mapping q to 1 induces the (R,Z)-homomorphism

S(M)→ SZπ̂(M).

Here and in the following, we use the following notation. Let χ : R → R′ be a
fixed homomorphism of commutative rings with 1. Then an (R,R′)-homomorphism
φ : M → M′ from some R-module into some R′-module is a homomorphism of
abelian groups satisfying φ(λm) = χ(λ)φ(m) for all m ∈M and λ ∈ R.

In this paper we will give a complete description of S(M), which is based on ideas
from Vassiliev theory; see also [8], [5], [16]. This settles Problem I. 92, Part I from
Kirby’s problem list [9]. We will reduce the understanding of relations in a natural
presentation of S(M) to certain problems in the theory of singular 2-spheres and
tori in M . The relation with Przytycki’s result is based on D. Gabai’s generalization
of the sphere theorem relating singular with embedded surface theory [2].

For r ≥ 0 let Λr(M) := map(qrS1,M)/Σr, where map denotes the set of smooth
maps and the permutation group Σr acts by permuting the circles in the domain.
Note that Λ1(M) =: L(M) is the space of smooth free loops in M and Λ0(M) is a
1-point space by definition. Let Λ(M) := qr≥0Λr(M) be the generalized free loop
space of M . Let I(M) ⊂ Λ(M) be the subspace of immersed maps.

We will prove the following two results:

Theorem 2. There exists a system of local coefficients Z in I(M), with Zx
∼= R

for x ∈ I(M), such that
H0(I(M),Z) ∼= S(M).

The set π0(L(M)) is in 1-1 correspondence with π̂(M), and π0(Λ(M))∼=π0(I(M))
is in 1-1 correspondence with the set b(M) of unordered sequences in π̂(M). Also
b(M) is the natural basis of the module SRπ̂(M), which is isomorphic to the ho-
mology module H0(Λ(M),R) (R any ring). In the following the elements of b(M)
will be identified with monomials in π̂(M).

Theorem 3. For each α ∈ b(M) there is a non-negative integer ε(α), which is de-
termined by oriented intersection numbers in M , and an isomorphism of R-modules:

S(M) ∼=
⊕

α∈b(M)

R/(q2ε(α) − 1).
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The isomorphism of the theorem is determined by a choice of links with given
free homotopy classes of components, which are called standard links. A precise
description of the index ε(α) of α is given below.

Note that each 0-dimensional twisted homology module is a direct sum of cyclic
modules with cyclic summands corresponding to path components [18]. The the-
orems above provide a description of the relations in the skein module through
monodromies of paths in I(M). The skein module S(M) is free if and only if all
monodromies are trivial, and S(M) ∼= SRπ̂(M) in this case.

The image of a link K in the skein module is determined by the free homotopy
classes of its components (some element α ∈ b(M) determining a path component
of Λ(M)) and some integer number w(K), which is well-defined modulo 2ε(α). It
follows from the skein relations that this number can be interpreted as the writhe
(relative to a chosen standard link) of K. Thus, by computing the skein module,
the indeterminancy of the universal writhe invariant is determined. But it should
be noted that the writhe defined in this way does not satisfy the usual behaviour
with respect to smoothing of crossings as known for S3. This homological writhe
of links is measured in the quantum deformation of the first homology group of M
[15].

Next we describe the index function ε. Throughout we will use the natural
Hurewicz isomorphism from oriented singular bordism to oriented homology in
dimensions 1 and 2 (see e.g. [7], 13.15). Let

λ : H2(M)⊗H1(M) −→ Z
be defined by the oriented intersection number of oriented (maybe singular) closed
surfaces and loops in M . Let

µ : b(M)→ H1(M)

be defined by taking the sum of the homology classes resulting by application of the
Hurewicz homomorphism to the free homotopy classes in α ∈ b(M). For β ∈ π̂(M)
let fβ : S1 →M be a representing map. Let

µ̃ : π1(L(M), fβ)→ H2(M)

be defined by taking the homology class of the map c′ : S1 × S1 → M adjoint to
c ∈ π1(L(M), fβ). Now for α = α1 · . . . · αr ∈ b(M) let Γ(α) be the subgroup of Z
generated by all elements in

λ(µ̃(π1(L(M), fαi)), µ(α))

for all 1 ≤ i ≤ r. If Γ(α) is nontrivial let ε(α) be a positive generator, otherwise let
ε(α) be 0. Note that ε(∅) = 0, where ∅ is the unique sequence in b(M) of length 0.
Obviously ε(α) does not depend on the choice of maps fβ .

