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RESEARCH ARTICLE Open Access

Community stakeholder preferences for
evidence-based practice implementation
strategies in behavioral health: a best-worst
scaling choice experiment
Nathaniel J. Williams1, Molly Candon2,3, Rebecca E. Stewart2,3, Y. Vivian Byeon2,4, Meenakshi Bewtra5,6,7,
Alison M. Buttenheim3,8,9,10, Kelly Zentgraf2, Carrie Comeau11, Sonsunmolu Shoyinka11 and
Rinad S. Beidas2,3,8,9,12,13*

Abstract

Background: Community behavioral health clinicians, supervisors, and administrators play an essential role in implementing new
psychosocial evidence-based practices (EBP) for patients receiving psychiatric care; however, little is known about these
stakeholders’ values and preferences for implementation strategies that support EBP use, nor how best to elicit, quantify, or
segment their preferences. This study sought to quantify these stakeholders’ preferences for implementation strategies and to
identify segments of stakeholders with distinct preferences using a rigorous choice experiment method called best-worst scaling.

Methods: A total of 240 clinicians, 74 clinical supervisors, and 29 administrators employed within clinics delivering
publicly-funded behavioral health services in a large metropolitan behavioral health system participated in a best-worst
scaling choice experiment. Participants evaluated 14 implementation strategies developed through extensive elicitation
and pilot work within the target system. Preference weights were generated for each strategy using hierarchical
Bayesian estimation. Latent class analysis identified segments of stakeholders with unique preference profiles.

Results: On average, stakeholders preferred two strategies significantly more than all others—compensation for use of EBP
per session and compensation for preparation time to use the EBP (P < .05); two strategies were preferred significantly less
than all others—performance feedback via email and performance feedback via leaderboard (P< .05). However, latent class
analysis identified four distinct segments of stakeholders with unique preferences: Segment 1 (n= 121, 35%) strongly
preferred financial incentives over all other approaches and included more administrators; Segment 2 (n= 80, 23%)
preferred technology-based strategies and was younger, on average; Segment 3 (n= 52, 15%) preferred an improved
waiting room to enhance client readiness, strongly disliked any type of clinical consultation, and had the lowest
participation in local EBP training initiatives; Segment 4 (n= 90, 26%) strongly preferred clinical consultation strategies and
included more clinicians in substance use clinics.
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Conclusions: The presence of four heterogeneous subpopulations within this large group of clinicians, supervisors, and
administrators suggests optimal implementation may be achieved through targeted strategies derived via elicitation of
stakeholder preferences. Best-worst scaling is a feasible and rigorous method for eliciting stakeholders’ implementation
preferences and identifying subpopulations with unique preferences in behavioral health settings.

Keywords: Evidence-based practice, Implementation, Stakeholder preferences, Participatory design

Background
The need to improve the quality and outcomes of health
and behavioral health services has led to increased em-
phasis on the implementation of evidence-based prac-
tices (EBPs) in community settings [1–4]. Effective
implementation of EBPs requires the cooperation of cli-
nicians, supervisors, and administrators who deliver clin-
ical care. However, little is known about these
stakeholders’ values and preferences for specific types of
implementation strategies, defined as the active ap-
proaches used to improve adoption, implementation,
and sustainment of EBPs [5]. It is also not clear how best
to elicit, quantify, and segment stakeholders’ implemen-
tation preferences. Community stakeholder preferences
should be considered when selecting implementation
strategies for several reasons. First, the process of elicit-
ing preferences is, in and of itself, a way to increase
stakeholder engagement and buy-in, a key component of
the implementation process [6–8]. Second, there is evi-
dence that tailored implementation strategies (i.e., those
that address localized barriers) are more effective than
non-tailored strategies [9, 10] and stakeholder prefer-
ences may provide insights regarding how to tailor to
local contexts [9]. Third, because stakeholder prefer-
ences may not align with evidence on what works, un-
derstanding preferences is an essential first step in
determining where implementation efforts should start
in terms of targeted mechanisms of change.
To date, efforts to elicit stakeholder implementation

preferences using both qualitative and quantitative ap-
proaches have had several limitations. Qualitative in-
terviews are useful for generating deep understanding
among a small group; however, they are resource in-
tensive and may have limited generalizability. Recent
advances in quantitative measurement include prag-
matic Likert-type scales that allow stakeholders to
rate the acceptability, feasibility, and appropriateness
of implementation strategies [11]. These approaches
are relatively low-cost even for large samples; how-
ever, because they do not require respondents to con-
sider trade-offs, they typically suffer from strong
ceiling effects with many strategies ending up highly-
ranked, thus undermining their utility.
Stated preference choice experiments are a promising

