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Abstract 

The carbonaceous matter (soot plus organic carbon) sampled downstream of an ethylene inverse 

diffusion flame (IDF) was chemically and spectroscopically analyzed in detail. In particular, the 

H/C ratio, the UV-Visible absorption coefficient and Raman parameters were measured and found 

to be representative of a highly disordered sp
2
-rich carbon as the early soot sampled in a premixed 

flame. In contrast, the optical band gap was found to be relatively low (0.7eV), closer to the optical 

band gap of graphite than to that of medium-sized polycyclic aromatic hydrocarbons (>2eV) which 

are widely considered to be soot precursors and are mostly contained in the organic carbon. The 

significance of the optical band gap as signature of different structural levels (nano-, micro- and 

macro-structure) of sp
2
-rich aromatic disordered carbons was critically analyzed in reference to 

their molecular weight/size distribution. The relevance of the optical band analysis to the study of 

the soot formation mechanism was also highlighted. 

 



1. Introduction and background 

The classification of disordered (non-crystalline) carbon materials with sp
2
-bonding as polyaromatic 

solids [1] or, more recently, as graphenic carbon materials [2], traces them to the structural elements 

of the carbon network, namely polycyclic aromatic hydrocarbons (PAH) and graphene layers, 

respectively. PAH molecules of different size and shape have been considered as molecularly 

defined subunits of graphite [3] and, more recently, as monodisperse “mini-subunits” of graphene 

[4]. Hence, polyaromatic and graphenic terms can be used interchangeably envisioning PAH as 

small flakes of graphene with hydrogen atoms at the edges. Assemblies of two-dimensional more or 

less developed polyaromatic or graphenic systems are considered as the basic structural units of 

disordered sp
2
-bonded carbons as char, coke, soot, etc. It is worth noting that the piling of 

graphene/polyaromatic layers in these materials determines the occurrence, often simultaneous, of 

the so called 0D order (amorphous), 2D order (turbostratic, i.e. randomly stacked) and 3D order 

(crystalline) [5].  

Interestingly, PAH are a leitmotif joining the so-called organic carbon, (also named soluble organic 

fraction, tar, condensed species, etc.) constituted of individual small (>C10) and large PAH 

molecules (>C24) with the solid carbon (soot, black carbon, elemental carbon, etc.). Organic carbon 

and soot together constitute the carbonaceous particulate matter present in atmospheric aerosols that 

are produced in fires or emitted from combustion systems used for energy production, transport, 

heating, etc.. The physico-chemical properties of combustion-derived carbon particles (size, 

composition, amount of absorbed organic carbon, etc.) are important for determining their value for 

practical applications as well as their impact on the environment, air quality and human health [6,7]. 

For example, the optical properties of soot, i.e., light absorption and scattering, have important 

effects on the earth’s radiative balance and, hence, on climate change [8]. In addition, the optical 

properties of soot are also used as diagnostics for measuring heat transfer in fires and combustion 

aerosols [9], and even for identifying the composition of interstellar matter using soot as a carbon 

analogue [10-12].  

In early pioneering research, specific optical properties of soot, namely the dispersion exponent [13-

15] and the absorption coefficient [16] were proven to be valuable signatures of soot structure. 

Optical properties have also been exploited more recently for evaluating soot aging, aerosol 

composition and the response of optical diagnostics based on laser light absorption for soot 

measurements [9, 17-21]. Strictly correlated to the optical dispersion is the optical band gap, a 

parameter commonly used in solid-state physics for predicting applicability and performance of 

solid materials in optoelectronic devices, and also used for evaluating the aromatic characteristics 

(size, aromatic content) of non-crystalline carbons. Generally, the optical gap for non-crystalline 



(organic and inorganic) materials is empirically defined either as the E04 gap, the energy at which 

the optical absorption coefficient = 10
4
cm

-1
, or by using the equation (E)

n
=B(E-Eg) where B is a 

constant, E is the photon energy (E=hν) of the incident light, and Eg is the band gap. In particular, if 

(E)
n
 vs E is a straight line at the absorption edge, down to the visible-near infrared (NIR) range, 

then Eg can be obtained from the extrapolation to energy axis. Actually, this equation derives from 

the semi-empirical expression independently derived by Tauc [22] and Davis–Mott [23] where the 

exponents n=0.5 and n=2 are considered to typify indirect and direct transitions, respectively.  

