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UNCERTAINTY CONSIDERATIONS IN
2 CALIBRATION AND VALIDATION OF
YDROLOGIC AND WATER QUALITY MODELS

LA ﬁusz?E, A. Shirmoharpmadi, A. M. Sadeghi, X. Wang, M. L. Chu
.K. Jha, P.B. Parajuli, R. D. Harmel, Y.Khare, J. Hernandez ’
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policy :
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Riserius input paramei . nr::;ﬁz:g;d gfsessmenrs and risk management decisions. Current well-known HWQMs contain
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g uncertainty i
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A is article, our primary intention is fo review uncertainty in the currently used HWQMs and to
this regard, we explore the genesis of un-

Provide guidan .

Ceﬂaing;g?n : ;fog‘uicuseﬁ:dl information for researchers and investigators. In

tion, model parame tgrizgf' water qual:p: modeh'n_g (i.e., spatiotemporal scales, model representation, model discretiza-

onlocal and global ion) an_d provide strategies for assessing uncertainty in hydrologic and water quality modeling
al scales when interpreting the model output.
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ing. The review covered the role of uncertainty both in the
development of water quality models for interpretation and
explanation of past behavior and in the applications of such
models for predicting future behavior. According to Beck
(2009), “contemplating now climate change, and what to do
about it, is inconceivable in the absence of very high-order
models—big models. They, and their reliability and uncer-
tainties, are the central concern. We are surrounded by ‘big
data,” both as observed of the real world and as generated
from the computer world with these big models. And yet,
there remains this deep uncertainty to be handled at the
interfaces among science, policy, and society.”

Studies have reported that uncertainties in predicted out-
put could be associated with many model components, in-
cluding model structure (e.g., unaccounted processes, em-
pirical equations, and numerical errors), model parameters
(e.g., incomplete knowledge of parameter values, ranges,
and their physical meaning), and spatial and temporal vari-
ability in required input values (Vicens et al., 1975; Loague
and Corwin, 1996; Loucks et al., 2005; Harmel and Smith,
2007; Yang et al., 2008; Zhang et al., 2009a, 2009b; Wang
and Yen, 2014; Yen et al., 2014). Haan (1989) represented
the sources of uncertainty with an equation as:

O=fl,P,)+e (1)

where O is an n X k matrix of the watershed response to be
modeled, fis a collection of functional relationships, / is an
n x m matrix of inputs, P is a vector of p model parameters,
t is the temporal scale of prediction and calculation, and e is
an n X k matrix of errors (note that this term should be in-
terpreted as uncertainty in predicted output), with »n data
points, k outputs, and m inputs. Even though the distinction
between / and P is not always clear, / generally represents a
known or measured model input value, and P represents a
parameter that is estimated based on some functional rela-
tionship with the known inputs. Equation 1 indicates that
uncertainty may be due to variability in the input data (e.g.,
spatiotemporal scales, parameterization), in the algorithms
selected for simulation of the processes included in the
model, in the accuracy and level of available measured
functional data (e.g., runoff, subsurface flow, nutrient dis-
charge, etc.) for model calibration and validation, in setting
proper initial and boundary conditions, and in the scale of
application (Beven, 1989). For details on the sources of
uncertainty, refer to Shirmohammadi et al. (2006).
HWQMs are frequently used as a cost-effective alterna-
tive to monitoring data for watershed management, assess-
ment of nonpoint-source pollution, and to set water re-
source policy (Graham and Butts, 2005; Yang et al., 2008:
Zhang et al., 2009a; Sexton et al., 2011b). However, major
concerns include the level of reliability in model outputs
and the capacity to quantify the degree of certainty associ-
ated with the predictions and estimations, especially when
modeling complex ecosystems. Achieving reliable outputs
from HWQMs is not straightforward, as uncertainty in
modeling complex systems can arise at any stage of the
model assessment, propagate non-linearly to the model
output, and be masked or amplified due to parameterization
(Beven, 1989, 1993; Kirchner, 2006). In addition, model
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type (e.g., physically based, conceptual, or data driven),
spatial discretization (e.g., distributed, semi-distributed, or
lumped), the mathematical representation of the natural
system, and the model objectives (e.g., forensic or forecast-
ing) are intrinsically related (Wagener and Gupta, 2005)
and dependent on each other; thus, uncertainty in one will
affect uncertainty in the ultimate outcome of the model.

In general, model parameters that are intended to repre-
sent processes in space and time (patterns) are bound to the
spatiotemporal properties of observations that cannot be
separated from each other (Hiebeler and Michaud, 2012).
Defining a consistent effective parameter value to repro-
duce the response of a spatially variable pattern of parame-
ter value is not possible (Beven, 1989). Conversely, param-
eters in HWQMs are seldom evaluated for their representa-
tiveness and are commonly reverse-estimated or “polished”
by calibration techniques based on model performance ob-
jective functions (e.g., metrics). In addition, parameters are
treated as deterministic rather than stochastic (described by
probabilistic distributions) when associated with physical
observations (Wagener and Gupta, 2005) and seldom al-
lowed to change (dynamics) along model runs.

To estimate potential uncertainties in outputs due to
model structure, model input, and model parameter values,
several uncertainty analysis methods have been developed.
Some of these methods include: generalized likelihood un-
certainty estimation (GLUE; Beven and Binley, 1992), the
parameter solution (ParaSol) method (van Griensven et al.,
2006), the sequential uncertainty fitting (SUFI-2) method
(Abbaspour et al., 2004), Latin hypercube sampling (LHS)
with constrained Monte Carlo simulation (MCS; Sohrabi et
al., 2002; Sohrabi et al., 2003), the Bayesian Markov chain
Monte Carlo (MCMC) method (Yang et al., 2007), the
Bayesian model averaging (BMA) method (Hoeting et al.,
1999), and dynamically dimensioned search - approxima-
tion of uncertainty (DDS-AU; Tolson and Shoemaker,
2008). Ajami et al. (2007) proposed the integrated Bayesian
uncertainty estimator (IBUNE) to account for the major
uncertainties associated with model input, parameters, and
structure in hydrologic prediction. Yen et al. (2014) extend
IBUNE to further account for measurement uncertainty in
their integrated parameter estimation and uncertainty analy-
sis tool (IPEAT) for SWAT. Melching and Bauwens (2001)
used a combination of LHS and MFORM (mean vah.le
first-order reliability method) to evaluate uncertainty 10
HWQMs combined with stream water quality models. In
their study, LHS was used to identify the basic pararnet?fs
that significantly contribute to the model output uncertain-
ty, while MFORM was used to quantify the percentage
contribution of the variables to the output uncertainty. It 1S
important to note that these methods differ in their ap-
proach and do not necessarily use the same uncertainty
analysis philosophy (Yang et al., 2008). For instance,
GLUE and SUFI-2 account for uncertainties from all
sources, including model input, model structure, m_Odel
parameters, and response through parameter uncertainty-
On the other hand, ParaSol accounts for prediction uncer-
tainty, which is constructed by equally weighting all uncer-
tain parameters (Van Griensven and Meixner, 2006).
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Uncertainty analysis is a rather complex process that has
merit for implementation because it allows “intellectual
honesty” to prevail in model results. Uncertainty analysis
also allows the interpretation of risks associated with model
output uncertainty. Furthermore, assessing model simula-
tion results with a relatively known level of certainty will
?llow policymakers and conservation program managers to
improve the implementation of pollution abatement pro-
grams o more effectively and efficiently achieve the na-
tion’s goals for cleaner water and healthier watersheds
(Scxton_ etal.,, 2011b). For example, one of the major chal-
Iel?ges is the use of HWQMs for assessing total maximum
daily loads (TMDLs; NAS, 2001; NRC, 2001; EPA, 2002).
Howevgr, most HWQMs were not developed with a com-
prehensive uncertainty assessment in mind, and future
model. development should integrate a hierarchical frame-
work in }vhigh system identification, parameter estimation,
state estimation, and output prediction are systematically
evalualed‘(Liu and Gupta, 2007).