The following result can be considered as the singular version of Przytycki’s
theorem (a) (the proof also gives the idea for (b)):

Proposition 1. S(M) is isomorphic to SRπ̂(M) (equivalently is free) if and only
if each mapping from a torus to M is homologous into ∂M .

Proof. If each mapping from a torus to M is homologous into ∂M , then all oriented
intersection numbers of closed curves and tori are trivial. Thus the index is trivial
for each α ∈ b(M). Assume that there is a mapping from a torus, which is not
homologous into ∂M . It follows by Poincare duality (see [6], Appendix A) that
there exists an oriented loop, which has a non-trivial intersection number with the
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singular torus. The map from the torus is the adjoint map of a representative of
some element in π1(L(M), fβ) for some β ∈ π̂(M). Assume that the intersection
number of the torus map and fβ is non-trivial. Then each knot with homotopy class
β is torsion in S(M) by Theorem 2. Otherwise we can find β′ ∈ π̂(M) such that
β′ has a non-trivial intersection number with the torus map. Then for α := β · β′
we have ε(α) 6= 0. Thus S(M) has torsion. �

2. Statement of the general results

The quantum deformation of the fundamental group determines the writhe in-
variants of links in oriented 3-manifolds in a universal way. The writhe of a link
in S3 naturally is the sum of the self-writhe and the total linking number (sum of
pairwise linking numbers). Accordingly one can define a skein module of oriented
3-manifolds, which contains the self-writhe and total linking number invariants. It
turns out that the computation of this module does not require ideas beyond those
used for the computation of the module S(M).

Let R′ := Z[q±1
1 , q±1

2 ]. Let S′(M) be the quotient of R′L(M) by the submodule
generated by all elements of the form K+ = q2

1K−, respectively K+ = q2
2K−, for

crossings of the same, respectively distinct, components, and K(1) = q1K. Using
the coefficient homomorphism R′ → R, which maps q1 and q2 to q, Przyztycki’s
universal coefficient theorem [14] induces the natural isomorphism

S(M) ∼= S′(M)⊗R′ R.
Similarly, the coefficient homomorphism R′ → R, which maps q1 to 1 and q2 to q,
induces the homomorphism onto the linking number skein module L(M) considered
in [5]. Also there is the natural homomorphism of skein modules defined from the
ring homomorphism R′ → R, which maps q2 to 1 and q1 to q. Let W(M) denote
the resulting skein module. In this skein module the relative self-writhe of links
is measured. The above modules can be summarized in the following diagram of
natural (R′, R)-epimorphisms:

L(M) ←− S′(M) −→ W(M)y
S(M)

The modules L(M), respectively W(M), contain the link homotopy, respectively
anti-link homotopy, part of S′(M) in a natural way.

The following two results are immediate generalizations of Theorems 2 and 3.
Let N denote the set of non-negative integers.

Theorem 4. There exists a system of local coefficients Z′ in I(M) with Z′x
∼= R′

such that
H0(I(M),Z′) ∼= S′(M).

Theorem 5. For each α ∈ b(M) there exists an index

ε′(α) = (ε1(α), ε2(α), ε3(α) ∈ N× Z× N,
determined by oriented intersection numbers as described below, such that

S ′(M) ∼=
⊕

α∈b(M)

R′/(q2ε1(α)
1 q

2ε2(α)
2 − 1, q2ε3(α)

1 − 1).
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The numbers ε′(α) are defined as follows. For α = α1 ·. . .·αr and fαi representing
αi, let Γ′(α) be the subgroup of Z × Z generated by all elements (omitting the
Hurewicz homomorphisms from the notation)

(λ(c, αi), λ(c, α \ αi)),
where c runs through π1(L(M), fαi) and 1 ≤ i ≤ r. Then Γ′(α) is generated by two
elements, which we can write (ε1(α), ε2(α)) and (ε3(α), 0) with ε1(α), ε3(α) ∈ N.
(Γ′(α) is cyclic if and only if ε3(α) = 0.)