The Tauc equation (n=0.5) has been mostly used for determining the band gap of that class of non-

crystalline carbon materials, customarily named amorphous carbons [24, 25], composed of small 

units of planar polyaromatic layer (cluster) embedded in a sp
3
 matrix. The standard sp

2
-bonded 

cluster model suggested by Robertson [24, 25] has been considered valid for this kind of carbon 

materials [24] with the cluster size determining the optical band gap [25]. Actually, non-crystalline 

carbons having hydrogen as a ternary element include a wide variety of materials with a 

dependence on the sp
3
 and sp

2
 bond types and hydrogen content, the main parameters representative 

of their variability. The typical ternary phase diagram of non-crystalline carbon [26-29] is reported 

in Figure 1 where soot, precursors and some reference molecules have been added to the various 

forms of amorphous carbons [28]. As noticed by Ferrari and Robertson [30], the ternary diagram is 

not totally comprehensive of the structural variability of non-crystalline carbons because another 

parameter should be added as a “fourth dimension”, the degree (size) of clustering of the sp
2
 phase. 

To this regard, the optical band gap, with some assumptions on structure and shape, could be 

directly related to the cluster’s size [24]. Following Robertson’s study, many others have shown that 

the Tauc equation offers the best fit to the optical absorption data of the majority of non-crystalline 

carbons [10, 31-36].  

Compact clusters of fused six-fold rings featuring PAH are considered to rule the optical band gap 

of amorphous carbons. In particular, it has been proposed that the optical band gap is inversely 

proportional to the diameter of a circular cluster (or to the square root of the number of aromatic 

rings in a cluster), and thereby to the aromatic layer length associated [24, 25].  

 



 

 

Figure 1 Ternary diagram of carbon showing sp
3
, sp

2
 and H content of amorphous carbons (a-C, PD 

a-C:H  ta-C:H), soot and reference molecules (adapted from Refs. 26-29). 

 

The Eg concept, first introduced in combustion by Minutolo et al. [37], has been exploited for the 

study of the flame-formed soot structure and composition [38-43] as well as for describing the 

absorption characteristics of atmospheric carbon particles produced from combustion [44]. The Eg 

measured on the UV-Visible (UV-Vis) spectra of flame-sampled soot [38-40] showed values quite 

low (<1eV) corresponding to aromatic layer lengths larger than those obtained by HR-TEM lattice 

fringe analysis. It is worthy to note that even though soot can be considered a polycrystalline 

material, the crystallite size is centered around 1nm with a small spread of values as shown in 

previous work reporting the aromatic fringe distributions [45]. Moreover, large aromatic layer 

lengths are in contrast with the vision of the soot internal structure as constituted of small 

polyaromatic layers, instead characterized by high band gaps (2-4 eV) [41, 46], more or less 

(turbostratically) stacked together. This model of soot structure has been postulated on the basis of 

chemical [47] and modeling [48] works, and also, more recently derived from HRTEM [45, 49-51] 

and Raman [45, 52, 53] measurements.  

Discrepancies between the lengths of the aromatic layers calculated with Eg and those measured 

through high-resolution transmission electron microscopy (HRTEM) analysis have been found for 

sp
2
-hybridized carbon materials as carbon nanoparticles produced from laser ablation of graphite 

[32-34]. Such discrepancies can lead to the belief that the procedure for deriving the Eg from the 

absorption spectra can fail and/or Eg could have a quite different physical meaning, if any, when 

applied to of highly disordered sp
2
-rich carbonaceous materials. 