The primary goal of this article is to review the methods
used. to evaluate uncertainty in current HWQMs and to
provide guida.n.ce for developers, model users, and re-
:?sﬂ:;lers. Spff'(:lﬁgally, our intention is to explore the gene-
tempoumicenzilnty i HWQMs whil.e considering the spatio-
< slca es, modcj:l representation, model discretiz_ation,
S e tgarametc?nzanon. We ‘als?o provide strategies for
e wgh e assoc1at.ed uncertainties on local and global
s en interpreting modf:l output and infrogiuce best
v {ipproaches to guantlfy such uncertainties, espe-

Y during HWQM calibration and validation.

GENESIS OF UNCERTAINTY IN

(I;IYDROLOGIC MODELING
B:f;:ATIONAL ERRORS IN MODEL INPUT DATA
dr‘alogicu'remen.ts in monitoring natural p.rocesses? for hy-
e ofll‘lvestlgatlon are normally associated \N."lth some
ek c":mm;ccul‘acy .(e.g., random ar_ld sysleqlatlc e‘:rror‘s),
et al 200; ange during the observallona‘l period (_Faebnch
ot e Harmel et al., 2006). These inaccuracies are a
mathe t(') the nature of the sensor, sensor degradation,
collecti: P tra;ﬂSIanon, environmental conditions, data
uncertaj nt-op eration, and other factors. Thus, measurement
qua.ntjti: A In!]efeflt in the observations used to u}fer
captureds dor scientific judgment. The d_egree of variability
Certain g uring the observational period (sampled,on a
Pected vpétlolte.mporal scale) compared to the system's €x-
the theo ariability as well as the deviation of the mean from
tion uncr6tha1 mean of the observations define the observa-
logical Sertalmy (Sohrabi et al., 2002). However, 11 hydro-
cases angﬂem_s, the theoretical mean is unknown in many
tionary Subj_ect to dynamic processes in which the sta-
stance Condltlon.o‘f ll_le dataset is not preserved. For 1n-
ofogai:real precipitation, which is commonly used in hy-
Mated ,I?Ode.ls’ is frequently underestirqatgd or overesti-
ronme’n‘: ich is attributed to the characteristics of the envi-
ta pr ! ch?“ges in instrumentation, me;asurements, and
olo ilé ?Cessmg_protocols; recording practices; and n_leteor-
gical dynamics. Groisman and Legates (1994) estimated
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that bias in precipitation measurements accounts on aver-
age for .5% to 25% of the precipitation in the continental
U.S., with larger bias at higher elevations and latitudes of
as much as 400% in some locations.

: The quality of observed data should not be considered a
trivial problem. Observational errors can induce or mask
variability, result in undesired trends, and impact the model
calibration and validation results. Therefore, uncertainty in
the observations used for model calibration and validation
should be taken into consideration (Montgomery and Sand-
ers, 1986; Harmel et al., 2006, 2009). Moreover, datasets
may not contain sufficient statistically viable measurements
(e.g., number of samples or measurements, frequency of
sampling or measurements, etc.) to properly characterize
the system for accurate inferences or extrapolations. Final-
ly, it is not common to find data assessment, statistical
analysis, and data adjustment performed on observed da-
tasets prior to their use for model calibration and validation
(e.g., data screening; Chu et al, 2013; Guzman et al,
2014).

Data inconsistency results from changes in the observa-
tional error (e.g., random or systematic error) that become
problematic due to the inherent assumption in HWQM:s that
the statistics describing input data remain unchanged over
time (Kahya and Kalayci, 2004; Xu et al., 2003; Chu et al.,
2013). In addition, natural or human processes may result
in significant changes in statistical descriptors (e.g., mean,
variance, and trends) of the observations (i.e., non-
homogeneity; Yevjevich and Jeng, 1969; Guzman et al.,
2014). Moreover, conditions of stationarity are often im-
plicitly invoked when calibrating model parameters (e.g.,
based on current input datasets) and then used to predict the
watershed hydrologic response under changing scenarios
within non-stationary conditions. Thus, these scenarios use

new datasets (e.g., precipitation, land use, _soil physical
properties) that may possess statistically §1gmﬂcan( c_:han_g-
es in statistical descriptors, thus propagating uncertainty in

the overall model predictions.

SPATIOTEMPORAL SCALE AND FUNDAMENTAL

DATA PROPERTIES
Observation of hydrologi

er, is bound to spatiotempo

cal phenomena, as stated earli-
ral properties of the observa-

tions that are mutually dependent (Hiebeler and Michaud,

2012), and this introduces uncertainty (Bev.en, 1989). Per-
ception of certain hydrological phenomena 15 related to the
frequency and den-

intrinsic data properties (€.g., sampling
sity, and quality of the observations). At watershed scales,
point measurements are often extrapolated to rcprgsem a
larger area or volume (i.e., spatial sgale), thus missing the
representation of spatial hetcroge_nelty. When this hetero-
geneity 18 spatially represgntqd in ll]hc nl“ide;lt (()g;c;n;?nc
ial di izati it is intrinsically rela -
spatial discretization), 1 : a%/ ik le S
drologic models are common_ly f:lassified by
f]:}::irrn gzn’mlgrical sgpatial discretizatiop as distributed, sen:-
distributed, or jumped. Heterogeneity 15 represented by
unique parameters related to the specific space fe.g.,
lumped or semi-distributed) or by a set of parameters : uerfs
distributed) derived from raster or vector data struc ;
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Thus, on one hand, observations are constrained by the area
or volume that properly represents all the physical phenom-
ena (e.g., representative elementary volume; Constanza-
Robinson et al., 2011). Conversely, the spatial representa-
tion (e.g., structured, unstructured grids, units, etc.) is
linked to mathematical and numerical approximations (e.g.,
finite differences, finite volume, finite element, spectral,
pseudo-spectral, etc.) occurring in the virtual world. These
three levels of data disaggregation (elementary volume,
spatial discretization, and mathematical computation) may
result in different spatial scales to accurately represent the
variability of hydrologic phenomena, which consequently
affects uncertainty in the model output.

Similarly, temporal data aggregation or disaggregation
(e.g., hourly, daily, monthly, yearly) introduce another data
transformation that potentially affects the model calibration
and validation (Harmel et al, 2009). As an example,
changes in the sampling frequency of rainfall (subdaily,
daily, monthly, etc.) result in changes in the representation
of the magnitude and spatial patterns of rainfall events, and
consequently runoff estimations (St-Hilaire et al., 2003)
and other related transport phenomena. Temporal
downscaling of rainfall is commonly achieved by using
numerical solutions that may not be linearly valid. Mathe-
matical operations applied on the spatiotemporal scale of
the observations may impact the variance of time series
data that, when placed within the context of other observa-
tions, may result in unintended spatial and temporal pat-
terns (Bloschl and Sivapalan, 1995; Grayson et al., 2002;
Poveda, 2011). Thus, modelers must carefully evaluate the
objectives of the model with the uniformity of the spatio-
temporal scales of the observations and the model runs to
properly assess the phenomena of interest (e.g., runoff,
chemical and microbial fate and transport) at a well-defined
space and time, thus minimizing model uncertainty.

