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Abstract

Objectives of business sustainability efforts commonly include increasing consumer safety,
decreasing resource consumption, and decreasing pollution. Even though there is a societal
interest in attaining these goals, business and other economic agents often operate under
incentive structures that run counter to these objectives. Taxi drivers operate as economic
independents. Their revenue depends on their fares and tips. Moreover they choose how many
hours to work, how fast to drive, and which route to take. Using New York City taxi data from
2013, we test the level of alignment between the revenue maximizing behavior of drivers versus
safety, conservation and pollution- related outcomes that are valued by stakeholders. We find
substantial misalignment—i.e., in order to maximize revenue, drivers take inefficient routes and
they exceed the speed limit thus decreasing safety, increasing fuel consumption and increasing
air pollution. Based on these empirical results, we suggest methods of aligning societal goals
with those of revenue maximizing taxi drivers.

Keywords: digital data; taxi; New York City; policy alignment; public safety

1. Introduction

Sustainability objectives at the business and societal levels often include increasing consumer safety, decreasing
resource consumption, and decreasing pollution. However, business and other economic agents often operate under
incentive structures that run counter to these objectives. This forces trade-offs — often undesirable trade-offs — between
economic sustainability and social/environmental sustainability.

Taxi drivers are rational, profit seeking economic actors. They have a great deal of discretion when it comes to
decisions such as how long to work, what route to use for each fare, and how fast to drive. These decisions affect each
driver’s profits. These decisions also affect each driver’s sustainability footprint — including factors such as safety
risk, resource consumption, pollution generation, and other social and environmental outcomes. We use data collected
from the New York City taxi fleet in order to explore the level of alignment between drivers’ profit outcomes and
their sustainability-related outcome. As we report below, we find substantial misalignment between these outcomes —
i.e., in order to maximize revenue, drivers take inefficient routes and often exceed the speed limit thus decreasing
safety, while increasing fuel consumption and air pollution. Based on these empirical results, we suggest methods of
aligning societal goals with those of revenue maximizing taxi drivers.
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2. Literature Review

Economists have frequently examined if individuals are rational and profit maximizing. In their seminal paper on New
York taxi driver behavior, Camerer et al. (1997) identified that taxi drivers operate as independent economic workers.
Drivers select how long to drive, and they keep the fares and tips as their revenue. The driver behavior should give
good insights into rational behavior. Camerer et al. (1997) suggested also that drivers have a set point of money they
intend to make each day. Once they reach that set point, the driver will stop working. This would thus explain why on
rainy days, when demand for their services is high, it is hard for customers to find an available cab. Rather than
working more hours on days where demand is high and extra money could be made easily, drivers stop working when
they reach their revenue set point. This work was refuted by Farber (2005) who found that drivers typically stopped
when they got tired, usually after 12 hours on the shift. Additionally, Farber (2008) concluded that the stopping
condition for a driver’s shift was strongly related to hours worked, and if a set point of revenue earned was related to
driver probability of stopping, that set point changed each day. The idea that taxi driver stopping criteria was based
on hours worked rather than revenue earned was confirmed in Crawford and Meng (2011). Farber (2015) found that
drivers tend to learn how to make more revenue per hour as they gain experience driving over a number of years. It
seems more likely that since the number of cabs allowed in New York is limited (via medallions), the increased
demand for taxis in the rain is unmet because the taxi capacity is not flexible. In addition, too many taxis would make
the career unappealing as during normal weather and times, it would be extremely difficult for each driver to make a
living. Because each driver generally works until they are tired, revenue earned is reflective of a profit maximizing
economic individual. By focusing on revenue (fare and tip) per fare, the number of hours worked before the driver
quits for the day should not affect our study results here. Therefore, our sample frame is the individual fares (trips)
rather than the entire shift as done in prior research.