Definitely, some specific features of the absorption spectra have to be considered in interpreting the 

band gap of non-crystalline carbons, as the absorption edge broadening, due to the presence of 

clusters with different morphologies, sizes and distortions, leads to a distribution of local gaps. In 

the case of carbons almost totally constituted of sp
2
-bonded carbon, such as sputtered carbons [24, 

25], the absorption coefficient, replotted in the Tauc domain, fits a linear function over limited 

spectral portions of the UV-Vis range. Different values of Eg can then be obtained by extrapolating 

different parts of the absorption curve [25]. This is also the case of the extinction spectra measured 

inside fuel-rich sooting flames where diverse Eg have been evaluated and attributed to differently-

sized aromatic absorbers featuring soot precursors and soot particles [37].  

Notably, it has been found that the extinction spectra measured before soot inception show a unique 

contribution in the UV range, due to chromophores with high Eg (between 3 and 4eV) associated to 

small size (two- to four-rings) PAH. As soon as soot is formed, i.e. in nearly-sooting conditions, 

there is an abrupt increase in the visible absorption, associated with low Eg (<1eV) [37]. The 

sudden appearance of visible absorption and low Eg, typically associated to large aromatic sizes, are 

not consistent with the idea of a progressive aromatic size growth during soot formation; also it is 

unexpected in view of the large contribution of gas-phase and/or externally-mixed small-sized 

PAH, having high optical band gaps, which are abundantly present at soot inception. Remarkably, 

relatively high optical band gap values (around 2eV), corresponding to moderately-sized PAH 

layers, could be evaluated in a narrow spectral region (440-540nm) of the extinction spectra 

measured in diffusion flames through the traditional Tauc plot calculated by using n=0.5 in the 

Tauc-Davis Mott equation [41]. Similar values of optical band gaps have been measured in a 

smaller wavelength range (420-490nm) by using n=2, but the (E)
2
 vs E plot did not exhibit the 

same degree of linearity [42].
 
 

Both high (around 2eV) and low Eg values (<1eV) have been evaluated by using a multiple band 

gap spectral fitting of the UV-Vis spectra of soot probed by batch sampling and thermophoretic 

methods in premixed flames [38-40]. Indeed, low Eg values (<1eV) have been observed even for 

the so-called “young” soot, i.e. soot formed early in the flame, before massive soot growth and 

graphitization take place [40]. This could be due to some contamination with few mature soot 

particles featured by sp
2
 clusters of larger size since Eg is not dominated by the aromatic 

layers/clusters of average size, but by the larger or less compact (even few) clusters [24, 25]. The 

interference from mature soot could occur because of some overlap of the soot inception and 

growth regions in atmospheric pressure premixed and diffusion flames. The inverse diffusion flame 

(IDF) is a configuration recognized as source of freshly-formed soot [54-58] as compared to a 

traditional diffusion flame. In the IDF, fuel flows in the outer annulus versus the inner, resulting in 



precursor and soot being formed and immediately transported to the non-reactive region of the 

flame. Because of the inherent high flow rates of precursor species passing almost intact throughout 

the reaction zone, the IDF is the flame configuration suitable for providing both organic carbon and 

highly-disordered soot which should retain the chemical and morphological features of the flame-

formed precursors. 

Following a preliminary comparison of the chemical and spectroscopic properties of soot (young 

and mature) sampled in a premixed ethylene flame and downstream of an ethylene IDF, the present 

work focuses on the UV-Vis spectroscopic analysis of the IDF carbon particulate (soot plus organic 

carbon), with the specific aim of analyzing the significance of the optical band gap as signature of 

structural features of highly disordered sp
2
-rich carbons. 