set of methods for eliciting stakeholder preferences that

may overcome these limitations by engaging stake-
holders in an intuitive yet powerful set of choice tasks
that closely mimic real-life decisions and that can be
easily implemented in large samples [12]. By requiring
respondents to consider trade-offs across a set of
choices, choice experiments generate highly-accurate es-
timates of implicit preferences for a targeted set of ob-
jects (e.g., implementation strategies) in a time-efficient,
cost-effective, and generalizable manner [12–15]. These
methods are especially valuable when the set of objects
are carefully derived through elicitation work within the
target population and when information on actual be-
havior or decisions are unavailable (or unobtainable), as
is typically the case in implementation [16].
Best-worst scaling (BWS) [16, 17] is a type of choice

experiment uniquely suited to the task of eliciting imple-
mentation preferences. This is because BWS is flexible
enough to identify either (a) the most preferred strat-
egy(s) from a list of irreducible and dissimilar strategies,
or (b) the most preferred level (e.g., dollar amount) of an
attribute (e.g., compensation) that multiple strategies
have in common [17]. This is important because there
are 73 discrete implementation strategies which can be
combined in many permutations [18]. Second, respon-
dents’ BWS choices can be segmented using model-
based clustering procedures such as latent class analysis
to identify subpopulations that share similar preferences
[19, 20]. Segmentation allows planners to optimally tar-
get implementation strategies to subpopulations based
on their preferences and therefore potentially optimize
their impact.
The goals of this study were to apply BWS to (1)

characterize and quantify the preferences of clinicians,
supervisors, and administrators employed within clinics
that deliver publicly-funded behavioral health services
for a set of 14 implementation strategies, (2) empirically
identify segments of stakeholders that exhibit distinct
preferences, and (3) examine differences across segments
in professional characteristics (e.g., age, education, pri-
mary role in organization).

Methods
Setting
Philadelphia, a city of over 1.5 million residents, is the
poorest of the United States’ 10 largest cities (26% of
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residents live below the poverty level) [21, 22]. The city’s
population is 41% African-American, 35% Non-Hispanic
White, 15% Hispanic, 8% Asian, and 2% other race [22,
23]. Public behavioral health services (i.e., mental health
and substance use treatment) in Philadelphia are finan-
cially supported by Medicaid and managed by Commu-
nity Behavioral Health (CBH), a non-profit managed
care organization (i.e., “carve-out”) established by the
city that functions as a component of the Department of
Behavioral Health and Intellectual disAbility Services
(DBHIDS). In 2018, DBHIDS and CBH included 175 in-
network provider organizations serving 118,011 unique
members [24].
Since 2007, DBHIDS has supported EBP delivery in

Philadelphia through a series of “EBP initiatives” that in-
clude training, expert consultation, and implementation
supports (e.g., booster trainings, implementation meet-
ings) for participating clinicians [25]. These initiatives
have supported implementation of several cognitive be-
havioral therapy models including cognitive therapy,
prolonged exposure, trauma-focused cognitive-
behavioral therapy, dialectical behavior therapy, and par-
ent child interaction therapy for a range of psychiatric
disorders. In 2013, DBHIDS created a centralized infra-
structure called the Evidence-based Practice and
Innovation Center (EPIC) to oversee EBP implementa-
tion efforts. EPIC supports EBP implementation by co-
ordinating and consulting EBP efforts across the clinics
within the CBH network (the managed care
organization), contracting with treatment experts to de-
liver EBP training, contracting with treatment providers
to deliver EBP, providing EBP consultation and imple-
mentation support, hosting events to publicize EBP de-
livery, maintaining web-based resources (e.g., webinars),
designating EBP programs within provider agencies, and
providing financial incentives (e.g., enhanced rates) for
delivery of EBPs.

Participants
The target population for this study was clinicians, su-
pervisors, and administrators employed within clinics
that deliver publicly-funded behavioral health services in
the City of Philadelphia. The sample did not include
members of EPIC (i.e., it did not include treatment ex-
perts or consultants). Because DBHIDS does not main-
tain a roster of email addresses to directly contact active
clinicians, we used a two-pronged recruitment and sam-
pling approach. We sent invitation emails to leaders of
behavioral health organizations (n = 210), clinicians (n =
527), and other community stakeholders (e.g., directors
of a clinician training organization; n = 6) in Philadel-
phia. We also e-mailed the invitation to four local elec-
tronic mailing lists known to reach large swaths of the
CBH network (e.g., managed care organization listserv)

and asked organization and network leaders to forward
the email. From these contacts, the survey link was
opened 654 times and 343 respondents completed the
BWS choice experiment.