In New York City, taxi drivers pay a flat fee to use the cab, and then keep the revenue and tips. All else being equal,
higher tip percent equates to more revenue for the driver for a particular fare. In their study on tipping, Haggag and
Paci (2014) utilized a payment screen that suggested default tips (in various amounts). They found that setting default
tips (even though a button for “other amount” was available) made people tip less. It appears that customers do not
like the suggestion of a default and will tip based on other factors, including the perception that the driver is meeting
their transportation needs. In New York City, taxi meters determine the fare through a combination of time and
distance measures. The standard city rate (Rate Code 1) charges customers a $2.50 flat fee upon entry as well as a
$0.50 charge per additional unit. A unit is defined as either (i) a 60 second interval in which the car is idle or driving
less than 6 miles per hour or (ii) 0.20 miles when the car is driving 6 miles per hour or faster. Additionally, there are
surcharges, which are captured in the dataset; specifically; 1) a night surcharge of $.50 between 8:00 PM and 6:00
AM, 2) a peak hour weekday surcharge of $1.00 Monday through Friday between 4:00 PM and 8:00 PM, and 3) a
New York State tax surcharge of $.50 per ride (NYC.gov A, 2017).

Given this fare calculation methodology, taxi drivers may possibly have an incentive to exceed the speed limit or take
a longer route between two locations. For example, as shown in Figure 1 (an example trip from the Empire State
Building to the American Museum of Natural History), a driver has a number of options available at his discretion on
how to complete the trip. The shortest distance by road is 3.0 miles (Route 1) - assuming the trip is driven at 18 miles
per hour (MPH) and also assuming for this simplified example there is no idle time at intersections, it takes 10 minutes
(via 5th avenue, cutting through Central Park at 79th Street Traverse). Similarly, this trip could take 11 minutes to go
3.0 miles (Route 2) by cutting through Central Park at 65th Street Traverse. The fare to the driver would be the same,
but by choosing Route 1 the driver can make that amount ($2.50 flat fee + [0.50 * 5] * 3 miles = $10) in 10 minutes
versus 11 minutes. This would be optimal for the driver and the passengers. However, going out of the way (Route 3,
i.e. inefficient routing), the trip can become 3.2 miles, adding 50 cents to the driver fare. The driver would now have
to go 19.2 MPH to complete this slightly longer trip (9th Ave to Columbus Ave) in the same 10 minutes. Alternately,
the driver could drive at 18 MPH on this longer mileage route and take a little less than 11 minutes to arrive at the
destination. If the passengers were not familiar with the streets or traffic in the city, 10 minutes and 11 minutes may
both seem appropriate for their trip. However, the longer route is not beneficial to the passengers (unless a significant
traffic event was blocking the lower mileage routes).
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Figure 1: Taxi driver route options from the Empire State Building (marked A bottom of figure) to the American
Museum of Natural History (marked B at top of figure).

The speed limit in New York since 1986 has been 30 MPH, but in 2014 was lowered to 25 MPH in an effort to reduce
traffic deaths (Bankoff, 2014). Speeding cars are more likely to cause fatalities as the risk of death is approximately
four times higher when a pedestrian is hit at 40 MPH than at 30 MPH (Department for Transport, 2014). In fact,
speeding killed 9,262 people in 2014 (NHTSA, 2015). Speeding also causes injuries and has a negative economic
impact on society. The 2016 Taxi & Limousine Commission (TLC) Factbook (NYC.gov D, 2016) notes that beyond
the death toll, the total economic impact of speeding averages about $40.4 billion a year in the United States. Further,
the TLC Factbook details that over 99% of the taxi drivers are male. This compounds the likelihood of speeding as a
2015 government study (NYC.gov E, 2017) noted that men were more likely to speed than women (66 percent versus
61 percent). Taxi drivers seem to have incentive to speed, while society wants them to drive more carefully. Our
analysis will look at how taxi drivers can maximize their revenue, and maximize tip percent, on fares. We assume taxi
drivers to be rational agents (as done in prior economics studies using taxi drivers), thus the drivers should evince
behavior consistent with earning the most revenue for their work effort.

3. Research Model and Empirical Analysis

Donovan and Work (2014) obtained data from the New York City Taxi and Limousine Commission through a
Freedom of Information Law (FOIL) request. The dataset covered four years, the most recent being 2013. We use this
last year of data for our study here. Because the medallion and hack licenses are reassigned each year, it is only
possible to track drivers (hack licenses) and vehicles (medallions) within a calendar year.
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3.1 Hypotheses