Selection of the appropriate spatiotemporal scale of
analysis should be directly related to the modeling purpose.
At the same time, methods of uncertainty estimation should
reflect the variation in model performance at the selected
spatiotemporal scales (Kirkby, 1976; Heuvelink, 1998). For
example, if the purpose is to determine the size of a culvert,
then calibration and validation should focus on peak runoff
rates driven by subdaily rainfall data (e.g., breakpoint rain-
fall). As discussed by Goodrich et al. (2012), at relatively
small scales, carefully calibrated process-based models are
superior to simpler models. At larger scales, however, in-
adequate knowledge of boundary conditions, critical inputs,
representative properties, and the emergence of additional
processes makes process-based modeling more challenging.
Regardless of model complexity, model performance
measures should focus on the scale of variability (i.e., mod-
eling purpose), whether short-term dynamic response (e.g.,
design of culverts) or long-term impact (e.g., determining
the relative impacts of best management practices).

Increasing the spatial scale from field to farm to
hillslope to watershed to basin scale introduces new pro-
cesses, simplifies assumptions with additional modeling
parameters, and disproportionally incorporates new obser-
vations (Hiebeler and Michaud, 2012; Loe et al, 2012:
Kelly et al., 2011). For example, infiltration and erosion
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parameters established at a point scale may not apply at a
larger scale in aggregate or lumped model applications. At
small scales (areas less than a few square meters), soil is
detached by the energy of impacting raindrops and is trans-
ported by rainfall-driven shallow flows. As scale increases
to the size of typical erosion plots (tens of square meters),
runoff may become concentrated in rills, where detachment
and transport are increased by rill erosion. At larger scales
(hundreds to thousands of square meters), gully erosion
may become a major sediment source. At watershed scales,
depending on the local and upslope conditions, stream
channels and associated floodplains may be important
sources or sinks of sediment. All critical processes must be
adequately reflected in the model structure when models
are parameterized and validated at different spatiotemporal
scales.

Data resolution is another major issue when changing
the spatial scale of modeling. Of the many types of data
(topography, land use, soil, land management, etc.) in-
volved in modeling, precipitation data are probably the
biggest driver of uncertainty (Beeson et al., 2014), which is
aggravated by non-stationary conditions. HWQMs are pre-
cipitation-driven models, so correct representation of spa-
tial precipitation is essential. One way to achieve this is to
collect data at a finer spatial scale, but this approach may
be impractical and cost-ineffective in most cases. Weather
generators may not reliable for generating an entire dataset.
NEXRAD (next generation radar) may offer a promising
alternative for regions where a limited rain gauge network
exists for spatial representation of precipitation (Sexton et
al., 2010; Beeson et al., 2011).

Impact assessment of climate variability and change has
increasingly relied on forcing hydrologic models with cli-
mate model projections (Jha et al., 2004, 2013, 2014; Takle
et al., 2005) that are based on global circulation models. As
opposed to watershed models, global circulation models
produce results in structured grids (i.e., uniform spatial
discretization), while HWQMs are calibrated against moni-
toring data (unstructured networks) with limited accuracies.
Forcing these models with global circulation models intro-
duces additional uncertainties, primarily in prediction at
differing spatial and temporal scales.

MODEL REPRESENTATION AND PROPAGATION
OF STRUCTURAL UNCERTAINTY

Model structural uncertainty results from unaccounted
simulations of processes, lack of understanding of actual
physical phenomena, or improper mathematical representa-
tion. Model structural uncertainty can arise from unac-
counted feedback processes, such as the effects of wetlanqs
and reservoirs on hydrology, and chemical transport assocl-
ated with the occurrence of landslides in the watershed.
Model inaccuracy due to oversimplification of processes
and process interactions also leads to model structural un-
certainty (Yang et al., 2008). Moreover, approximations Of
errors derived from numerical algorithms or binary numeri-
cal accuracy contributes to uncertainty as a function of the
model’s physical representation and discretization ap-
proach. For example, physically based models that solve
non-symmetric equation systems derived from use of the
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finite difference (e.g., MODFLOW, MIKE SHE), finite
glement (e.g., HYDRUS), or finite volume methods may
pompt numerical issues (such as numerical stability,
“good“ approximation, and local conservancy), satisfy the
discrete maximum principle, and work for general domains
and arbitrary grids (Michev, 1996).

Building a conceptual model linked to the objectives of
the problem is recommended before model application or
before‘deveioping or updating the mathematical model. The
latter is mer_ely a mathematical representation of the for-
mer. Errprs in the conceptual model due to incomplete un-
derstanding or representation of the system are bound to
propagate through the modeling process regardless of the
model’s mathematical sophistication, accuracy of the input
parameter values, and observed data. Walker et al. (2003)
categorized this type of uncertainty as epistemic uncertain-
ty. Thus, improving the knowledge of various fundamental
processes and linkages is vital to reducing the uncertainty
Eﬂaﬂﬂtlng from oversimplification, overrepresentation, or
etea:m; (;)(f fundamental processes in the model. Refsgaard
o “El - 7) and Walker et al. (2003) suggested ways to
Wia: epllstemlc uncertainty, some of which include:
Vi mu:na research through extensive analysis of avail-
ey n: l;xplore less understood phenomena, (2) empir-
e tlnocused on improving knowledge of system
i ser?e(s Orgh 'addmonal data collection (e.g., lqnger
and peer rév;::\aflez;llonf frc}?umcy), i
sinding, , all of which lead to better system under-

zlh?:u PARAMETERIZATION (PHYSICAL,

ThRICAL, AND NESTED PARAMETERS)
is larg?el;:;n ber of parameters (both physical and empirical)
values for tr}r: ost HWQMs. Although not elrl‘or-ﬁ'ee, the best
ments; thy e8¢ parameters may be obtained b)'i measure-
OWl’ed s t[.’arame‘el' uncertainty arises from 1pcomp!ete
meanip gi Ol parameter values, ranges, and their physical
Spatia ifdo“‘:ks etal,, 2005; Yang et al., 2008). However,
Oveml] o temporal heterqgeneity in the la:ndscape and
enough mOSyStem makes it almost imposmblg to l}ave
Statisticalleasured values to represent such Ivanables in a
Subsurfac ¥ sound manner or to cover the entire surface and
scale for © watershed to the optimal spatial and temporal
rely on l-a: specific hydrologic process. Model users often
Mates” fl erature data and sometimes their best “guesti-
Matiop oor model parameter values. For example, infor-
pal'ameten soils, (_:Ilma_te, cropping practices, crop gr_owth
ased 1S, chemical inputs, as well as other physufally
phySicsilr?n eters such as Manning’s roughness coefficient,
pattery, tlmens“’fls of the landscape in terms of drainage
Pﬁrally’: il d‘fﬁcull to measure in a spatially and tem-
Average epresentative manner. This leads modelers to use
€ parg values for these parameters, despite the fact that
the mgdn;eters may be sensitive, may significantly affect
e Syst: output, and do not reflect the mean behavior of
oo thl'n (Sohrabi et al., 2003). Briggs et al. (2012) sug-
Mate i, at whether primary data sources are used to esti-
one or Put parameters or the information is derived from
Meth dmore secondary sources, the parameter.esnmatl_on
Odology should be able to generate a reliable pomnt

S866): 1745. 1762

estimate and_ an acceptable measure of precision by defin-
ing a defensible range. A point estimate with a sound range
f(?r any parameter of interest can be used by others to pro-
vide limits or ranges of model simulation uncertainties for
prediction of any model outcome of interest. In addition,
calibration requires tradeoff judgments by modelers. For
example, one portion of a hydrograph can match better than
others during a model calibration exercise. Each input pa-
rameter has a unique effect on different parts of the hydro-
graph. Thus, focusing on adjusting parameters without
knowing the modeling purpose creates additional uncertain-
ties (Herr and Chen, 2012).