Study design and procedure
The BWS choice experiment was designed to quantify
stakeholders’ preferences for 14 implementation strat-
egies developed through iterative elicitation, pilot, and
pre-testing work completed with members of each stake-
holder group in the target population [17, 26]. Elicitation
of strategies was completed via a system-wide innovation
tournament, described elsewhere [27], through which
clinicians submitted ideas for strategies to support EBP
implementation in Philadelphia. Following the tourna-
ment, submitted ideas (N = 65) were analyzed and re-
fined by a team of implementation scientists, behavioral
scientists, and clinicians, in order to develop a set of dis-
tinct, clearly operationalized implementation strategies
with ecological validity for the target system. The ana-
lysis process involved combining similar strategies, craft-
ing definitions of each strategy, and ensuring that all
strategies were adequately captured by the final set. This
process resulted in a set of 14 implementation strategies
(see Table 1: List of Implementation Strategies Included
in the BWS Experiment), which were subsequently evalu-
ated in pre-testing interviews with clinicians, supervisors,
and administrators (n = 9) within the system to ensure
that the strategies, as described, spanned the full range
of approaches viewed as relevant by stakeholders and
were clearly described. The 14 strategies fell into six cat-
egories: (1) financial incentives, (2) clinical consultation,
(3) clinical support tools, (4) clinician social support and
networking, (5) clinician performance feedback/social
comparison, and (6) client supports [27]. Notably, the
strategies developed through this process addressed 8 out
of 9 categories of implementation strategies identified in
the Expert Recommendations for Implementing Change
(ERIC) project [18], including: use evaluative and iterative
strategies, provide interactive assistance, develop stake-
holder interrelationships, train and educate stakeholders,
support clinicians, engage consumers, utilize financial in-
centives, and change infrastructure. Supplemental
Table 1A in Additional File 2 shows how the strategies
from the present study aligned with the discrete imple-
mentation strategies identified by the ERIC project.
Because each of the 14 strategies represented a qualita-

tively unique strategy, we used object case BWS (as op-
posed to profile case or multi-profile case BWS) [28].
The BWS experimental design was generated using the
Sawtooth Discover algorithm which produces random-
ized choice sets with optimal frequency balance, orthog-
onality, positional balance, and connectivity for a given
sample size [29–33]. Within the design, each participant
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was shown 11 sets of four randomly selected and ran-
domly ordered strategies and, within each set, asked to
choose which strategy was “Most useful” (i.e., best) for
supporting clinicians’ implementation of psychosocial
EBPs and which strategy was “Least useful” (i.e., worst).
The Discover algorithm optimizes 1-way, 2-way, and
positional balance within the randomization se-
quence such that (a) each strategy is presented an
equal number of times, (b) each pair of strategies
appears in a set an equal number of times, and (c)
each strategy is shown in each position an equal
number of times. For this study, each strategy was
included in at least three sets. Participants were
instructed to imagine that their organization had de-
cided to adopt a new psychosocial EBP that

exhibited excellent outcomes for their specific client
population, and that this treatment was new to the
respondent (or to clinicians working in the respon-
dent’s setting; see Additional File 1 for the BWS
prompt and an example set of strategies). The
prompt explained that initial training in the EBP
would be provided and would include active learning
approaches, and their input was sought regarding the
best implementation strategies that could be used to
support clinicians’ implementation of the new prac-
tice following training.
Sample size calculations assumed an alpha level of

.05, margin of error of 0.1, and 14 implementation
strategies to be rated with each strategy appearing in
a minimum of 3 sets. Based on these assumptions,

Table 1 List of Implementation Strategies Included in the BWS Choice Experiment

Category Strategy Name Definition

Financial Incentives EBP certification bonus Receipt of a 1-time bonus for verified completion of a certification process over a 1-
year period, in which clinicians: attend four, 1-day booster training sessions; pass a
multiple-choice knowledge test; and submit one tape of a session with a client where
they use the EBP.

Compensation for use of EBP per
session

Receipt of additional compensation (in addition to regular paycheck) upon verification
of using the EBP in sessions with clients for whom it is appropriate (i.e., per session),
up to a specified amount per year.

Compensated time for
EBP preparation

Ability to bill for any verified time clinicians spend preparing to use the EBP (e.g.,
reviewing the protocol, preparing materials for session, reviewing client homework,
etc.), up to a specified amount per year.