Beyond 12 MPH speed, a driver makes more money per time period driving versus sitting idle with a passenger
because the miles driven at the fare rate of 50 cents per 0.2 miles contribute to revenue more than tips — reported as
18% on average (NYC.gov C, 2014). Thus, a rationally economic driver would want to drive faster to make more
revenue per hour. Only if the trip has an average speed of less than 12 MPH will the trip time contribute more to the
fare than the miles driven. Therefore, a driver who makes one trip of five miles can make more money with five trips
of one mile each, as each new trip has a $2.50 entry fee. This equates to the driver making an additional $10 ($2.50 x
4) all else being equal for having five one mile trips compared to a single five mile fare. However, having a fare paying
passenger in the taxi seems preferable to dropping them off and looking for another passenger and then looking for
more customers three more times to each pay the $2.50 entry fee. It seems better to have a guaranteed passenger
generating revenue than risk driving empty or sitting idle while waiting for the next possible fare. Therefore, we expect
to see that driving faster is associated with more revenue for a driver:

Hla: Average driver speed is positively associated with drivers’ revenue per hour.

Assuming that drivers are economic actors who operate to maximize their individual economic profit, we expect
drivers to augment their revenue by driving faster; however, customers do not share this incentive. Moreover
customers value safety - passengers generally associate speed with recklessness and they may worry about injuries to
themselves, others, or damaging inanimate objects in a crash when in a speeding taxi. We do recognize that when
people are running late, they may prioritize speed over safety, but presumably most passengers are not running late
most of the time. Therefore, we expect passengers to express their desire for safety by tipping a smaller percent of the
fare when the taxi driver goes faster:

H1b: Average driver speed is negatively related to drivers’ tip percentages.

As suggested by H1a, drivers that can drive more miles for a fare can make more revenue. We define inefficiency
(INEFF) as the trip distance (recorded on the meter) divided by the straight line air distance (e.g., flying from point A
to point B, without having to turn on streets). A score of one would be a perfectly efficient route, and scores greater
than one indicate increasingly circuitous routing. The implication is that driving less efficiently (higher INEFF) by
taking a fare on a longer route increases revenue because it increases miles for which a fare is charged. This is a well-
documented way for drivers to “rip off” customers (Deaton, 2011). Peer and Solomon (2012) found that professional
drivers as well as non-professional drivers had considerable errors in their estimations of driving speeds and journey
times. However, the researchers determined that overestimations of time for taxi drivers were smaller than
overestimations by nonprofessional drivers. Thus passengers may overestimate the distance or time to get to their
destination, allowing a savvy cab driver to take a less efficient route adding miles and fare revenue to the trip total.
Assuming that drivers will not be caught and sanctioned, taking a route that is longer than the optimal route is a way
for drivers to maximize their individual economic well-being. Thus we expect to see:

H2a: Driver inefficiency (INEFF) is positively associated with revenue

Conversely, passengers have a preference for the most efficient route and they might be aware that a less efficient
route is being used. Some passengers know the city and traffic conditions as well or nearly as well as taxi drivers, and
thus they know when the driver is taking a less than efficient route. Even less knowledgeable riders may sense that
the driver is not taking them the most direct route. For example, the driver may make many seemingly unnecessary
left and right turns. Moreover, most passengers have GPS enabled mapping application on their phones. This allows
them to draw some conclusions about route efficiency—for example, by comparing the actual route to the route that
approximates a straight line, or by asking the app to map out the route. Finally, some apps estimate travel time from
origin to destination, and passengers can compare this time to the actual travel time. In these cases, passenger’s
conclusions about whether the driver is taking the most efficient route are imperfect, but they provide some indication
that the driver is deviating from the best route. Since customers prefer that drivers take the best route, we expect that:

H2b: Driver inefficiency (INEFF) is negatively associated with tip percent
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3.2 Model

We use multiple regression, as done in McLay et al. (2012), to test our hypotheses. Looking at which factors were
significant in predicting responses via multiple regression was also done by lacocca et al. (2013).