Adjusting parameters unsystematically (e.g., calibrating
for nutrients before calibrating for hydrology) can also add
uncertainty due to the hierarchy of driven hydrological pro-
cesses and fluxes controlling other phenomena. A large
number of parameters should not be adjusted at once; in-
stead, a hierarchical sequence of parameter calibration is
preferred (Amold et al., 2012). For example, model param-
eterization for suspended sediment may increase prediction
uncertainty if the model is not yet parameterized for surface
runoff. An example of a hierarchical sequence for adjusting
model parameters could be flow volume, surface runoff,
groundwater, temperature, suspended sediments, conserva-
tive ions, nutrients, phytoplankton, and dissolved oxygen.
In addition, care should be taken when using autocalibra-
tion tools, which may adjust the parameters unrealistically
if not done correctly, leading to incorrect modeling results
or, in the worst-case scenario, to equifinality (Beven, 2006;
Kirchner, 2006). :

Briggs et al. (2012) discussed situations in whlgh pa-
rameter uncertainty estimation is not required (e.g., identi-
fication of the quantitative relationships between inputs and

outputs, or sensitivity analysis). In model parameleriz.ati_on
and uncertainty analysis, care should be taken to distin-

guish sensitivity analysis from uncertainty analysis, as a

highly uncertain parameter with low sensitivity may easily
tputs than a more sensi-

have more impact on the model outputs .
tive parameter estimated or measured with less uncertainty.
Sexton et al. (2011a) conducted a thorough analysis of

the impact of parameter uncertainty on critical SWAT out-
puts. Their re e parameters

sults indicated that sensitiv

should not be the only parameters considered for model
calibration and their contribution to model ?utput uncer-
tainty. The study found that parameters t0 which t_he mo'del
was not highly sensitive contributed to model simulation
uncertainty to a larger extent. Therefore, these parameters
should be determined more accurately and also considered
during model calibration to improve model performance
and reduce model uncertainty.

UNCERTAINTY IN MONITORING DATA _
Analysis of uncertainty in measured model input data,

ich drive model calibration and validation processcs,
;::I;roves model application and enhances decisions bas?d
on the modeling results (Reckhow, 1994; Kavelsklzgto 6ab.j
2003: Pappenberger and Beven, 2-006; Beven,. ; el,
Shirmohammadi et al., 2006; Moriasi et al., 200?, arm, )
and Smith, 2007; Harmel et al., 2010)..The contnbuuo::rca:
uncertainty in measured data (e.g., discharge, concentra-
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tions, and loads) that are used for model calibration and
validation has traditionally been ignored but has recently
been emphasized. Montgomery and Sanders (1986) and
Harmel et al. (2006, 2009) produced comprehensive uncer-
tainty analysis methods specifically for measured discharge
and water quality data to facilitate uncertainty estimation.
These methods were needed because discharge, sample
preservation and storage, and laboratory analysis common-
ly receive much of the research focus (e.g., Sauer and Mey-
er, 1992; Kotlash and Chessman, 1998).

Because calibration and validation data have some level
of uncertainty, as do all measured data, this uncertainty
should be considered in model calibration and validation.
Estimating and reporting the uncertainty in the measured
data (observational uncertainty) used to calibrate and vali-
date models is recommended because of its impact on the
evaluation and interpretation of model results. Furthermore,
as recommended by Harmel and Smith (2007) and Harmel
et al. (2010), model evaluation would ideally compare pre-
dicted values to the uncertainty range of measured values
as well as to actual values.

ASSESSING UNCERTAINTY IN

HYDROLOGIC MODELING
SENSITIVITY ANALYSIS VS. UNCERTAINTY ANALYSIS
Uncertainty analysis (UA) is the process of quantifying
uncertainty in model outputs (Santelli et al., 2008), which is
closely related to the process of apportioning uncertainty to
its source (i.e., sensitivity analysis; SA). The purpose of con-
ducting SA prior UA is to identify the important or influen-
tial variables that impact UA the most, and to assess the line-
arity of the model. Thus, SA has been combined with UA to
decrease the time and computational resources required for a
comprehensive UA, and in most cases SA is considered an-
other step in conducting UA in hydrologic models.

LOCAL vS. GLOBAL SENSITIVITY ANALYSIS

The most common type of SA is based on a simple local
derivative, dy/dx, which measures the change in y for every
change in x (fig. la). The sampling is performed locally,

(a)

A

" g

and one model parameter is varied while the rest are as-
sumed constant, hence the term “one-factor-at-a-time”
(OAT). Although this method is relatively simple, it can
only give information at the point at which measurements
were taken, which is an issue when the inputs are uncertain
or when the relationship between inputs and outputs chang-
es. In most cases, no a priori knowledge of the linearity of
the model is known, or the linearity may change depending
on model input assumptions. Saltelli and Annoni (2010)
showed that OAT methods are inefficient measures of sen-
sitivity unless some form of averaging of the system de-
rivative is performed.

The global method of SA can estimate the effects of each
input factor on an output when all other inputs are varying,
which allows identification of the interactions among factors
(Saltelli and Annoni, 2010; Cariboni et al., 2006). Because
global methods are based on the exploration of the whole
input space (fig. 1b), they can identify critical or interesting
regions in the input space (Saltelli et al., 2008). Global meth-
ods are model-independent, and no constraints are imposed
based on the linearity of the models.

SETUP OF SENSITIVITY AND UNCERTAINTY ANALYSES
Methods of uncertainty and sensitivity analysis (dis-
cussed later) involve multiple model simulations and eval-
uations. The economy of the analysis depends on the type
of method used. A general step-by-step procedure for per-
forming global UA and SA includes: (1) determination of
probability distribution functions (PDFs) of input parame-
ters, (2) generation of input samples based on the PDFs,
(3) application of a screening method to shorten the list of
important parameters, (4) refining parameters and their
ranges for rigorous analysis, (5) model simulations to cal-
culate desired outputs and decision variables, and (6) statis-
tical analysis to obtain sensitivity indices, parameter rank-
ings, predictive PDF, and confidence intervals. Saltelli et
al. (2004) provided recommendations for estimating pa-
rameter distributions and for selecting sensitivity analysis
methods. Input data such as precipitation, temperature,
soils, and land cover are critical drivers for watershed simu-
lation. When the analysis is carried out for spatial input
data (e.g., land use, soils, etc.), a number of maps and data

(b)

Figure 1. (a) Local sensitivity analysis ex
Shc change in slope of tangents A and B
is represented by minimum, mean,
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prt'essed as a simple local derivativ
whlhle tangent C remains constant.
and maximum values. The dots show the

€ (dy/dy) of a linear function (£) and a non-linear function (£)- Note

(b) Example of a sampling space of a three-input model. Each input
sampling density (possible combinations) within the input space.
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realizations are generated and used as variables (Lilburne
and 'l?arantola, 2009; Zajac, 2010; Sexton et al., 2011). Ka-
vetski et al. (2003), Ajami et al. (2007), and Yen et al
{2914) used an input error model to account for the uncer:
‘t?mty cout.ributed by precipitation by introducing some
fatent variables” (input error model parameters) to the
system. These variables were then handled as model pa-
rameters during parameter estimation and optimization.
Various tools and software packages are available for
parameter samplg generation and post-simulation statistical
analysis. These include SIMLAB (Saltelli et al., 2004)
SEUE (Beven et al., 2001), PEST (Doherty, 2004), anti
MdAS'f\(t\(\}’:lEer:l'i:l talf 2001). A detailed summary of UA
be found in Matott et af?lzl:)rg;‘).dnd mple A