It follows from the skein relations that the image of a given link K in S′(M) can
be written as qw1(K)

1 q
w2(K)
2 multiplied by a standard link with homotopy classes

determined by α ∈ b(M). Here w1(K) and w2(K) are the relative self-writhe
and relative total linking number of K. The pair (w1(K), w2(K)) ∈ Z2 is well-
defined modulo the subgroup Γ′(α). Obviously the sum of the total linking number
and the self-writhe is the writhe number in Theorem 3. The number ε2(α) is the
linking number index as defined in [5]. The gcd of (ε1(α) + ε2(α)) and ε3(α) is the
indeterminancy ε(α) as defined in section 1.

Proposition 2. S ′(M) is isomorphic to SR′π̂(M) if and only if each mapping
from a torus to M is homologous into ∂M .

Proof. The “only if” part follows from Przytycki’s universal coefficient theorem and
Proposition 1. If every singular torus is homologous into ∂M , then all intersection
numbers of singular tori and loops are zero. So the subgroups Γ′(α) ⊂ Z × Z are
trivial for all α. It follows that S′(M) is free. �

Remark 1. In [1], using the language of Vassiliev invariants, the moduleW(M) has
been discussed. It follows from our results that this module is free if and only if the
following condition holds: For each singular torus, all intersection numbers with
loops defined by restriction of the torus map to essential closed curves on the torus
are trivial. In this case the relative framing number of a framed knot in M is a
well-defined integer (since the linking number of parallel curves is well-defined). In
particular the framing of a knot cannot be changed by isotopy. In fact, it is known
that the framing of a knot can be changed by isotopy if and only if M contains a
non-separating 2-sphere. This follows immediately from work of D. McCullough as
pointed out in [4]; see also [1].

3. Skein relations are monodromies

In this section we prove Theorem 4. The arguments used here are similar to
those in [5].

For details concerning bundles of groups and homology with twisted coefficients
we refer to [18], pp. 257–290. Recall that the fundamental groupoid of a space B
is a category Π1(B) whose objects are points of B and whose morphisms b1 → b2
are defined by the set of homotopy classes of paths in B from b1 to b2. Then a
bundle of abelian groups (or abelian local coefficient system) is a functor G from
Π1(B) into the category of abelian groups. Thus for each b ∈ B there is defined the
abelian group Gb. In [18], pp. 265–266, the chain groups, boundary operators and
twisted homology groups H∗(B; G) are defined. It is proved in [18], Theorem 1.12
that for B a connected space and a given operation of π1(B, b0) on some abelian
group G0, there is defined a bundle of groups in B inducing the given action of the
fundamental group. Also in [18], Theorem 3.2, the 0-dimensional twisted homology
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with coefficients in G is described explicitly. In fact, H0(B; G) ∼= G0/H0, where
H0 is the subgroup of G0 = Gb0 generated by all monodromy elements of the from
x− ξx with x ∈ G0 and ξ ∈ π1(B, b0).

We will apply the definitions and results from above to the space B = I(M) of
immersions in M . The local coefficient system will be constructed from the skein
relation.

Recall that elements of I(M) are unordered oriented immersions of circles in
M . For a given element x ∈ I(M) consider all unordered framed immersions with
the same underlying oriented immersion x. We will consider two such immersions
equivalent if either

(i) their framings are homotopic, or
(ii) if they differ by twists in the framings of the components, such that the total

signed number of these twists is zero.
A resulting equivalence of framed immersions is called a total framing of x. We

define Z′x, respectively Zx, by the free Z[q±2 ]-module, respectively by the free abelian
group, generated by all total framings of x. Note that there is a transitive action
of Z on the set of total framings of x for each x ∈ I(M), and Z′x

∼= R′, respectively
Zx ∼= R, for each x ∈ I(M).