3.3 Data

Consistent with other studies (e.g. Bornstein et al., 2013), to make the data set manageable, we use a randomly selected
sample of 1% of drivers over all 12 months of 2013 (the most current year of NY Taxi data available at the
commencement of this study). Then those hack licenses (uniquely associated with drivers) were used to filter out all
other drivers from the 2013 data. The tip amount was rarely recorded when the payment type was cash. Therefore, we
use only credit payment trips recorded in the dataset. Our final sample consist of 949 drivers making 262,224 trips.
To include possible weather effects, we retrieved the hourly weather for New York City (weathersource.com, 2016).
We assume that the weather recorded at the observatory in Central Park on a particular day and hour would be similar
for all of the city. The variables of interest in the data set are shown in Table 1:

Table 1: Variable descriptions

Variable Name Description

Revenue Efficiency (REVEFF) Fare amount plus tip amount per second of the trip

Tip percent (TIPPCT) Tip Percent (TIPPCT) = tip amount / fare amount

Speed (SPEED) Calculated as trip distance / trip time in seconds (Miles Per Second),
then converted to miles per hour (MPH)

Rain (RAIN) Set to 1 for light, moderate, or heavy precipitation, 0 for no precipitation

Vendor (VENDOR) Vendor of the electronic payment machine in cab (shows fares/tips,

takes credit cards, etc.): 1 = VeriFone Transportation Systems (VTS),
or 0 = Mobile Knowledge Systems Inc. (CMT)

Holiday Set to 1 for major holidays in the USA, 0 otherwise

Weekend Set to 1 if the day of week is Saturday or Sunday for the trip, 0
otherwise

Passenger count (PASSCT) The number of passengers recorded on the fare

Driver Inefficiency (INEFFF) Trip distance / straight line air distance (flying from point A to point B,

without having to turn on streets). A score of one would be a perfectly
efficient route, and scores greater than one indicate increasingly
circuitous routing.

Data Filtering:
We used similar data filters as Haggag and Paci (2014) to minimize data entry/capture errors:
e We removed toll rides and flat fare trips (e.g., to/from airports).

e We dropped duplicate fares where all variables were the same or the same medallion and trip start were
identical, since that is impossible.

e We dropped fares where payment type was “No Charge" or "Dispute”

e We removed cash transactions because payments of cash almost all have no tip amount recorded by the
driver. Credit card payments auto collect the tip amount. 45% of entries were cash and were dropped as tip
amounts were needed for this study. As a note, prior research has looked at anchoring to raise tip amounts on
credit card transactions (Haggag and Paci, 2017). Further, at least one news article stated that drivers get
bigger tips when people use credit cards, perhaps because of the suggested amounts in the Haggag and Paci
(2017) system. However, we would suggest a possible sinister explanation; namely, taxi drivers may
underreport cash tips in an effort to avoid paying mandatory Federal income, Social Security, and Medicare
taxes (IRS, 2016). Given that over 99% of the cash transactions in our study had a zero tip while the average
credit card tip was approximately 17.6%, it seems possible that the difference is a recording error by the
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driver rather than a distinctly different group of passengers that use cash versus credit card. It seems that the
government could require taxi drivers to pay tax on tips for cash fares at the same percentage as the
automatically recorded tips on credit card fares.

We dropped fares where the trip time in seconds was zero as that must be a data error.

We dropped fares where the trip distance was zero as that must be a data error.

We eliminated fares if the tip amount was negative, which must be a data error.

We dropped fares where the latitude or longitude were impossible values (i.e., outside of the possible ranges
-90/90 and -180/180, respectively).

Any fare greater than the maximum calculated fare given distance and time was removed from the sample.
A maximum fare was calculated based on all possible surcharges plus the entire trip time as idle time plus
the entire mileage as units.

The main variables used in the analyses were winsorized at the 1% level to further remove any outliers.

Dependent Variables:

Our analyses test two basic models, each with unique dependent variables:

The first model uses Revenue Efficiency (REVEFF) as the dependent variable. REVEFF, calculated as the
fare amount plus tip amount per second of the trip, measures how effective a driver is at generating revenue
during a trip.

Tip Percent (TIPPCT) is the dependent variable in the second model. TIPPCT, measured as the tip amount /
fare amount, gauges the additional value the customer felt they received during a trip.

Independent Variables:

To test our hypotheses, we employ the following two independent variables:

Trip speed (SPEED) is the average speed of a trip in miles per hour (MPH).