Clinical Consultation Expert-led EBP consultation 1-h, monthly, web- or phone-based consultation, with up to 5 other clinicians, for 1
year led by an expert EBP trainer.

Peer-led EBP consultation 1-h, monthly web- or phone-based conference, with up to 5 other clinicians, for 1 year
led by a clinician with experience implementing the EBP in Philadelphia.

Expert in your back pocket (on
call)

Network of EBP trainers on call via phone or web chat for same-day, 15-min consulta-
tions to problem-solve issues with implementing the EBP.

Clinical Support Tools Web-based resource center/
mobile app

Includes: (a) video examples of how to use specific techniques for the EBP, (b) “session
checklists” with steps outlined for using the EBP techniques in session, and (c)
downloadable worksheets and measures needed to use the EBP.

Electronic evidence-based
screening instrument inventory

Evidence-based screening instruments included in an electronic medical record,
completed electronically by clients in the waiting room (e.g., tablet); results are
automatically scored and immediately available so clinicians can assess treatment
needs and track client progress.

Clinician Social Support
and Networking

EBP-focused online forum Confidential site available only to registered clinicians who use the EBP, where
clinicians can login and post questions and answers about using the EBP, share tips,
and identify resources for using the EBP.

Community-based EBP
mentoring program

One-on-one mentoring program, where clinicians are matched with a local peer
clinician who works with the same population to support each other in implementing
the EBP.

Performance Feedback /
Social Comparison

EBP Performance benchmark
leaderboard

Posted where only agency staff can view it, recognizing clinicians in the agency who
met a benchmark for EBP implementation each month (based on 3 randomly selected
sessions).

EBP Performance benchmark
email

Available only to the clinician and his/her supervisor, reporting whether s/he met a
benchmark for EBP implementation each month (based on 3
randomly selected sessions).

Client Supports Client mobile app/ texting
service

Provides clients with reminders to attend sessions, prompts to complete homework
assignments, and clinician-tailored messages about practicing EBP skills.

Improved waiting room Create a relaxing waiting room (e.g., physical appearance, sensory experience) that
helps prepare the client to enter the session ready to work on EBP content.
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the required sample size was N = 244 participants
rating 11 sets of 4 strategies each [28, 34].
The BWS experiment was implemented via a web-

based computerized survey emailed to clinicians, super-
visors, and administrators from March 2019 to April
2019. Consistent with best practices in survey adminis-
tration, we utilized a process [35] in which participants
received a pre-survey priming email, survey invitation
email, and three follow-up reminders, delivered approxi-
mately 1 week apart. Surveys took approximately 30 min
and participants received a $25 gift card.

Measures
In addition to completing the BWS questions, respon-
dents reported on professional and workplace character-
istics: primary role (administrator [those who were
executive level administrators within the clinics], super-
visor [those who supervise clinicians in clinical work],
clinician [those who primarily offer direct services to cli-
ents]), education level, type of clinic in which they were
employed (mental health, substance use, dual diagnosis),
salary versus fee-for-service employment, tenure in
current agency, years of experience as a clinician, extent
to which their graduate training emphasized EBP (ran-
ging from 1 =Never to 7 =Always), average hours
worked per week, number of City-sponsored EBP train-
ing initiatives in which the respondent had participated
(ranging from 0 to 6), number of BWS strategies cur-
rently in use by their employing agency (ranging from 0
to 14), age, sex, race, and ethnicity. Because of hetero-
geneity across roles, administrators and supervisors did
not report on salary versus fee-for-service employment,
hours worked per week, extent to which their graduate
training emphasized EBP, years of experience as a clin-
ician, or number of City-sponsored EBP training initia-
tives participated in.

Data analysis
Best and worst choice frequencies for each strategy
were summarized at the sample level using count
analysis which represents the proportion of times a
strategy was chosen as most or least useful relative to
the number of times it was displayed [17]. Preference
weights for each strategy were calculated at the indi-
vidual level using hierarchical Bayes estimation with a
multinomial logit model implemented using CBC/HB
software from Sawtooth (version 5) [36–40]. Latent
class analysis (LCA) [19, 20, 41] was used to identify
segments of the population with different preferences
and to estimate preference weights (i.e., part worth
utilities) for each segment using Sawtooth Software’s
LCA program (version 4.7), which implements the es-
timation procedure described by DeSarbo and col-
leagues [19]. We estimated LCA models with 1

through 5 classes. Consistent with best practices, we
selected the best-fitting model on the basis of the
Bayesian information criterion [42], probabilities of
correct classification [43], sufficiently populated clas-
ses, and interpretability of classes based on alignment
with previous research and theoretical considerations
[44]. Differences across segments on professional
characteristics were tested using analyses of variance
and chi-square tests (SPSS, Version 25). There were
no missing data on participants’ preferences. Because
very few participants (< 5%) had missing data on pro-
fessional and sociodemographic variables, these were
excluded from analyses on a pairwise basis.