There is an obvious notion of isotopy of totally framed links in M . Let T(M)
denote the corresponding set of isotopy classes. It is immediate from the definitions
that the skein module S′(M) can be defined from the set T(M) using the same
relations as in the original definition of S′(M). Note that the total framing of the
link K(1) is given by the action of +1 on the total framing of K.

The collection of modules Z′x forms a bundle of modules in I(M). The cor-
responding local system of coefficients in I(M) is defined by describing, for each
α ∈ b(M), the action of π1(I(M), x) on Z′x. Here x = xα is a link with free
homotopy classes of components given by α ∈ b(M).

Let Ĩ(M)→ I(M) be the space of ordered immersions of circles in M . Then the

projections Ĩ(M)→ I(M) (and similarly Λ̃(M)→ Λ(M)) are covering maps away
from the fixed point sets of the permutation actions. We will have to choose the
base points x = xα in a specific way. If α repeatedly contains a conjugacy class,
then we can choose xα to be symmetric in the following way: All components with
the same free homotopy class will be parallel to each other with respect to some
framing. It follows that there are isotopies (supported in a neighboorhood of the
link) which change the order of those components. The loops in I(M) defined in
this way are called small. Note that by composition with loops defined by these
isotopies each loop in I(M) can be assumed to lift to a loop in Ĩ(M). Note that
the bundle of modules pulls back to the covering space in the obvious way.

For γ ∈ π1(I(M), x) let γ̃ be the loop, which results, possibly after composition

with a small loop, by lifting to Ĩ(M). We choose a total framing on x and lift this
total framing to the corresponding basepoint on γ̃. It follows from Hirsch theory
[3] that this total framing canonically transports along γ̃ and defines a new total
framing on x. It is easily seen to be well-defined and independent of all choices made.
The difference to the original framing is determined by some element k1(γ) ∈ Z.

Next perturb the loop γ̃ to be transverse so that all singular maps along the
path are immersions with a single double point. Let k2(γ), respectively k3(γ),
be the signed sum of the singular points along γ (or γ̃) (i.e. positive, respectively
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negative, crossing changes), where the double point of the immersion is a self-
crossing, respectively a crossing of distinct components.

Theorem 6. The collection of homomorphisms (of groups)

k = kα : π1(I(M), xα)→ Aut(R′),

defined by: k(γ) is multiplication by

q
k1(γ)+2k2(γ)
1 q

2k3(γ)
2 ,

is well-defined, and thus defines a system of local coefficients Z′ in I(M).

Proof. We have to show that the maps k are constant under homotopies of loops
in I(M). The homomorphism property follows easily from the definitions. We
will show more generally that k is well-defined on π1(Λ(M), x). (This will be

important later on.) We can assume that γ lifts to a loop in Ĩ(M) and consider a

loop γ′ homotopic to γ. The homotopy lifts to a homotopy in Ĩ(M), and we can
apply Lin’s transversality results [12] and change the homotopy to a transversal
position with respect to the complex of singular links in M . (It is important that
this approximation be done relative to the boundary. This can easily be seen by
following the arguments of Lin’s proof.) Then the preimage of the set of singular
links is a 1-dimensional complex in the domain of the homotopy (annulus), with
vertices in the boundary and interior vertices of valence 4 or 1. Those of valence
4 describe immersions with two double points, those of valence 1 describe kink
resolutions (for further details see [8] or [5]). In order to show that the contributions
from the two loops are equal, deform one into the other across the annulus in a
finite number of steps, crossing only over a single interior vertex at a time. At
maxima or minima the contributions cancel obviously. It is easy to see that k does
not change when crossing over a vertex of valence 4 (the corresponding contribution
around each vertex is zero). If we cross over a vertex of valence 1 we encounter a
crossing change, which does not change the oriented isotopy type but does change
the total framing. The framing change cancels the singularity contribution. Thus
crossing over any vertex does not change the value of k. �

By Theorem 6 the homology module H0(I(M),Z′) is well defined. In Theorem 7
we will define the isomorphism with S′(M). Recall that, as a twisted 0-dimensional
homology module, S′(M) is a direct sum of cyclic modules R′/I(α), where α runs
through the set of path components of I(M) (which is in 1-to-1 correspondence
with b(M)). The ideals I(α) are generated by all elements of the form k(γ) − 1,
where γ runs through all elements of π1(Λ(M), fα) (compare e.g. [18], Theorem
3.2). Thus the proofs of both Theorems 5 and 3 reduce to the problem of relating
the monodromies to intersection numbers as explained in sections 1 and 2. This
will be done in section 4.

Theorem 7. There is a natural isomorphism

S′(M) −→ H0(I(M),Z′).

Proof. There is the obvious map T(M)→ H0(I(M),Z′), defined by mapping a link
to the 0-chain represented by a representative link x. Note that the framing deter-
mines an element in the fibre over x. So we have defined a 0-cycle for homology
with twisted coefficients; see [18], p. 266. Recall that H0(I(M),Z′) is an R′-module
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(this can be seen e.g. from the definition as a homology group of the chain com-
plex C∗(I(M))⊗ R′, where I(M) is the universal covering space of I(M), and the
tensor product is over the action of the fundamental group defining the system
of local coefficients). The map above extends uniquely to an R′-homomorphism
R′T(M) → H0(I(M),Z′). This homomorphism is onto because every 0-cycle can
be represented, up to homology, by a link in M . It follows from the very definitions
that skein equivalent links are homologous in the twisted homology module. Thus
there is an induced epimorphism from the skein module into the twisted homology
module. This epimorphism is injective by the definition of the boundary operator
for the chain groups defined by the system of local coefficients (see [18], p. 274). �

4. Computation of the monodromies

Recall from the proof of Theorem 6 that k(γ) only depends on the homotopy
class of γ in Λ(M). Moreover, by using the small loops of embeddings, which
change the order of components (described before Theorem 6), we can assume that

γ actually lifts to a loop in Λ̃(M). But π1(Λ̃(M), (f1, . . . , fr)) is isomorphic to the
direct product of groups π1(L(M), fi). Because of the homomorphism property of
k (see Theorem 6) it suffices to compute k(γ) on those loops in I(M), which fix all
but one component. For such a special loop in I(M) let αi be the free homotopy
class of that component, which actually is moved in M along γ. As before let αi
be represented by fαi : S1 → M . We can assume that fαi is an embedding. Let
c ∈ π1(L(M), fαi) be a loop in the free loop space based in fα. Obviously the loop
γ in I(M) is completely determined by c and the components fj, j 6= i, which are
fixed during the deformation. Note that the indices, which have to be computed,
only depend on the homology classes of the maps fi.

Next consider the trace of the moving component of such a loop. If we assume
that the underlying loop in the mapping space is transverse as described in section
3, then the resulting immersion from S1 × I to M × I is self-transverse; compare
[11]. Moreover by a reparametrization we can assume that the loop is constant near
S1×{0, 1}. Thus the immersions over the two boundary components can be glued
together to yield a self-transverse immersion

f : S1 × S1 →M × S1.

(Here we use that fαi is an embedding.) A framing of the embedding fαi : S1 →M
defines a framing of the normal bundle of the immersion S1 × I → M × I over
S1 × {0}. This framing extends to a framing of the immersion S1 × I → M × I.
But the resulting framing of the restriction to S1 × {1} can differ from the one
given over S1 × {0} (while the immersions on the two ends of the cylinder agree).
Thus we have defined a normal framing of the self-transverse immersion f except
along the gluing circle. The difference between the framings on the top and bottom
is precisely given by k1(γ) and is the normal Euler number χ(f) of the immersion.
This is well known from the singularity interpretation of the normal Euler number
by using a section of the 2-dimensional normal bundle, which is generic with respect
to the zero-section (compare e.g. [10], pp. 33–34).