Driver Inefficiency (INEFF) equals the trip distance / straight line air distance (flying from point A to point
B, without having to turn on streets). A score of one would be a perfectly efficient route, and scores greater
than one indicate increasingly circuitous routing. When selecting the use of the straight line air distance in
our measure, we assumed that, over a sample as large as the one in our study (n=262,224), on average the air
distance would be proportional to the most direct driving distance - particularly since our sample was drawn
from trips in Manhattan, which has a street system largely organized around a rectangular grid plan. To justify
this use of straight line air distance as a proxy for driving distance, we collected actual shortest path driving
distance data to compare with the straight line distance data used in our measure. To do this, we used a
Google Maps API that allows users to query actual driving distance data using a MS Excel macro (the actual
driving distance from Google Maps does consider one-way streets and other restrictions.) Unfortunately,
collecting full data for our sample proved impractical as the API limits the number of queries to 2,500 per
day. Therefore, we collected actual driving distance data for 5% of the trips used in our analysis, which were
randomly selected from our sample (i.e. 13,112 observations). We then tested the correlation between the
straight-line distances used in our study with the actual driving distances retrieved from Google Maps. We
found that these two measure have a correlation of 0.92, significant at the p<0.0001 level. We believe that
this high level of correlation supports the use of the straight line air distance as a proxy for the shortest driving
distance in our inefficiency measure.
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Controls:

The following variables are included in our models to control for other factors that might impact the revenue efficiency
and tip percentage:

e WEEKEND. Set to 1 for Saturday and Sunday, O otherwise. Weekend travelers may differ from week day
taxi cab users who may be more likely to be business people going to and from work.

e HOLIDAY. Set to 1 for major US holidays, 0 otherwise. Passenger traffic and customer demand on holidays
might differ from normal patterns.

e Passenger count (PASSCT). The number of passengers does not affect the fare based on miles or time, but
may take longer to load and unload, thus reducing the number of fares a driver can take per hour. Further,
tips may be higher if passengers want to impress co-riders, or lower if people feel that other passengers should
chip in more.

e VENDOR. Two vendors supply the in taxi payment systems; 1) VeriFone Transportation System (VTS), and
2) Mobile Knowledge Systems Inc. (CMT). Note that the CMT system is easier to fix if a passenger wants
to pay by credit card, but the driver already selected cash. As noted by the New York City TLC (NYC.gov
B, 2017), on the CMT system, there is a back button on the Driver Information Monitor (DIM), while on the
VTS system, the driver needs to enter a negotiated fare (Rate Code 5), and then allow the passenger to pay
by credit card. This minor difference may alter tips as a customer might be annoyed by the complexity on the
VTS system. A dummy VENDOR was created with 0 for CMT and 1 for VTS.

¢ Rain (RAIN). We expect that precipitation might impact the behaviors of both drivers and passengers. To
control for this possible effect, precipitation in inches was obtained from the Central Park observatory hourly
data (weathersource, 2016). RAIN is set to 1 if there is precipitation or snowfall, otherwise it is 0 if no
precipitation is present.

Model Specification:
Our main models to test, given that i is a specific fare, are:

REVEFFi=  fo + Su(WEEKENDi) + f2(HOLIDAY;) + S3(PASSCT;) + f«(VENDORY) + fis(SPEED;) + Ss(RAIN;)
+ B(INEFFy + &

TIPPCT, = Bo + Py(WEEKEND:) + Bo(HOLIDAYy) + B5(PASSCT;) + f«(VENDORy) + Bs(SPEED)) + fs(RAIN:)
+ BI(INEFFy + &

Table 2 lists the minimum, maximum, and mean values for some of the variables of interest. The mean speed of 17
MPH, calculated as the trip_distance / trip_time_in_sec (miles per second) and then converted to miles per hour
(MPH), is well below the 30 MPH speed limit present during 2013. Though the average speed is below the legal limit,
of the 262,224 trips in the sample, 11,976 (4.6%) had an average speed in excess of 30 MPH. Further, 221 of the 969
(22.8%) drivers in the dataset had at least one fare during the year with an average speed above 30 MPH.
Unfortunately, an exact determination of the number of trips during which a driver exceeded the speed limit is
impossible as the available data does not contain idle time, only total miles driven and total duration of the trip. Hence,
while the exact number cannot be calculated, the actual number of trips in which the driver exceeded 30 MPH for a
portion of the trip is certainly larger because the average speed calculation does not account for stops and idle time.
Combined, these data points suggest that speeding is in fact a real problem for New York taxi drivers and passengers.
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Table 2: Variable Statistics