Results
Participants were 76% female. With regard to ethni-
city and race, participants endorsed the following cat-
egories: White (60%), Black and/or African American
(20%), American Indian or Alaskan Native (1%), Asian
(3%), Other (7%). The remainder were missing or pre-
ferred not to disclose. Participant demographics are
largely consistent with previous work we have con-
ducted in the city of Philadelphia [45] and broader
national trends [46].
Table 2 shows the best and worst choice frequencies

for each strategy. Fig. 1 shows the mean preference
weights (i.e., part worth utilities) for each strategy with
95% confidence intervals. The preference weights are
logit scaled and represent the average utility or value
that this sample of respondents attached to each strat-
egy; higher values indicate greater utility. When 95%
confidence intervals do not overlap between two strat-
egies, the strategy with the higher value is significantly
more preferred at p < .05. The two strategies viewed as
most useful were both within the financial incentives
category and included (1) compensation for EBP use per
session and (2) compensation for EBP preparation time.
Both of these were preferred significantly more than all
other strategies (see Fig. 1). Conversely, both perform-
ance feedback/social comparison strategies were viewed
as significantly less useful than all others (see Fig. 1): (1)
performance feedback via leaderboard was the least pre-
ferred, followed by (2) performance feedback via email.
On average, financial incentive strategies were preferred
9.2 times more than performance feedback/social com-
parison strategies (Mean Best = .46 vs. .05) and perform-
ance feedback/social comparison strategies were disliked
5.1 times more than financial incentive strategies (Mean
Worst = .56 vs. .11).
Additional insight into stakeholders’ preferences can

be obtained by examining their preferences grouped by
the six categories of strategies. As is shown in Fig. 2,
strategies in the financial incentives category were pre-
ferred significantly more on average than all others
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(p < .05), followed by clinical support tools, which were
the second most preferred and rated significantly higher
than all others except financial incentives (p < .05). The
clinical consultation and social networking categories were
statistically indistinguishable but rated significantly higher
than client supports which, in turn, rated significantly
higher than performance feedback/social comparison.
Figure 3 shows the preference weights (i.e., part worth

utilities) and 95% confidence intervals for each strategy
for each of the four segments identified in the optimally-

fitting four-class LCA model. These preference weights
are interpreted in the same manner as those shown in
Fig. 1. Tables 3 and 4 (see Additional File 2) show the
distribution of professional and sociodemographic char-
acteristics by segment and for the full sample. Segment
1, labeled Support Therapists through Financial Incen-
tives, included 35% of the sample (n = 121) and exhibited
significantly higher preferences for compensation per
session, compensation for preparation time, and com-
pensation for certification compared to all other

Table 2 Sample Best and Worst Choice Frequencies

Implementation Strategy B W B - W # of times displayed

Compensated per session 0.46 0.10 0.36 1079

Compensated prep time 0.45 0.11 0.35 1079

Web-based resource center 0.36 0.12 0.24 1084

Expert monthly supervision 0.32 0.15 0.18 1094

Certification bonus 0.34 0.17 0.17 1074

Electronic screening inventory 0.31 0.18 0.13 1075

Community clinician mentor 0.27 0.20 0.08 1079

Client mobile app/ texting 0.22 0.24 −0.02 1076

Peer monthly supervision 0.18 0.23 −0.05 1080

Expert on call 0.19 0.24 −0.05 1080

Online therapist forum 0.18 0.26 −0.08 1081

Improved waiting room 0.12 0.41 −0.29 1070

Performance email 0.05 0.52 −0.47 1076

Performance leaderboard 0.04 0.59 −0.55 1065

N = 343. B = sample-level best choice frequency calculated as the proportion of times the strategy was selected as “Most Useful” relative to the number of times it
was displayed; W = sample-level worst choice frequency calculated as the proportion of times it was selected as “Least Useful” relative to the number of times
displayed. B – W= best minus worst scores calculated as proportion best less proportion worst