Then k(γ) is obviously computed from the self-intersections of this immersion
and from the intersection numbers of the projection to M with the constant com-
ponents. The oriented intersection numbers of the torus in M with the other
components determine k3(γ). So we only have to consider the immersed torus.
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It is a classical result, in its original version due to Whitney [19] (discussed e.g.
in the work of Lashof and Smale [11]), that the homological intersection number of
[f ] ∈ H2(M × S1) satisfies the following relation:

[f ] · [f ] = 2D(f) + χ(f).

Here D(f) is the oriented self-intersection number of the self-transverse immersion
f , which is equal to k2(γ) by definition.

Thus the proof of Theorem 5 is complete by proving

Lemma 1. The homological intersection number [f ] · [f ] is equal to 2λ(c, αi).

It follows that
2λ(c, αi) = [f ] · [f ] = k1(γ) + 2k2(γ).

By considering corresponding powers of q1 (respectively q2) we see that ε′ can be
computed as described in Theorem 5.

Proof of Lemma 1. Using the Künneth theorem

H2(M × S1) ∼= H2(M)⊕ (H1(M)⊗H1(S1))

we will identify H2(M) and H1(M) ⊗ H1(S1) with subgroups of H2(M × S1).
Next define g : S1 × S1 → M × S1 by g(x, t) = (f(x, 1), t) and let a := [g] ∈
H1(M)⊗H1(S1). Then an easy bordism argument shows that [f ]−a =: b ∈ H2(M)
is equal to µ̃(c), and [f ] = a+b is the decomposition of [f ] according to the Künneth
theorem. Note that a · a = b · b = 0 (intersection numbers in M × S1). Thus
[f ] · [f ] = 2a · b. But a · b is also the oriented intersection number of µ̃(c) ∈ H2(M)
with the homology class represented by f |(S1 × {1}). �

5. Computational tools and proof of Przytycki’s theorem

Let ΩM be the based loop space of M . Consider the fibration

ΩM i→ LM p→M,

where i is the inclusion and p is the evaluation at the basepoint (see [17] and [5]).
For given b ∈ π1(M) let fb be a basepoint in Ω(M) corresponding to b and let
β ∈ π̂(M) be the corresponding free homotopy class.

There is the exact sequence of homotopy groups:

π1(ΩM, fb)
i∗−→ π1(LM, fb)

p∗−→ π1(M)
[ ,b]−→ π1(M).

Note that there are isomorphisms π1(L(M), fb) ∼= π1(LM, fβ), where the map
fβ : S1 →M is the map chosen in section 1, and [ , b] denotes the commutator with
b.

There is an obvious isomorphism π2(M) ∼= π1(ΩM, fb). (Deform a loop in fb in
Ω(M) such that all the mappings S1 →M along the loop are constant on a chosen
neighbourhood of the basepoint. We can assume that fb has this property. Then
the obstruction to the constant loop in fb is uniquely determined by some element
in π2(M).)

Now the image i∗(c) for c ∈ π2(M) can be described as follows. Represent c by
a mapping of a 2-sphere g, which is transverse to fb. Now deform the restriction of
fb on a neighbourhood of the basepoint in ∗ ∈ S1 as follows: Choose an arc joining
fb(∗) with g(∗). Then deform fb along this arc until a small neighbourhood of ∗ is
mapped to g(S2). Now deform across the image of the 2-sphere in the obvious way.
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This is a description of i∗(c) ∈ π1(LM, fb). Note that if the intersection number of
fb and g is equal to k ∈ Z, then

λ(µ̃(i∗(c)), µ(fb)) = k.

Note that this intersection number is trivial for all 2-sphere mappings, which are
homotopic to ∂M .

Example 1. Let M = S2 × S1. Then π̂(M) = H1(M) ∼= Z and b(M) can be
identified with the set of unordered sequences of integer numbers. Note that p∗ is
onto and π1(LM, fb) is the union of sets p−1

∗ (b′) with a transitive action of π2(M)
on each of these sets.