 

2. Experimental 

The IDF burner was designed after the system of Blevins et al. [54]. The flow rates of air, fuel, and 

nitrogen were 5 SLPM, 15 SLPM, and 60 SLPM, respectively. The visible flame height in a dark 

room was 60 mm. Two replicates of carbon particulate matter samples were taken at 10 cm above 

the tip of the flame using a 10-cm-length stainless steel probe with a 1mm-i.d. capillary tip. The 

probe was constructed using the design of Zhao et al. [59] and Kasper et al. [60] and was connected 

to a 0.25-μm Teflon filter to collect bulk carbon particulate matter including condensates at 40 °C 

(the operating temperature of the heating tape). The organic compounds condensed and/or adsorbed 

on the solid carbon (soot) were separated by solubilization in dichloromethane (DCM). Both the 

organic compounds dissolved in DCM, hereafter named organic carbon, and soot were recovered 

for the spectroscopic characterization. PAH constituting the organic carbon were identified by gas 

chromatography-mass spectrometry (GC-MS). Soot was ultrasonically suspended in n-methyl-

pyrrolidinone (NMP) and further separated on an Anotop filter (Whatman) to isolate the soot 

fraction with particle diameter <20nm. UV-Vis and fluorescence spectra of carbon samples were 

respectively measured on a HP 8453 diode array spectrophotometer and on a PerkinElmer LS-50 

spectrofluorometer. Raman spectra were measured by means of a Horiba XploRA Raman 

microscope system (Horiba Jobin Yvon, Japan) with an excitation wavelength of = 532 nm. 

Size Exclusion Chromatography (SEC) was carried out on a HP1050 chromatograph eluting the 

DCM-extract and soot with NMP and measuring on-line UV-Vis spectra of the molecular weight 

(MW)-segregated fractions from 250nm up to 600nm by means of a diode array detector. The 

MW/size calibration curve was built on polystyrene standards and on carbonaceous samples with 

size measured by Dynamic Light Scattering [61]. The MW distribution of dry soot was measured in 

a wide MW range (1E5-1E11u) by using a “non-porous” column, whereas the lighter and more 



abundant PAH components of the DCM–soluble fraction were analyzed in the 100-1E5u range on a 

highly cross-linked “individual-pore” polystyrene/divinyl benzene column to get the MW 

distribution of the DCM-soluble fraction [39, 40, 61, 62]. 

 

3. Results and Discussion 

The main properties of the IDF soot sample are reported in Table 1 in comparison with those of soot 

sampled in a premixed ethylene/O2 flame (PMX, C/O=0.8, cold gas velocity=4 cm/s) at 6 mm 

(young PMX) and 10mm (mature PMX) of height above the burner. The results show the 

similarities of IDF and young PMX soot. First, their organic carbon/soot mass ratio is high and very 

similar (Table 1). Moreover, both young PMX and IDF soot samples show a relatively high H/C 

atomic ratio (0.2) and a low visible mass absorption coefficient (around 2m
2
/g at 500nm) rather 

different from those of mature PMX soot [17-19]. Eventually, a high sp
2
 content (about 90%) was 

evaluated for all soot samples on the basis of FT-IR analysis method set up on soot [63] and 

recently developed for determining the sp
2
-content of coal tar pitch [62]. High sp

2
 contents (>80%) 

have been also typically measured by electron energy loss spectroscopy (EELS) for diesel soot [65, 

66] and for young and mature flame-derived soot (our unpublished data).  

 

Table 1 Main properties of soot collected in ethylene PMX and IDF flames 

 

Property
PMX soot

mature
PMX soot

young
IDF soot

organic carbon/soot, g/g 0.35 1.14 0.92

H/C 0.09 0.19 0.22

Mass specific absorption @300nm, m2/g 8.11 3.16 4.73

Mass specific absorption @500nm, m2/g 4.57 1.80 2.01

I(D)/I(G) 0.88 0.75 0.74

FWHM (G), cm-1 68.50 50.20 51.60

Optical band gap (Tauc), eV 0.17 0.5 0.7
 

 

The high sp
2
 content and low hydrogen value (Table 1) trace the IDF as well as the PMX soot 

samples to the specific class of highly-disordered carbons like chars, glassy carbon, sputtered 

carbon [27], diesel soot, and carbon black [65, 66], all confined in the lower right hand corner of the 

ternary carbon diagram (Figure 1). Beside their intrinsic complexity, the structural description of 

such disordered carbon materials is not easily achievable due to the fact that the low hydrogen 

content limits the use of important analytical tools like NMR, FTIR, etc.. As well, the “fourth 



dimension” important to infer the carbon structure at the molecular level [30], namely the sp
2
 

cluster size, is difficult to determine reliably.  