Fig. 1 Average Preference Weights for each Strategy (N = 343) Note: Preference weights (i.e., part worth utilities) were estimated via hierarchical
Bayes estimation incorporating a multinomial logit model. Values are logit scaled; strategies with higher preference weights are more preferred.
Error bars indicate 95% confidence intervals. When 95% confidence intervals do not overlap between two strategies, the strategy with the higher
value is significantly more preferred at p < .05
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segments. Segment 1 had the highest proportion of ad-
ministrators (17%, n = 20) relative to the other groups (3
to 5%, p = .006) (see Table 3 included as an additional
file (see Additional file 2)).
Segment 2, labeled Support Therapists through

Technology, included 23% of the sample (n = 80) and
exhibited significantly higher preferences for the client
mobile app/texting service and the web-based clin-
ician resource center/mobile app compared to the
other segments. This segment exhibited significantly
less favorable preferences for the performance feed-
back email and performance leaderboard relative to
other groups. Segment 2 tended to have fewer years
of experience in their current agency (p = .061) and to
be younger on average (p = .065).
Segment 3, labeled Support Therapists through Auton-

omy, included 15% of the sample (n = 52). This segment
exhibited the only favorable rating of the improved wait-
ing room strategy and these ratings were significantly
higher than those of the other segments. This segment
also exhibited significantly less preference for EBP con-
sultation led by either experts or peers. Members of this
segment exhibited lower than average participation in
the EBP initiatives provided by the city (p = .021) and
the fewest average hours worked per week (p = .009).
Segment 4, labeled Support Therapists through Con-

sultation, included 26% of the sample (n = 90) and exhib-
ited significantly higher preferences for expert-led
monthly consultation, peer-led monthly consultation,
and a community-based EBP mentoring program. This
segment also exhibited significantly lower preferences
than the other groups for compensation per session and
compensation for preparation time. This segment had
the highest proportion of clinicians (38%) who worked
in clinics focused on the treatment of substance use dis-
orders (p = .020), although similar to other segments,
most in this group worked in clinics focused on the
treatment of mental health disorders (62%).

Discussion
This study provides valuable insights on clinician, super-
visor, and administrator preferences for implementation
planning in large public behavioral health systems and
highlights important directions for future research. Re-
sults also illustrate the utility of BWS as a methodology
for rigorously and efficiently eliciting stakeholder prefer-
ences for implementation strategies in large-scale behav-
ioral health and health systems.
By identifying four distinct subpopulations of clini-

cians, supervisors, and administrators whose preferences
reflected distinct foci for implementation strategies,
these findings highlight the heterogeneity of stakeholder
preferences and point to the need for a new research
agenda that unpacks the relationships between prefer-
ence, implementation effectiveness, and tailoring of im-
plementation strategies. Even as Segment 1 (35% of the
sample) strongly preferred all financial incentive strat-
egies above any other strategy, another group, Segment
4 (26% of the sample), showed much less interest in fi-
nancial incentives, preferring instead consultation with
EBP experts, and yet another group, Segment 2 (23% of
the sample) exhibited strong preferences for technology-
based strategies. These groups were all distinct from
Segment 3 (15% of the sample) which preferred an im-
proved waiting room (to help relax patients and prepare
them to engage in an EBP-focused session) and viewed
any type of clinical consultation as least helpful. These
distinct segments suggest that a one-size-fits-all imple-
mentation strategy may not be successful, and certainly
will not be preferred, by the majority of stakeholders.
Different implementation strategies may need to be
matched with these distinct subpopulations. There is
growing consensus in implementation science that strat-
egies should be selected and tailored based on context-
ual factors with regard to the EBP, setting, and
individual characteristics [47, 48]. Our results highlight
stakeholder preference as a potentially important

Fig. 2 Average Preference Weights for each Category. Note: Preference weights (i.e., part worth utilities) were estimated via hierarchical Bayes
estimation incorporating a multinomial logit model. Categories with higher average preference weights are more preferred. Error bars indicate
95% confidence intervals. When 95% confidence intervals do not overlap between two categories, the category with the higher value is
significantly more preferred at p < .05. See Table 1 for the specific strategies included in each category
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dimension for tailoring implementation strategies and
point to the need for research to better understand how
preferences influence EBP implementation.
A few prior studies have used related choice experi-

ment methods such as discrete choice experiments to
understand practitioners’ preferences for features of EBP
training and their beliefs regarding variables that might
influence their adoption of EBP [8, 10, 49]. The present
study extends this prior work by focusing on stake-
holders’ preferences for post-training implementation
strategies drawn from a diverse set of categories that
represent the majority of ERIC strategies (e.g., financial

incentives vs. client supports vs. clinician social network-
ing vs. performance feedback/social comparison). It is
well-established that post-training support is typically
necessary in order to generate sustained and meaningful
change in practice behaviors [50]; our results provide
insight into what types of post-training implementation
strategies are viewed as most useful by stakeholders in
community mental health as well as the heterogeneity in
those preferences. In addition, by using BWS to directly
compare multiple dissimilar types of strategies (e.g., fi-
nancial incentives vs. client supports vs. clinician social
networking, etc.), our results offer the first glimpse into