S”_}gﬁm)’ Analysis Methods
Ew t; methods used for SA in HWQM:s include simple
graphaj W]e-based local methods (Lenhart et al, 2002),
iy anZT slinelh];({)ds (e.g., Scanerp!ots), regionalized sensitiv-
estimatign ST(S SA) coupled with tree-structured density
Riics, ef(’f DE) (Arabi etal, 2007), the method of ele-
(Mortis 199€lc.ts or Morris method (screening method)
Iegressi;m : (iiCampolongo et al., 2007), correlation and
based meth*gs ces (Helton and Davis, 2002), variance-
sl s tt::i (ANOVA-like techniques) such as the Fou-
i g sen51t1.v1ty test (FAST; Cuiker et al.,, 1973)
Sobal’s i:hed version (eFAST; Saltelli et al., 1999), and
K mettf dOd (Sobol, 1993). Among these, variance-
noﬂ-monotoo Is do not suffer from model non-linearity or
The FAST nl}ng and produce robust sensitivity results.
Baited i ’ae ST, and Sobol methods have been imple-
o Werkhovnumber of recent .studies (Tang et al., 2007;
al, 2009: yi en et al., 2008; Liu et al., 2009; Wagener et
However, thn et al., 2009; Chu-Agor et al., 2011, 2012).
imiting ;h hese rr{ethc?d_s are computationally expensive,
mide] para?: applicability when the number of uncertain
Siintic eters is very large, which has led to the use of
al, 2003. VI&IFS of these methods (Morris-FAST; Francos et
and 1 ,m Zr}g et al., 2006a; Muifioz-Carpena et al., 2007)
Tk (; ified and new sampling strategies (van
Sy ilr al., 2006). A summary of recent SA studies 1n
found in}{ ology and water quality monitoring can be
2011) no eclllsser et al. (2011). Surprisingly, Reusser et al.
regularly ed that FAST and ¢FAST have not been used as
Wﬂlershedas Sobol’s method in rainfall-runoff models and
of mode] -scale models despite requiring a smaller number
el simulations compared to Sobol’s method.

Uﬂg ertainty Analysis Methods
tainty ie;al methods have been used to quantify the uncer-
o m(;’de[ output due to the variability in input data.
method aé]h- O’Connor (1994) used the Kalman filtering
ensive d irmohammadi et al. (2006) provided a compre-
value ﬁrsescnptlon of several methods, including the mean
R oeter peiability -method (MFORM; Melching
1) L“’ 1996), Monte Carlo simulation (MCS; Yu et al,
Mcs ,(S al:m },'YPETCUbe sampling (LHS) with cqnslramed
Iman eto rabi et al., 2003; Iman and Shortencarier, 1985;
Sexto al., 1980), and GLUE (Beven and Binley, 1992).
n et al. (2011b) used MFORM and quantified the
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ﬂ}argin of safety for a TMDL due to uncertainties in SWAT
simulations asa result of variability in the input parameter
values. Details of the various UA and SA methods can be
found.m Saltelli and Marivoet (1990), Melching (1995),
Saltelli et al. (2000), Helton and Davis (2002), Saltelli et al.
(2004), Beven (2001), Stow et al. (2007), and Manache and
Melching (2008).

The UA methods implemented in HWQM simulation
studies range from output distribution statistics (e.g., mean,
range, interquartile ranges), output histograms and distribu-
tion functions, first-order and higher-order errors and mean
estimates (e.g., Shirmohammadi et al., 2006) to quite so-
phisticated Markov chain Monte Carlo (MCMC) methods.
Stow et al. (2007) recommended five UA methods for
adaptive TMDL implementation: (1) RSA or generalized
sensitivity analysis, (2) GLUE, (3) Bayesian Monte Carlo,
(4) importance sampling, and (5) MCMC, all of which are
essentially Monte Carlo methods. Among these, RSA
(Hornberger and Spear, 1981) is not really a UA method
but forms the basis of GLUE (Beven and Binley, 1992),
which is the most widely used UA method in watershed
modeling. RSA classifies model runs as behavioral or non-
behavioral based on some fitting criteria. In GLUE, the
concept of behavioral and non-behavioral runs is replaced
by weighting of parameter sets pased on likelihood
measures of model runs. The likelihood measures used are
generally goodness-of-ﬁt criteria (e.g., root mean square
error). Model runs can be classified as behavioral or non-
behavioral using some subjective likelihood criteria and

lative weight (of behavior-

further rescaled so that the cumu  (of behavic
al runs) is unity. However, considerable subjectivity 1 1n-

volved at various stages in GLUE (e.g., prior distributions,
likelihood function, etc.), which can hamper the results.

MCMC employs a full Bayesian framework and uses unas-
sisted algorithms to choose a sample that approaches the
posterior density function. This makes MCMC the fgstest
and most efficient method for UA. However, the efficiency
of MCMC depends on the underlying algorithms 10 locate
the optimal parameter combinations for the response Sur-

face. In HWQMs, response surfaces are quite complex;
therefore, MCMC may need a large number of runs ('E'tev-
). In addition,

en, 2001; Gallagher and Doherty, 2007 :
MCMC has been implemented in relatively few UA st_udle.s
ling (€.8» table 2). Mishra (2011), 1n his

in hydrologic mode
evaljl(xationgof the predictive uncertainty of HSPF in TMDL
development using Monte Carlo based techniques, cOn-
cluded that GLUE should be preferred over MCMC in wa-
tershed-scale water quality models. MCMC and GLUE

both have advantages and disadvantages. A detailed discus-
sion of this topic can be found in Vrugt et al. (2009), Jin et

al. (2010), and Beven et al. (2011). :
Ajami et al. (2007) proposed a framework, the integrat-

ed Bayesian uncertainty estimator (IBUNE), to aCf:ounl for
model input, parameter, and structural uncertainty in hydro-
logic prediction. Yen et al. (2014) ﬁfrlther consndere_d the
calibration and validation data in addition to model input,
parameter, and structural uncertainty in watershed model-
ing. Ratto et al. (2001) proposed 2 GSA-GL_UE approach
for model calibration that essentially combines the two
Monte Carlo techniques for global SA (FAST or Sobol) and
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UA, respectively. This allows SA on raw model outputs as
well as likelihood measures. The former helps in parameter
fixing and research prioritization, while the latter helps in the
parameter identification stage of model calibration. The
GLUE part of this procedure estimates the predictive uncer-
tainty. Because the same model runs are used for SA and
UA, this is an efficient technique. Further, the tools used for
sample generation, UA, and SA (e.g., SimLab and GLUE-
Win) are compatible, easy to use, and freely available. Table
1 summarizes the major UA methods used in HWQMs.

PROVIDING UNCERTAINTY RESULTS
In general, when modelers provide an uncertainty as-

sessment, it is often interpreted in a negative context,
thereby invalidating the modeling effort to some degree. A
model, if properly applied, is the best representation of a
real physical phenomenon or processes. This misconcep-
tion may happen because of lack of proper communication
of the meaning of uncertainty analysis output. Even during
professional meetings, models are often criticized because
of the existence of uncertainty. Uncertainty analysis should
be used to show how confident modelers are with respect to
the model output, indicating the range of expected model
output rather than unique solutions. Knowing the level of
confidence in the output is better than having no science-
based knowledge of the limits of output acceptance (Har-

Table 1. Summary of major uncertainty analysis methods used in hydrologic and water quality modeling.

Requirement

Setup and Procedure

Examples

Method Description
Monte Carlo Involves drawing a number of
simulation (MCS) stochastic parameter sets from

the parameter PDFs, running the
model for each set of parameters,
and statistically analyzing the
model output probability distri-
bution.

MCS inputs should be representa-
tive of the probability distribution
of the model parameter values if
the predictive uncertainty is only
based on all the MCS outputs, as is
usually done. Thus, to evaluate the
predictive uncertainty resulting
from the input parameter uncer-
tainty, prior knowledge of the
parameter PDFs and a large num-
ber of simulations is critical for
representative results.

Software: Advanced Risk
and Reliability Assess-
ment Modeling Infor-
mation System (AR-
RAMIS), which is
equipped with MCS.