Variable Name Min Max Mean
REVEFF (per second) 0.01 0.08 0.02
TIPPCT 0.00% 60.00% 17.59%
SPEED (MPH) 776 3625  17.62

Average Trip Time (Minutes) 9.00 33.00 18.57
Average Trip Distance (Miles)  2.47 11.51 5.44

4. Results

Our multiple regression results are shown in Table 3. Models (1) and (3) are the base models used to test our
hypotheses as specified in the in the prior section. Models (2) and (4), which are discussed in the next section, conduct
post-hoc tests of interaction effects of interest. Models (1) and (2) have an outcome variable of revenue efficiency
(REVEFF), and models (3) and (4) have an outcome variable of tip percent (TIPPCT). All of the models have
significant F-Statistic values, indicating that each of the regression models significantly predict the respective outcome
variables. To insure that multicollinearity among our sample is not influencing the results, we calculated the variance
inflation factor (VIF) score for each of the variables and found that the VIF scores range between 1.0 and 1.09, well
below the recommended threshold of 10.

From Model 1, we see that H1la and H1b are both supported (p<0.01); drivers make more revenue by speeding and
passengers tend to give lower tip percentages for speeding, thus the faster speed allows a driver to collect revenue
more quickly even though the tip portion of revenue may be lessened. The results of our second analysis (Model 3)
indicate support for both H2a and H2b — demonstrating that drivers make more revenue by not taking the most efficient
route with their fares and that passengers seem aware that they are being driven “the long way” and subsequently
lower their tip percent.
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Table 3: Regression results with outcomes of Revenue Efficiency (REVEFF) and Tip Percent (TIPPCT)

1) ) ©) (4)
VARIABLES REVEFF REVEFF TIPPCT TIPPCT
WEEKEND 6.61e-05%** 6.68e-05*** -0.00297*** -0.00297***
(1.13e-05) (1.13e-05) (0.000282) (0.000282)
HOLIDAY 0.000148*** 0.000147*** -0.000199 -0.000197
(2.42e-05) (2.41e-05) (0.000604) (0.000604)
PASSCT -2.58e-05*** -2.58e-05*** 0.000220** 0.000220**
(3.95e-06) (3.94e-06) (9.87e-05) (9.87e-05)
VENDOR -0.000155*** -0.000154*** -0.00460*** -0.00460***
(1.10e-05) (1.09e-05) (0.000274) (0.000274)
SPEED 0.000698*** (H1a) 0.000699*** -0.000552*** (H1b) -0.000553***
(8.75e-07) (8.75e-07) (2.19e-05) (2.19e-05)
RAIN -0.000154*** -0.000156*** -9.42e-05 -8.29e-05
(1.42e-05) (1.42e-05) (0.000355) (0.000355)
INEFF 0.000200*** (H2a) 0.000375*** -0.000380*** (H2b) -0.000676***
(2.55e-06) (8.26e-06) (6.37e-05) (0.000207)
SPEED x INEFF -6.07e-06*** 1.07e-05
(2.68e-07) (6.71e-06)
RAIN x INEFF 5.40e-05*** -0.000272
(7.49e-06) (0.000187)
Constant 0.00859*** 0.00859*** 0.189**= 0.189***
(1.85e-05) (1.84e-05) (0.000461) (0.000461)
Observations 262,224 262,224 262,224 262,224
F-Statistic 92,712%** 72,319%** 155.6*** 121.5%**
R-squared 0.712 0.713 0.004 0.004

Standard errors in parentheses
***p<0.01, ** p<0.05, * p<0.1

Note the high R-squared value for the outcome variable revenue efficiency (Models 1 and 2) in Table 3. This intimates
that a driver could reasonably predict their approximate revenue per hour based on what day of the week it was, if it
was a holiday, what electronic payment (VENDOR) they had installed, the weather (RAIN), and under their control,
how fast they drove and how inefficiently they travelled with customers. Conversely, tip percentage models (3 and 4)
have substantially lower R-squared values, which suggests that other unmeasured factors not included in our model
might impact the tip percentage. This may be related to socio-economic factors of the passengers that are not available
in the recorded fare data.