A careful deconvolution procedure of the Raman spectra has been recently used for evaluating as 

the cluster size changes during soot formation in premixed flames of diverse fuels [53]. This 

procedure well reconstructs the Raman spectra of the IDF and PMX soot reported in Figure 2 in 

comparison with the spectrum reconstructed for the young PMX soot. The Raman parameters 

mostly sensitive to the disorder and size of aromatic rings, i.e. the I(D)/I(G) ratio and the full width 

at half maximum (FWHM) of the G peak, exhibit the same values for the IDF and young PMX soot 

(Table 1). In comparison to young PMX soot, as found in previous work [45, 53], the spectrum of 

mature soot shows wider D and G peaks and a higher I(D)/I(G) ratio (Table 1). From the I(D)/I(G) 

ratio reported in Table 1, aromatic layer lengths of about 1nm have been evaluated [45, 53].  
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Figure 2 Raman spectra of the PMX (young and mature) and IDF soot samples. The reconstructed 

spectrum of young PMX soot obtained by fitting with deconvoluted peaks [51] is reported for 

comparison. 

 

Also, the optical band gap values measured on the UV-Vis spectra of IDF and young PMX soot 

appear similar and higher (0.5-0.7eV) than that evaluated for mature PMX soot (about 0.2) (Table 

1). However, such Eg values are still closer to the band gap value of graphite (Eg=0eV) than to the 

Eg values of four- to seven-ten ring PAH (>2eV), and consequently, are in contradiction with the 

soot structural model based on small- to medium-size PAH as main elementary units of soot [45, 

47-53]. Besides, the Eg values of soot are much lower in respect to the Eg of PAH, typically 

detected in the organic carbon, underlining the discontinuity already found between the UV-Vis 

spectra of organic carbon and black carbon constituting the combustion aerosol [67]. It is also 



noteworthy that such spectral discontinuity somehow corresponds to the lack of continuity in the 

molecular masses distribution from PAH to the first soot particles measured in sooting flames [68, 

69]. 

The main spectral features typifying and discriminating the organic carbon from soot can be seen in 

Figure 3 where the UV-Vis absorption and fluorescence spectra of organic carbon (Figure 3a) and 

soot (Figure 3b) for the IDF sample are reported as a function of the wavelength. The UV-Vis 

absorption and fluorescence spectra of organic carbon show the fine structure typical of PAH [46, 

70] whereas soot exhibit a broad shape of the UV-Vis spectrum more shifted toward the visible in 

comparison to the organic carbon. As regards soot, only a weak green fluorescence pertaining just 

to the <20nm size fraction of soot has been observed (Figure 3b) [71,72]. 
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Figure 3 a) Absorption and fluorescence spectra of the organic carbon, b) absorption spectrum of 

soot and fluorescence of the filtered soot fraction (<20nm). 
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Figure 4 Mass absorption coefficient of the organic carbon and soot as a function of the photon 

energy, Tauc plot is shown in the inset. 
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Figure 5 Mass absorption coefficient of bulk carbon particulate and relative fractions (soot, 

soot<20nm and organic carbon) in comparison with standard PAH and large PAH (heptane-soluble 

and toluene-soluble) derived from coal tar pitch (CP). 

 

The semi-log diagram reporting the mass absorption coefficient (also defined as absorption cross 

section (cm
2
*g

-1
)) against photon energy (Figure 4) exemplifies differences between organic carbon 

and soot. In particular, the higher absorption mass coefficient in the UV along with the faster 

decrease of absorption downward into the visible-NIR of organic carbon are remarkable. These UV-

Vis spectral features, along with the fine structure of both UV-Vis absorption and fluorescence 

spectra described above (Figure 3a), are typical of PAH [46, 70] and demonstrate the predominant 

molecular character of the organic carbon fraction, as confirmed by the abundance of small- and 

medium-size PAH components (about 50wt.%) found by GC-MS analysis of organic carbon. 