MIKE SHE: Thorsen et al.
(2001).

DRAINMOD: Sabbagh and
Fox (1999).

AGNPS: Haan et al. (1998).

SWAT: Shirmohammadi et
al. (2006).

First-order analy-

Based on linearizing the relation-

Restricted by assumptions of line-

1. Determine base values.

AGNPS: Chaubey et al.

sis (FOA, or ship between a dependent ran- arity and coefficients of variation 2. Perform SA. (1999).
Gaussian approx- dom variable and a set of inde-  of input parameters less than 10% 3. Select the most influen- CREAMS-WT: Haan and
imation pendent random variables by a to 20%. tial parameters for further Zhang (1996).
Taylor series expansion to esti- analysis.
mate the output variances due to 4, Estimate means, vari-
the inputs, ances, correlations, and
PDFs for the influential
parameters.
5. Perform FOA.
Kalman filtering  Conditional probability density =~ Restricted to lincar models in - Peter (1979), Ahsam and
propagation. which system and measurement O’Connor (1994).
: errors are normally distributed.
Latin l}ypercube A stratified sampling approach in  Each variable should be divided Software: Advanced Risk  SWAT: Shirmohammadi et
sampling (LHS)  which the probability distribution into » intervals of equal probabil-  and Reliability Assess- al. (2006), Sohrabi et al.
(_)f each parameter is subdivided  ity. Requires prior knowledge of ment Modeling Infor- (2002, 2003).
into n non-overlapping ranges. parameter distributions. Restricted ~ mation System (AR-
Each range of parameter value is  to linear and monotonic models. RAMIS), which is
considered to have an equal equipped with LHS.
probability of occurrence.
Generalized like-  Based on MCS, likelihood Measured values should be availa-  Software: GLUEWIN EPIC: Wang et al. (2005).
lihood uncertainty measures, and the concept of ble to compare with the model (Ratto and Saltelli, 2001)  DRAINMOD: Wang ¢t al.
estimation Bayesian inference, it uses the predictions in order to calculate the : (2006b).
(GLUE) b_célavior and non-behavior clas-  likelihood of each model run corre- TOPMODEL: Beven and
sification concept to distinguish  sponding to each parameter set. i Beven
between the fraction of MCS that i 3‘3;?; (1!33;);1 al. (1996),
matches the system behavior and Lamb ;.t al. (1998), Camer-
dth(;:‘2 :c:lrgflement fraction that on et al. (1999). WEPP:

Brazier et al. (2000).
MIKE SHE: Christiaens and
Feyen (2001, 2002).

Bayesian analysis

A probabilistic approach that
uses the rules of probability
theory to make predictions, com-
pare alternative models, and
express uncertainty in the model.

Bayesian approach requires prior
values for unknown parameters
and for other hyperparameters
(e.g., missing data need to be esti-
mated via maximum likelihood).

Multiple model structure

Ajami et al. (2007), van
Oijen etal. (2013).

Melching and Bauwens
(2001), Sexton et al. (2011b).

Mean value first- A developed form of FOA that  Each basi i
order reliability performs a Taylor series expan- slandara:isilzce;i!;arzfeis\l:: El‘i.:rc
analysis method  sion of the model output function sideration i
(MFORM) and allows the user to determine ;

the variance of the dependent

variable and the variance con-

tributed by each input parameter.
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mel et al., 2014). Further, modelers should strive to make
model output more useful by presenting a state-of-the-art
assessment of uncertainty that may result in a range of
model outputs or expected solutions when applied to com-
plex systems.

In theory, modelers would not need uncertainty analysis
if they were fully confident of model output. In practice,
!here is no perfect model that achieves that confidence level
in complex systems. Higher uncertainty means lower con-
fidence, and vice versa. Modelers perform uncertainty
apalysis to make sure the model outputs satisfy the expecta-
tions relative to actual system behavior. If the combined
effect of all uncertainties provides a stronger signal than the
model prediction, the model results might be meaningless
a'nd shou!d not be considered in further analyses or deci-
smn-.makmg. For example, if the change in sediment load is
predicted to be 20% and the model uncertainty is found to
be around 20%, then the model output is meaningless for
the prediction of sediment load.

USING UNCERTAINTY ANALYSIS OUTPUT
It IS increasingly necessary to adequately address the
uncertainty associated with model predictions to realize the
potential of models in decision-making (Beven, 2007; Liu
;:}F‘ Gupta, 2007; Wagener and Gupta, 2005; EPA, 2008).
'qm“t_PfOper uncertainty analysis, and use of this infor-
$§gof In explaining error origination and propagation,
b re‘;atomput may not be useful. Attempts should be made
e e lhe: level of uncertainty with physical explanations
Sfommunicate the confidence in the predictions. Quanti-
nf)l’;ﬂg b:;md allocatipg the uncertainty to respective sources
useyth a challenging task,.but it is worthwhile to coneqtly
i e t}r?odel output. Tl_us step may require dgvelopmg
&t ditime ods and strategies for the assessment, including
Liu a;(lilﬂcli and multi-level sensitivity analysis. For example,
Jupta (2007) introduced an integrated hierarchical
assimilation framework to better understand the

so 4 . .
n;fCES of uncertainty and reduce them in a stepwise man-

{JN;&I::T() RATING MODEL AND MEASUREMENT
AINTY IN MODEL EVALUATION
worlde degroe tq which models adequately represent r.eal-
of me Processes is typically judged by pairwise comparison
999)asm’m.data and model output (Legates and McCabe,
dicted and with gra_phical comparison of measured and pre-
999 Valu?s‘. Willmott (1981), Legates and McCabe
provid;dMonas’ et al. (2007), and Jain and Sudheer (2008)
ness-of. fﬂ.m"f’ugh discussions regarding common good-
“aditio- It indicators for evaluating model performance. As
simp] néuy applied, most quantitative indlcators. use a
twegneoti:fference (O; = P)) to represent the deviation be-
1999). served and predicted data (Legates and McCabe,
ve §;Igel =l (2097) defined the content necessary to de-
Plang) l'ﬂoqel application protocols (or qught}{ assurance
0 mo:iWhIch are needed to enhance the scientific valldlt_y
CatiOnse-ls and to increase the defensibility _of model appli-
imp; in light of regulatory, programmatic, and 'rescarch
Pllcations. In discussing calibration and validation pro-

58(6): 1745_ 1762

cedures, Engel et al. (2007) emphasized the need to assess
model goodness-of-fit and to assess the uncertainty in mod-
el re_sults and measured data; however, no methods for as-
sessing goodness-of-fit considering both measurement un-
certainty and model uncertainty were provided. Harmel and
Smith (2007) developed a method to include uncertainty in
measured calibration and validation data by modifying the
traditional error term calculation in goodness-of-fit indica-
tors, and Harmel et al. (2010) developed a method to modi-
fy goodness-of-fit indicator values considering both meas-
urement and model uncertainty. This method is based on
Haan et al. (1995), who stated that the degree of overlap
between corresponding probability density functions for
observed and predicted values is indicative of model pre-
dictive ability. Cibin et al. (2012) proposed a similar good-
ness-of-fit evaluation method, which can be used to modify
the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) considering prediction uncertainty.

Such modified indicator values that incorporate uncer-
tainty in measured calibration and validation data and mod-
el predictions were developed to provide valuable supple-
mental information to be used in conjunction with tradi-
tionally applied statistical and graphical model evaluation
methods, including the model performance ratings of Mori-
asi et al. (2007). All of these methods applied and consid-
ered together provide a detailed evaluation of model per-

formance.