It is possible that the fixed fees of fares could increase the revenue efficiency per our hypothetical example in Section
3.3 where a driver with five one mile trips makes more than a driver making a single five mile trip because each fare
pays a fixed fee to enter the taxi. We ran a post hoc analysis with REVEFF as the outcome where we isolated short (5
miles or less) and long (greater than 5 miles) trips by creating a new dummy variable SHORT as shown in Table 4.
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Table 4: Regression results with outcome of Revenue Efficiency (REVEFF) for the full model from Table 3, but with
addition of a dummy variable SHORT (1: <=5 miles, 0: >5 miles fare distance)

@
VARIABLES REVEFF
WEEKEND -7.12e-05***
(1.08e-05)
HOLIDAY 2.23e-05
(2.30e-05)
PASSCT -2.08e-05***
(3.76€-06)
VENDOR -0.000150***
(1.04e-05)
SPEED 0.000794***
(1.02e-06)
RAIN -0.000100***
(1.35e-05)
INEFF 0.000375***
(7.88e-06)
SHORT 0.00198***
(1.23e-05)
SPEED x INEFF -6.14e-06***
(2.56e-07)
RAIN x INEFF 5.28e-05***
(7.15e-06)
Constant 0.00577***
(2.48e-05)
Observations 262,224
R-squared 0.739

Standard errors in parentheses
*** n<0.01, ** p<0.05, * p<0.1

As Table 4 shows, the revenue efficiency is enhanced by the driver taking shorter trips. This makes sense because
each new fare pays a fixed fee to enter the taxi. Asthe example noted in Section 3.3, a driver could make an additional
$10 ($2.50 x 4) all else being equal for having five one mile trips compared to a single five mile trip. If the driver can
keep the taxi full, multiple short distance fares could increase their revenue efficiency.

5. Discussion

This paper examines drivers’ economic incentives versus customers’ interests in efficiency and safety. We find that
drivers have an incentive (i.e. higher fares) to drive long distances and to do so at high speeds. Passenger tipping
behavior indicates that passengers do express a desire for efficiency and safety. However, passengers’ tips do not
provide a sufficiently strong disincentive to prevent drivers from taking longer than optimal routes and doing so at
higher speeds.

As an example, if the most efficient route for a trip has a distance of 5 miles, at 30 MPH that takes 10 minutes to
complete with no stops. The fare would be $2.50 flat fee plus 5 miles * (5 units * $0.50) for a total fee of $15. Assume
the happy passengers tip 18%, for a total revenue of $17.70. Conversely, an unethical driver could take them on a 7
mile trip to the same destination by going out of the way. If the driver sped at 42 MPH, the trip would still be 10
minutes with no stops. However, now the fare would be a $2.50 flat fee plus 7 miles * (5 units * $0.50) = $20.00.
Even if the passengers felt the drive was circuitous and did not leave a tip, this trip would still generate more revenue
for the taxi driver compared to the efficient route example ($20.00 versus $17.70).
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In addition to the interests of drivers and passengers, there is a societal interest in safety (for pedestrians, cyclists, and
property, as well as for motorists and their passengers) as well a societal interest in resource efficiency—especially
fuel conservation and pollution prevention. Unfortunately, customer tipping behavior along with speed limits and
other regulations is not enough to align taxi drivers’ behavior with these broader interests. An important part of the
incentive structure is the fare calculation, instituted by New York City, which allows drivers to make the most revenue
in a set period of time by speeding and taking inefficient routes. Regulatory measures might improve the situation.
However, a proposal in 2014 by the Mayor of New York to shut off meters when the driver is speeding was not well
received by taxi drivers and has not been implemented (Fasick et al., 2014). Another component of this Mayoral
proposal was to require more training for cab drivers who crash frequently.

In examining the results, the presence of rain, which was included as a control, does have an effect on the revenue
efficiency for the taxi driver. Looking at fares with precipitation versus without, we calculated a mean trip speed of
17.0 MPH with precipitation versus 17.7 MPH without precipitation. This lowering of speed is likely the cause of the
decreased revenue. However, our data does not show passengers to be altering tip percentage based on the presence
of precipitation. They may be happy to be riding in a taxi versus walking in the rain, but their tips do not reflect this.