Fig. 3 Preference Weights by Latent Class Segment. Note: N = 343. Segments and preference weights (i.e., part worth utilities) derived via latent
class analysis. Values are logit scaled; strategies with higher preference weights are more preferred. Error bars indicate 95% confidence intervals.
When 95% confidence intervals do not overlap between two strategies, the strategy with the higher value is significantly more preferred at
p < .05. Segment labels reflect the type of implementation support prioritized by the segment relative to others. Segment 1, Support me through
Financial Incentives (Compensation), included n = 121 participants; segment 2, Support me through Technology, included n = 80 participants;
segment 3, Support me through Autonomy, included n = 52 participants; and segment 4, Support me through Consultation, included
n = 90 participants
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stakeholders’ prioritization of these different categories.
In some ways, our study provides a view of the forest
(i.e., which categories of strategies do stakeholders most
prefer?) which primes the field for future work, using
discrete choice experiments, to identify stakeholders’
preferences for the design of specific strategies (i.e.,
trees). For example, discrete choice experiments could
be fielded to determine stakeholders’ preferences for the
specific features of any of the strategies included in our
BWS choice experiment (e.g., the most preferred fea-
tures of a system that compensates per session).
Targeting implementation strategies based on stake-

holders’ preferences may result in more successful EBP
implementation in at least three ways. First, if imple-
mentation strategies are differentially effective for differ-
ent individuals and contexts, stakeholder preferences
may signal which strategy will be most effective for a
given situation. In this case, stakeholder preferences rep-
resent a valid signal indicating which strategy will be
most effective in their specific circumstances and strat-
egy effectiveness would be optimized by matching strat-
egies to specific individuals or organizations based on
the insights of participants. This theory assumes that
stakeholders’ preferences are valid indicators of which
strategy will work best which has not yet been empiric-
ally verified. This is similar to the idea of precision medi-
cine in which the most effective intervention (i.e.,
implementation strategy) depends on the characteristics
of the specific individual in context.
Second, targeting strategies to stakeholders’ prefer-

ences may have a general accelerator effect that increases
the effectiveness of any strategy compared to its baseline
effectiveness due to increased engagement or buy-in. For
example, if participants are more engaged or invested in
a strategy because they chose it, they may be willing to
exert more effort to ensure its success and this may in-
crease the strategy’s effectiveness. In this case, the act of
choosing a preferred strategy is in itself an intervention
that might improve implementation success. Ideally, re-
search could quantify the magnitude of this ‘preference
effect’ to determine how much increase in effectiveness
could be expected for any strategy simply by allowing
stakeholders to choose it.
Third, assuming that some strategies are universally

more effective than others, it may be beneficial to under-
stand stakeholders’ preferences so that policymakers and
other leaders can identify stakeholders who do not pre-
fer effective strategies and use supplemental interven-
tions (e.g., a readiness strategy) with these individuals
prior to, or concurrent with, the launch of the effective
strategy. In this scenario, individual preferences have no
accelerator effect on strategies’ effectiveness, nor do they
provide a valid guide to the choice of strategy; rather, as-
sessment of preferences allows system leaders to identify

subpopulations of stakeholders who may benefit from
supplementary interventions (e.g., pre-implementation
strategy) to support their engagement with a system-
selected, effective strategy that is going to be rolled out.
In contrast to the hypotheses described above, it may be

that preference has no effect on the outcome of imple-
mentation strategies whatsoever. The identification of four
distinct preference subpopulations in this study points to
the need for research to determine how preferences relate
to implementation effectiveness so that resources devoted
to implementing EBPs can be optimized.
Across the full sample, one consistent finding was the

overall rejection of performance feedback/social compari-
son strategies, which were rated lower than all other strat-
egies on average for the full sample and were the lowest
rated strategies for 3 out of 4 subpopulations. These find-
ings suggest stakeholders overwhelmingly viewed per-
formance feedback/social comparison strategies as
unhelpful for supporting EBP implementation. This is
consistent with findings from primary care practices, in
which primary care clinicians also disliked strategies using
social comparison [51]. Future qualitative inquiry could
provide valuable insights into why stakeholders view feed-
back/social comparison strategies as unhelpful. Potential
mechanisms include discomfort with receiving informa-
tion that is misaligned with one’s perception of one’s per-
formance or feeling as though there will be negative
consequences for poor performance.
The large preference gap between feedback/social