UNCERTAINTY ANALYSIS FOR
VARIOUS HWQMS

Uncertainty across different models is expected to differ
due to model characteristics, differences in spatial and tem-
poral discretization, process representation, mathema'tical
approaches, code-based model complexity, and mod,el input
requirements. HWQMs are applied to specific objectives
within the boundary of the model development (level of
physical phenomena representation), and modelers must be
cautious when applying models outside these boundaries.
Similarly, modelers must avoid application of models out-
side of their original principles (structural uncertainty;
Refsgaard et al., 2006) and the spatial or temporal scale and

range of applicability originally intended. For c_:xample,
uncertainty in curve number based models may arise when
hical regions outside the

the models are applied to geographic th
U.S., at temporal scales of rainfall different from the origi-
nal definition of “event,” when used to estimate overlgnd
flow from hydrological processes different from saturation

s, or when ph sically based characteristics are mis-
f;(i;igly assignec{; tz the curve number model (Ponce and
Hawkins, 1996; Garen and More, _2005; Walter and Shau;i,
2006). Because model parameters 1n HWQMS are expccl:e
to be sensitive to observations, uncertainty arises w en
parameters derived under stationary [:ond{tlon_s are used to
assess future scenarios where stationarity 1S unlmo(wn.
Modelers should also consistently evaluate the l;'all;am? ufl:
in physically based models to ensure that they la wi n:e
the domain of the representative glementary vodggi)UIed
availability of databases representing spatially di
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datasets combined with computational tools for model pa-
rameterization and cloud-based model execution are facili-
tating HWQM application, but they can also contribute to
increased uncertainty. For example, delineation and param-
eterization of hydrological response units (HRUs) from the
curve number definition (soil, terrain slope, and land use)
are commonly based on georeferenced databases (NRCS
SSURGO or STASTGO databases, USGS digital elevation
models, and land use) in combination with rainfall time
series to assess the impact of best management practices. In
some cases, derivation of these HRUs is outside the spatial
and temporal scales of application of at least one of the
datasets or outside the range of applicability of the curve
number model, resulting in a digital mirage. Tables 2 and 3
summarize common HWQM:s and recent uncertainty analy-
sis assessment as a function of uncertainty in parameters
and data inputs, respectively.

CONCLUSIONS AND RECOMMENDATIONS

Uncertainty is ubiquitous when assessing the hydrologi-
cal response and fate and transport phenomena in complex
ecosystems. Uncertainty in the inputs propagates to the
model outputs in a non-linear manner as a function of the
model representation and computational limits; thus, uncer-
tainty in model outputs is always expected. At the water-
shed scale, observations are limited in space and time and
possess convoluted errors in which decomposition is prob-
lematic. In most cases, the probability function associated
with uncertainty in observational errors is unknown and
non-stationary due to changes in instrumentation, protocols,
network operation, and the dynamics of the system. Math-
ematical operations and data transformations commonly
conducted on observed data to fulfill specific HWQM re-
quirements (e.g., spatiotemporal discretization and repre-
sentation, computational limits, conceptual model simplifi-
cation, etc.) can exacerbate the observational uncertainty
and drive changes in the spatiotemporal patterns of the ob-
servations.

Uncertainty analysis in HWQMSs aims to identify and
quantify the uncertainty in model outputs that is linked to
model inputs or structural uncertainty in a probabilistic
manner. The different methodologies that have been devel-
oped for local or global uncertainty analysis have different
purposes and different computational requirements. Uncer-
tainty analysis applied to HWQMs allows assessment of
model outputs in a more realistic manner because in most
cases the variability of the ecosystem under investigation is
not well known. In addition, uncertainty analysis allows
modelers to assess model robustness and the range of mod-
el applicability.

In th-e present examination of considerations related to
uncertainty in HWQM modeling, the following recommen-
dations emerged:

. }Jucgrtainty in the measured data used for model cal-

ibration and validation impacts the model results and
the evaluation of those results. Therefore, uncertainty
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in calibration and validation data should be a vital
consideration in modeling and should not be viewed
as trivial.

Input data resolution (spatial and temporal) should be
carefully examined in decisions on model spatial dis-
cretization. Of the input data (e.g., topography, land
use, soil, land management, etc.), precipitation data is
probably the biggest driver of uncertainty, which is
aggravated due to non-stationary conditions.

Building a conceptual model linked to the objectives
of the problem prior to model application is recom-
mended. Errors in the conceptual model due to in-
complete system representation propagate throughout
the modeling process regardless of the model’s math-
ematical sophistication, accuracy of input parameter
values, and observed data. Thus, improving the
knowledge of various fundamental processes and
linkages is vital for reducing the uncertainty that em-
anates from oversimplification, overrepresentation, or
the lack of fundamental processes in the model.
Model structure selection should be realistic in that
tradeoffs may exist between different structures.
Even though it sounds trivial, one important way to
avoid uncertainty is for the model structure to match
the represented processes. For example, when
knowledge of the processes in the study area is lim-
ited, using a lumped model might be better because a
distributed model may add counterproductive uncer-
tainty due to the added complexity.

Parameter adjustment should be systematic, and the
limit should be related to the interactions of hydro-
logic and fate and transport processes. A hierarchical
sequence of parameter calibration is recommended
from flow to transport (e.g., flow volume, surface
runoff, groundwater, temperature, suspended sedi-
ments, conservative ions, nutrients, phytoplankton,
and dissolved oxygen) to minimize uncertainty prop-
agation. In addition, care should be taken that auto-
calibration tools do not adjust parameters unrealisti-
cally (i.e., out of the range of applicability), leading
to correct outputs from unrealistic inputs.
Understanding the uncertainty associated with model
predictions is vital to appropriate application of mod-
els in decision-making. Specifically, model outputs
may not be useful without uncertainty analysis and
proper explanation of the uncertainty sources, €rror
propagation, and the degree of confidence in model
predictions.

The statistical significance of the amount of input da-
ta and the data quality (data screening) should be ana-
lyzed when defining conceptual models. Multiple
techniques exist to increase the amount of input data
(e.g., Monte Carlo methods) or to provide spatial in-
ferences of quantities from observed data points (.-
kriging) that may increase the uncertainty in inputs
and thus the uncertainty in model outputs.
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Table 2. Summary of recent parameter uncertainty analysis studies in watershed and hydrologic modeling.