Since π1(M) is cyclic, a mapping from a torus (representing some element x ∈
π1(LM, fb)) can be homotoped to a map f so that the restriction to the 1-skeleton
S1 ∨ S1 maps into the core ∗ × S1. Now this restriction can be extended to a map
of a torus into ∗ × S1. Thus the collection of intersection numbers λ(µ̃(x), µ(α)),
where x runs through all of p−1(b′), does not depend on b′. Here α ∈ b(M) is any
sequence of free homotopy classes. So we can restrict the computation to b′ = 0 and
compute all intersection numbers from the singular tori resulting from elements in
the image of i∗.

Note that π2(M) is generated by multiples of the standard sphere S2×∗. More-
over, a loop in M has homology class k ∈ Z if and only if the loop intersects S2×∗
with intersection number k. It follows that for α ∈ b(M)

ε(α) = ε(α1 · . . . · αr) =
r∑
i=1

αi.

The subgroup Γ(α) of Z × Z is generated by the elements (αi,
∑

j 6=i αj). So if we
consider α = 1 ·1 · . . .·1 ∈ br(M), we have the contributions (1, r−1) for all i. Then
ε′(α) = (1, r − 1, 0) and the corresponding cyclic summand of the skein module is
R′/(q2

1q
2(r−1)
2 − 1). For α = 1 · 2 the resulting subgroup of Z × Z is generated

by (1, 2) and (2, 1). The summand of the skein module corresponding to this α is
given by R′/(q4

1q
2
2 − 1, q6

1 − 1). Even though the computation is easy for a given α,
a general answer might involve some interesting combinatorics.

Finally we give the proof of Theorem 1 from Theorem 2.
First we show (b). Note that λ(µ̃(i∗(c)), µ(K)) = k for K a knot in M , which

intersects the 2-sphere (with homotopy class c ∈ π2(M)) with intersection number
k ∈ Z. This shows (i). To prove (ii) we define the element c ∈ π1(LM, fβ), where
fβ : S1 → M is a representative of the given non-contractible curve on the torus
with free homotopy class β ∈ π̂(M), by a deformation of the non-contractible curve
across the torus and back into itself. Then let α = β · γ, where γ ∈ π̂(M) is the
free homotopy class of K ′. It follows that λ(µ̃(c), µ(α)) = k, because pushing the
non-contractible curve away from the embedded torus shows that the intersection
number of γ with c is zero. This proves (ii).

In order to prove part (a) of Przytycki’s result we have to show that ε(α) = 0
if there are no non-separating embedded 2-spheres or tori in M . Conversely we
claim that ε(α) 6= 0 implies the existence of a non-separating embedded 2-sphere
or torus. Now it is immediate from the definitions that there exists α ∈ b(M)
satisfying ε(α) 6= 0 if and only if there are a singular torus and an oriented loop
in M , which have a non-trivial intersection number. Note that each singular 2-
sphere, by composition with the canonical projection S1 × S1 → S2, induces a
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singular torus, preserving intersection numbers with a loop. Obviously (see e.g. [6],
Appendix A) each oriented embedded surface with a non-trivial intersection number
with an oriented loop is non-separating.

Thus Przytycki’s theorem follows easily from the following consequence of
D. Gabai’s fundamental result.

Theorem 8. Suppose that M is a compact oriented 3-manifold and let γ be an
oriented loop in M . If there is a singular torus in M with non-trivial intersection
number with γ, then there also exists an embedded 2-sphere or torus with non-trivial
intersection number with γ.

Proof. We apply Corollary 6.18 from [2] to the homology class z ∈ H2(M) deter-
mined by the singular torus. It follows that the singular Thurston norm of z is
zero, so by Gabai’s result also the embedded Thurston norm of z is zero. It follows
that z can be represented by a disjoint union T of embedded 2-spheres and tori.
This representative of z has the same intersection number with γ as the original
singular torus. Obviously there is at least one component of T which has non-trivial
intersection number with γ. �
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