Nevertheless, it is noticeable that the absorption decrease for organic carbon is not as steep as in the 

case of standard PAH. This is shown in Figure 5 where the spectra of bulk particulate, soot and 

organic carbon fractions are contrasted with the spectra of two- to seven-ring standard PAH mixture 

(<300 u, < 24 C atoms), and large PAH (>300u, >20-24 C atoms) featuring the heptane-soluble 

(200-500 u) and toluene-soluble fractions (300-700 u) of a coal tar pitch (CP) [64]. In comparison 

to small- and medium-size PAH the broadening and shift at lower energy of the band edge for the 

organic carbon lead to the presumption of the presence of PAH aggregates [73].  

With regards to soot, the broad band edge and the significant absorption down into the visible-NIR 

are clearly seen in Figures 4-5. In particular, Figure 5 elucidates the different contributions of 

organic carbon and soot to the absorption of bulk carbon in the visible-NIR range. Specifically, 



even though soot and organic carbon equally contribute to the total mass of bulk carbon (Table 1), 

the component that predominantly affects the broadband edge, and hence the optical gap of the bulk 

particulate, is the soot fraction as below detailed. It is also noteworthy that the <20nm size fraction 

of soot, separated by filtration, somehow bridges organic carbon and soot, exhibiting intermediate 

absorption features as shown in Figure 5 where its UV-Vis absorption profile (shaded curve in 

Figure 5) is also reported.  

A first estimate of the E04 band gap can be performed on the absorption-photon energy diagrams 

taking into account the fact that E04 is the energy value at which the absorption coefficient is equal 

to 10
4
 cm

-1
 [25]. In particular, to evaluate E04 from the absorption profiles (Figures 4-5), the mass 

absorption coefficient (cm
2
*g

-1
) reported on the ordinate scale has to be multiplied by the mass 

density that goes from about 1.0-1.2 g*cm
-3

 for organic species to about 1.8 g*cm
-3

 for soot. 

Assuming a density of 1g*cm
-3

, the E04 for the organic carbon, can be evaluated from Figure 5 by 

interception of the absorption profile on the energy axis at a mass absorption coefficient value of 

10
4
 cm

2
g

−1
. The E04 of organic carbon is 2.4eV, consistent with the optical band gap value typical 

of medium-size PAH identified by GC-MS. The similarity of the E04 and Eg (around 2eV) 

measured on the Tauc plot ((αE)
0.5

 vs. energy) reported in the inset of Figure 4 demonstrates the 

good correlation of the optical band gap with the aromatic size of PAH components in the case of 

organic carbon.  

As regards soot, the E04 is not assessable in the energy range examined (down to 1 eV) because of 

both the high density (>1.5 and up to 2 g/cm
3
) and high absorption coefficient (>10

4
 cm

2
g

-1
) of soot. 

For example, for soot density of 1.5 and 1.8 g*cm
-3

, the E04 should be evaluated as the interception 

of the soot spectrum (Figures 4-5) at the absorption cross section of about 7*10
3
 and 5*10

3
 cm

2
g

-1
, 

respectively, as these values correspond to the absorption coefficient threshold of 10
4 

cm
-1

 required 

for E04 evaluation. It can be clearly seen (Figures 4-5) that the absorption coefficient of soot 

remains in large excess of these absorption values hindering the E04 valuation. 