A:)ﬂ::"cl!*:! Eapaa Method™ Runs Evaluated Qutput” Example
MCMC >250 NA FISPF: Gallagher and
. Doherty (2007)
I
BASIN/HSPF! 40 MCS, GLUE, and 12,000 for MCS,  Various outputs describing fecal  Mishra, 2011)
MCMC 10,000 for GLUE, coliform concentrations.
100,000 for MCMC
ComModel - GLUE NA ME, RMSE, and K of various _ Conrad and Fohrer
L e o nitrogen leaching output (2009)
GLUE 30,000 based on MCS ME, R? Wuet al. (2011
CREAM/GLEAMS™ NA NA NA Na = A( )
Di bDalsy{g!- NA NA NA NA NA
istributed rainfall- 3 (5 storm events) MCS, LHS, RPEM, <1,000 Different for different methods ~ Yu et al. (2001)
runoff model and HPEM
SRAINMODY® X GLUE 1992 VSE and its variants for flow __ Wang ctal. (2006b) _
9 2 .
EPIC and APEX' GLUE 1,500 Confidence ;::;'val for crop Wang et al. (2005)
and soil organic carbon
HYDRUS'I 7 GLUE 30,000 NSE Hansson and Lundin
(2006)
HYMOD 5 MCMC NA Multiple Vrugt ct al. (2008)
HYMOD, NAM, 5 for HYMOD, Combination of NA Exponential likelihood function  Blasone et al. (2008)
and SAC-SMA 10 for NAM, MCMC and GLUE
14 for SAC-SMA :
4 GLUE 500 NSEC, sum of squares of residu- Beven and Binley
s (x 5 storm events) als, scaled maximum absolute (1992)
error
23 GLUE 98,304 Mulfiple likelihood functions Yatheendradas et al.
KINEROS/AGWA<! : i (2008‘3 -
9 MC 1,000 ¢ Coefficients of variation, Hantush and Kalin
probability of excecdance (2005)
MlMACROJ" NA NA NA NA NAL
i:lﬂo-pollulams 5 most sensitive GLUE 10,000 Multiple Vezzaro and Mikkelsen
Streamflow parameters from SA ; (2012)
MIKE SHE!! 8 GLUE 15,000 NSECbased likelihood  Vazquez et al. (2009)
for streamflow
MT3DMS' NA NA NA NA Nd" e
i i cater
P export and discharge 8 parameters GLUE 30,000 RMSE of TP concentrations Smith (32:1004
—_Rzwom* NA NA
Sediment nutri NA NA_ A Itiple criteria Osidele et al. (2003)
dvrarnutrient 5 management related MC technique: Not reported Multiple cri
m‘ lfa'm““’: model for * parameters, and 14 RSA-UCPR-TSDE
OChChanahoo- sediment and nutrient
: e related paramet
River south (STAND) i i
SHAW!I NA NA NA NA NA
STANMODT A NA A A Migh S
i acci F
13 parameters, 12 Single-factor between- 500 Percent relaftxve er;ﬁ:. 12 by
HRU configurations subjects analysis (x 12 HRU combo) coefficient of variability (2008
i Mulcta and Nicklow
E 5,000 NSEC for discharge and
SWATH s jor scdiment concentration (2005)
and their combinations S el
Zhang et al. (2009a)
11 Bayesian model averag- 1,000 2
ing ‘ Shen et al. (2008
EA <100 Multiple :
SWAT- = et 000 Multiple criteria on streamflow Wau and Liu (2012
R 8 MCMC 1, 5
SWIMT] NA NA NA
NA NA S
TOUGH2T NA NA NA NA ral
St <8,000 Multiple Mufioz-Carpena ¢t al-
27 CDFs and other statistics » (200
of outputs Multiple Fox et al. (2010)

VFSM
ki 18 CDFs and other statistics <14,977
of outputs =
NA NA e

VS2DItl
NA NA

HAC NA NA NA :ﬁ NA

WARMFl:] NA NA NA : e (2010)

i 50,000 Multiple based on flow i :
WASMOD 3 GLUE and Bayesian i
WE method T ot =
= A ™ TIPEM imati = Carlo, MCMC = Mar-
5 NA 's poil “Tmethod, MC = Monte o,
i - Tt = T estimation . _

o s Co g generﬂlized e uﬂc‘eﬂﬂlﬂfg glxtfko}gliﬁah}?:;?ﬂ‘z:ﬁmﬁm method, and UCPR = uniform covenng by proba-

k : s
0V chain Monte Carlo, MCS = Monte Carlo simulation, NA = not applicabl

w  Dilistic rejection,
~ mean square - % i iency coefficient. =
quare error, and NSE = Nash-Sutcliffe efficiency | mollcetion (Moriasi ct al,, 2012).

Ie)
M : .

0dels that are part of the model use, calibration, and validation Speci
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Table 3. Summary of recent studies on effect of data and input uncertainties in watershed and hydrologic modeling.

T Analysis Details Example
ADAPT®! NA NA e
AGNPS Effoct of spatial rainfall variability on parame- 17 rainfall distribution scenarios. Chaubey ct al. (1999)
ter uncertainty.
BASINHSPF® __ Effect of temporal and spatial data resolution (1) Climate data (temperature and rainfall) at five dif- HSPF:
on output uncertainty. ferent temporal resolutions were used to assess the Patil et al. (2011)

impact on model output.
(2) Five different resolutions of land use data were used
to assess the impacts of spatial resolution.

CoupModel™® NA NA NA
CREAM/GLEAMS" NA NA NA
Daisy"”! NA NA NA
DRAINMOD!*! NA NA NA
Empirical soil loss Effect of DEM resolution on soil loss. Seven different DEM resolutions were used. Wau et al. (2005)
model
EPIC and APEX®™  Accounting for model parameter, input, and Developed an auto-calibration and uncertainty analysis Wang and Yen (2014)
model structural uncertainty. tool for APEX (APEX-CUTE). Examined effects of and Wang et al.
model input error, model parameters, and model struc- (2014a, 2014b)
tural uncertainty on sediment prediction.

HL-DHMS Effect of rainfall characteristics and initial Six combinations of rainfall and initial soil moisture van Werkhoven et al.
moisture conditions on spatial parameter characteristics were used for spatial SA. For each case, (2008)
sensitivity. spatial SA indices were calculated.

HYDRUS™ NA NA NA

KINEROS/AGWA!* Effect of rainfall intensity on model output Ten storm events of 120 min duration. Hantush and Kalin
uncertainty. (2005)

KINEROS2 Effect of land use misclassification on output 100 realizations based on land use misclassification Miller et al. (2007)
(runoff) uncertainty. error were generated.

MACRO™ Effect of variability in input parameter values (1) Developed PDFs for each input parameter. Sohrabi et al. (2002)
on uncertainty in model output. (2) Used LHS-CMS to determine the output distribution

due to variability in input data.
MIKE SHE™ Effect of grid size on parameters and model  Three grid sizes were used (300, 600, and 1200 m). Vézquez et al. (2002)
performance.

MT3DMS! NA NA NA

RZWQM'"! NA NA NA

SAC-SMA Parameter SA at different time scales. Four different SA methods were used to evaluate the Tang et al. (2007)

effects of three different time scales on parameter sensi-
tivity.
SHAW!! NA NA NA
STANMOD NA NA NA
SWAT gffect of DEM resolution on output uncertain- Seven DEM resolution scenarios. Chaubey et al. (2005)
Effect of spatial distribution of rainfall on (1) Effect of rainfall input method in conjunction with Cho et al. (2009)

temporal and spatial uncertainty. subwatershed delineation (nine scenarios).

(2) Effect of raingauge density on hydrology and water
3 . quality (ten scenarios).
Effect of spatial resolution of DEM, land use,  Seven resolution scenarios. Cotter ct al. (2003)
and soil on water quality model output uncer-
tainty.
Sensitivity of SWAT to spatial scale.

Calibrated parameter values for six different discretiza- Mulcta ¢t al. (2007)
tion scenarios were compared.

Model performance measures were compared for daily  Sudheer et al. (2007)
and monthly time scales.

Impact of time scale of objective function
(e.g., daily, annual, etc.) on model perfor-
mance.

Impact of parameterization, precipitation,
choice of surface runoff method (model struc-
ture), and calibration and validation data on

Different calibration cases were considered. The best Yen ct al. (2014)
solutions and predictive uncertainties of flow and water
quality were compared.

flow and water quality.
SWIM® NA T
TOPMOD : : NA
> Eszxgm resolution and elevation data ~ Seven DEM resolution scenarios and thousands of Wu et al. (2007)
TOUGH2™ ; NA realizations based on elevation errors were analyzed.

VS2DI NA NA :i
i N NA g——

WE NA NA NA

] i NA NA
Models that are part of the model use, calibration, NA e TR

and validation special collection (Moriasi et al., 2012).
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» Uncertainty analysis should be used to assess model
outputs in a positive context. There is need to im-
prove the manner in which modelers communicate
the meaning of uncertainty analysis. As a matter of
fact, well developed models show larger certainty
metrics than uncertainty in their outputs.

* In determining model uncertainty, a proper and less
cumbersome method should be recommended and
u§ed. For example, instead of using Monte Carlo
su'nulation alone, the use of Latin hypercube sam-
pling with Monte Carlo simulation can limit the
number of simulations while providing relatively ac-
curate output distribution.
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