comparison and other strategies, such as financial incen-
tives, which emerged as the most preferred strategy on
average in the full sample and the first or second choice
strategy for 3 out of 4 subpopulations, raises an import-
ant question about the relative effectiveness of high cost
financial incentives compared to lower cost performance
feedback strategies, both of which have some evidence
of effectiveness [52, 53]. Comparative effectiveness trials
that include cost-effectiveness analyses would aid policy-
makers in selecting among strategies when there is a
mismatch between stakeholders’ preferences versus what
is known to be effective [54]. The generally favorable
view of financial incentives in this sample is not surpris-
ing against the backdrop of a publicly-funded behavioral
health workforce that is poorly compensated and finan-
cially stressed, often employed as independent contrac-
tors, and are working within organizations that are also
struggling financially [55, 56].
Another issue highlighted by these findings is the ques-

tion of which stakeholder group’s preferences have the
strongest implications for successful implementation.
Many systems, such as Philadelphia, focus implementation
policies primarily at the program level by designating EBP
programs and providing financial incentives to agencies
(versus clinicians). This raises the question of to what
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extent policymakers should focus their attention on the
preferences of administrators, who make agency-level de-
cisions about EBP (e.g., whether to respond to agency in-
centives by implementing an EBP program), versus
attending to the preferences of clinicians, who ultimately
are responsible for implementing EBPs in direct care.
Preliminary evidence regarding pay-for-performance in
behavioral healthcare suggests organization-focused finan-
cial incentives have minimal impact on practice whereas
individual clinician-focused incentives can change pro-
vider behavior [53].
Our results are subject to limitations and qualifica-

tions. Stated preferences were elicited from a controlled
experiment on hypothetical implementation options.
Real-world implementation behaviors are complicated
by numerous factors not accounted for in our controlled
experiment; thus, actual implementation behavior could
be different from that predicted by our data. However,
several features of the study design were implemented
following best practice methods and consequently limit
the potential for bias. For example, the scenario and im-
plementation strategies were presented as realistically as
possible and the number of questions each respondent
answered was limited considering the cognitive burden
of choice questions. The use of object case BWS allowed
us to estimate respondents’ preferences for a wide range
of qualitatively distinct implementation strategies; how-
ever, this design choice sacrificed the opportunity to ob-
tain finer-grained information about which features of
specific strategies are most preferred (e.g., the design
and amount of compensation for EBP use per session).
Other types of choice experiments, such as discrete
choice experiments and profile case BWS, generate fine-
grained estimates of respondents’ preferences for specific
levels of strategy features. Studies incorporating those
approaches represent a potentially valuable extension of
this work. The specific implementation preferences de-
scribed by this sample of clinicians and administrators in
this large public behavioral health system were limited
by those generated through the system-wide innovation
tournament. In addition, this sample’s preferences may
not generalize to clinicians in more rural areas or in cit-
ies or states that have not exhibited similar support for
EBP. Further, the particular set of strategies is likely
tied to the structure of the US behavioral healthcare
system and likely would not generalize to other
countries with different healthcare systems. The use
of a motivated volunteer sample of stakeholders,
while preserving internal validity, may also limit
generalizability and affect the relative proportions in
the latent class analysis. Finally, clinician preferences
are but one factor in many that should guide the se-
lection of implementation strategies to support EBP
in a specific setting.

Conclusions
Effective implementation of EBP in health and behav-
ioral health systems must include the active participation
of stakeholders who receive, deliver, and/or oversee the
delivery of clinical care. Numerous groups, including
service participants, family members, clinicians, supervi-
sors, administrators, funders, and policymakers, have a
stake in implementation decisions and understanding
their values and preferences for implementation strat-
egies may be one way to increase stakeholder engage-
ment and implementation effectiveness. Results from
this study demonstrate the presence of four distinct sub-
populations of clinicians, supervisors, and administrators
whose implementation preferences differ and who may
not all respond positively to a one-size-fits all implemen-
tation strategy. As such, these findings highlight the
need for research on how stakeholder preferences inter-
sect with implementation effectiveness and the tailoring
of implementation strategies. Furthermore, this study
demonstrates that BWS choice experiments are a highly
feasible and rigorous method for eliciting stakeholders’
preferences regarding how to support their implementa-
tion of EBP.
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