Just the broad and high absorption (in large excess of 10
4
cm

-1
) of soot so far shown should exclude 

the attribution of soot absorption to direct transitions generally exhibited by a steeply decreasing 

absorption edge [74]. Consequently, for the optical band gap evaluation of soot, the application of 

n=0.5 as a coefficient in the Tauc-Davis Mott equation, valid for indirect transitions, appears to be 

more suitable than n=2, which is valid for direct transitions and used in other works to get optical 

band gap values more consistent with small aromatic layers [42, 51]. The best fitting of the IDF 

soot absorption spectrum in a wide energy range, observed in the Tauc plot reported in the inset of 

Figure 4, is the empirical criterion also supporting the choice of the coefficient n=0.5. Eventually, 

the Eg value of 0.7eV obtained from the Tauc plot inserted in Figure 4, is next to the E04 values 



(0.5-0.7eV) which could be roughly estimated by extrapolation of the absorption coefficient of soot 

into the NIR range (Figure 5). 

It has to be underlined that the use of Eg as an ordering parameter and as reflecting the carbon 

nanostructure, i.e. the size of aromatic cluster, has been found to work when the cluster model of 

Robertson is valid, i.e. for non-crystalline carbons having a relatively low sp
2
 content [75]. 

Specifically, the cluster model could be inappropriate for soot falling within the class of low-

hydrogen sp
2
-rich carbons (Figure 1), because the high sp

2
 concentration prevents any clusters from 

being independent each other, and the interaction between -systems in the solid state reduces the 

relevant energy gap [73]. The occurrence throughout the carbon network of some intra- or inter-

particles interactions tunnelling/percolation effect [76, 77] can be presumed to occur as also 

suggested by the conductivity measured on flame-formed soot [78]. More insights on the optical 

band gap of multicomponent carbon materials as organic carbon and soot have been obtained by 

looking at the distribution of the main MW/size-segregated components reported in Figure 6 and 

obtained by SEC analysis coupled to on-line (point-by-point) UV-Vis spectroscopy.  
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Figure 6 MW distributions of organic carbon (left panel), soot and <20nm filtered soot fraction 

(right panel) along with UV-Vis spectra (upper part) and Tauc plot (middle part) measured on the 

maximum of the MW peaks.  

 

The MW distribution profile of the organic carbon (left part of Figure 6) shows the usual bimodal 

shape of flame-formed tar species [68, 72] with most of the components included in a predominant 

sharp peak ranging from 100 to about 400 u. A peak is observed from 600 to about 2000 u in the 

form of a small and broad shoulder. As observed in previous works [62, 72, 79], a relatively high 



band gap, namely 2.2eV, features both components (the main peak and adjacent shoulder in the 

whole 100-2000 u range) of the organic carbon that is consistent with the Eg and E04 evaluated on 

the whole organic carbon.  

Soot distribution extends into a very wide MW range (from 1E4 to 1E10 u) presenting three main 

and broad peaks (right panel (bottom) of Figure 6) corresponding to species of medium (1E4-1E5u), 

intermediate (1E5–1E7 u) and very high MW (>1E9u), in turn featured by rather low optical band 

gaps, 1.7, 1.3 and 0.7eV, respectively.  

The optical band gap and MW data of organic carbon and soot are summarized in Table 2, which 

also reports the size (diameter) of the molecules and/or particles evaluated by considering a 

spherical shape and attributing a density of 1.2, 1.3, 1.5 and 1.8 g/cm
3
 at increasing MW. The last 

peak (> 1E9 u) of the MW/size soot distribution (Figure 6) corresponds to large size (100-200 nm) 

components; hence it should correspond to larger soot particles/aggregates in which size effects 

[80] and/or interparticle tunneling/percolation [76,77] can be responsible for the lowest Eg (0.7eV). 

In spite of the relatively low abundance, as compared to the other peaks (Figure 6, right panel, 

bottom), large soot particles/aggregates appear to be responsible for the low Eg measured on the 

raw soot sample. Such aggregates are completely removed not only by microfiltration on 20 nm 

filters, as can be seen in the bottom part of Figure 3 (right panel) reporting the MW distribution of 

the <20nm soot fraction, but also on 100 nm porosity filters which showed to be highly efficient 

(>95%) for the removal of these aggregates. All size data obtained by SEC and filtration suggest a 

critical size for soot particle aggregation in the 100-200 nm range, in agreement with the size range 

measured for soot dispersions by laser granulometry [61, 81]. 

It can be also concluded that the contribution of the soot and organic carbon components with 

higher Eg (>1.3 eV) pertains to species/particles much below 20nm and is submerged when in 

mixture with larger particles and/or soot aggregates. 

 

Table 2. Optical band gap, molecular weight and bulk diameter of organic carbon and soot fractions 

of IDF soot 

Optical band 

gap, eV
MW, u

"Bulk" 

Diameter, nm

2.2 1.0E+02-2.0E+03 0.66-1.38

1.7 1.0E+05 6.1

1.3 8.0E+06 26

0.7 4.0E+09 190
 

 



In other words, few traces of large soot particles/ aggregates contribute to most of the absorption in 

the whole UV-Vis range and are enough to reduce the Eg of soot and bulk carbon to the rather low 

values observed.  

In summary, it can be inferred that the optical band gap of soot, and more generally of aromatic sp
2
-

rich carbons, cannot be directly related to the aromatic layers constituting the basic units 

(nanostructure) of soot particles. Instead, the low optical band gap of both young and mature soot 

can be mainly ascribed to the soot macrostructure represented by large soot particles and/or 

aggregates. This is a finding which, if confirmed in other more significant flame conditions, could 

be relevant to the study of soot formation especially for the interpretation and modelling of soot 

inception and growth indicating that soot particle aggregation is a phenomenon not separated in 

time from particle nucleation [82-84]. Actually, in dependence on the temperature and species 

concentration, different particle evolution processes have been nicely suggested to simultaneously 

occur in coflow diffusion flames [85]. The analysis and the interpretation of the optical band gap 

reported in this work further supports the soot carbonization process suggested by Reilly [86] 

instead of the classical step-by-step evolution (from inception to aggregation) of soot particles [87]. 

Further work is, however, planned to be done in nearly-sooting flame conditions where the 

occurrence of soot aggregation and growth should be limited. 

4. Conclusions

The chemical and spectroscopic features of bulk carbon (soot plus organic carbon) sampled 

downstream of an ethylene IDF were analyzed with the specific aim of inferring the value of the 

optical band gap as signature of the nanostructure of highly disordered sp
2
-rich carbons.

The chemical and spectroscopic properties of IDF soot and in particular, the H/C ratio, the relative 

amount of organic carbon, the absorption coefficient and Raman parameters were found to be 

consistent with those of young soot sampled in a premixed flame. 

Accordingly with the discontinuity typically found between the molecular masses of PAH 

precursors and soot, the smaller extension and steeper decrease of the absorption of organic carbon 

were observed in comparison to soot. The Tauc plot was found to be suitable for the analysis of the 

optical band gap of organic carbon giving out values (around 2eV) consistent with the average size 

of the main PAH components. Likewise, the broad and high absorption of soot (in large excess of 

10
4
cm

-1
) and the empirical criterion of the best fitting of the IDF soot absorption spectrum in a wide

energy range led to individuate the Tauc plot as the more suitable for the optical band gap 

evaluation of soot.  



In spite of all chemical and spectroscopic properties typical of young soot, IDF soot exhibited a low 

optical band gap (<0.7eV), nearest to graphite than to PAH, contradicting the hypothesis of small- 

to medium-size PAH as main basic units of soot. However, a such low optical band gap was found 

to be predominantly associated to 100-200nm size aggregates (even few) of soot particles, whereas 

the contribution of species with the higher optical band gap, ranging from about 1 to 2eV, pertained 

to the species/particles below 20nm, and was completely obscured when in mixture with soot 

aggregates. This finding suggests that the optical band gap evaluation for sp2-rich disordered 

carbons as soot is mostly affected  by. their macrostructure in terms of particle/aggregates size, 

probably because of the interparticle tunnelling/percolation. 

Besides the implications on the meaning of optical band gap for highly disordered sp
2
-rich carbons,

it is quite remarkable that the optical band gap analysis reported in this work would be useful for 

inferring specific aspects of the different soot formation mechanisms occurring in diverse 

combustion configurations. 
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