To investigate this issue in more depth, we conducted a post-hoc analysis of driver behavior to see which variables
affect their speed (see Table 5). This showed that drivers tend to drive faster on weekends and holidays. Also of
interest, drivers speed up as they become more inefficient in their route. This makes intuitive sense as shown in the
example in Figure 1. A route out of the way (more inefficient) gives more revenue to the driver, but the passengers
are less likely to notice the extra mileage if the trip takes approximately the same time as the direct route. Thus, a
revenue maximizing strategy is for a taxi driver to drive inefficiently and quickly. However, the low R-squared value
in Table 5 suggests that other factors may contribute to the decision to drive faster.

Table 5: Post Hoc Speed Analysis

1)
VARIABLES Speed
WEEKEND 0.234***
(0.0252)
HOLIDAY 1.195%**
(0.0538)
PASSCT -0.000635
(0.00881)
VENDOR 0.0384
(0.0244)
RAIN -0.442%**
(0.0316)
INEFF 0.0494***
(0.00569)
Constant 17.52***
(0.0229)
Observations 262,224
F-Statistic 152.0%**
R-squared 0.003

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

As an additional post-hoc analysis, we examined if the combination of driving an inefficient route while speeding or
when it is raining impacts revenue and tips. To test this, we modified our original multiple regression models to include
interactions between drive inefficiency with both speed and rain. The first analysis, Model 3 in Table 3, shows a
significant interaction effect of speed and inefficiency on revenue efficiency. The negative coefficient indicates that
at a certain very high level of speed and inefficiency, revenue efficiency would start to decline. However, as presented
in Figure 2 (which shows the interaction effect for a speed range of plus and minus one standard deviation around the
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mean speed), the interaction coefficient is not very substantial despite its statistical significance - which means that a
driver will make more money by driving faster and less efficiently except in the most extreme of cases. Rain and
inefficiency also had a significant, but small interaction effect on revenue efficiency. Figure 3 shows the differences
when there was rain during the fare, and where there was no rain. Again, being more inefficient is best for the driver’s
revenue per hour. Whether it is raining does have a statistically significant effect on revenue, but practically speaking
it is a small effect. Regardless of the weather, drivers make more money by taking the longest route they can get away
with in most circumstances.

High

REVEFF

Low

Low SPEED High SPEED

g | oW INEFF = B =High INEFF

Figure 2: Plot of interaction between speed and inefficiency. More inefficient routes result in higher revenue
efficiency (REVEFF) regardless of speed. Low and High are calculated as mean +/- 1 std. dev for each of the
measures. For example, the x-axis covers speeds of 11.7 — 23.5 MPH.
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Figure 3: Plot of interaction between rain and inefficiency. Higher inefficiency results in more revenue efficiency for
the driver. Drivers taking efficient routes, have lower revenue efficiency in high rain conditions (likely due to the
reduced speed they end up driving in the rain). Low and High are calculated as mean +/- 1 std. dev for each of the
measures.

6. Limitations

A limitation of our study is that the data is from New York City taxi fares in the year 2013 only. We did not use data
from other cities, but we would expect that similar reward schemes would induce drivers in other cities and other years
to behave similarly.

A further limitation of the available data is that we cannot know the actual most efficient route for each fare. Roads
blocked and other factors cause the best route to change over time. As a proxy for the most efficient route we used the
point to point distance (as the crow flies). This would only be the actual most efficient route for a trip that went along
a straight line only. The most efficient route for most fares would be longer than the point to point distance. However,
all routes in our analysis were calculated with this proxy for efficient route so we believe that the relative distance
deviation from efficiency is still valuable in lending insights.

7. Conclusions and Recommendations

In summary, our analysis clearly shows that taxi drivers have in incentive to act against the interests of passengers and
of society and that taxi drivers do indeed behave in accordance with these incentives. We provide recommendations
that would change the incentive structure to align it with societal and customer interests.

Although the original proposal in 2014 to shut off meters when the driver was speeding was not implemented, we
believe this would be a positive step. The current speed limit in New York City is now 25 MPG, thus any taxi driver
exceeding that rate would be identified automatically by the electronic fare system. Sending them speeding tickets
would not be as effective as the immediate feedback of the meter turning off (and possibly some visual signal such as
a warning light or sound). Customers would be alerted to the excessive speed and the driver would not only be
forfeiting fare during the speeding incidents, but perhaps the tip might also decrease as passengers would be aware
that the driver was acting illegally and dangerously. This loss of fare and tip revenue would better align the goals of
the taxi driver with those of the city and passengers. The public’s voice must be heard along with taxi drivers’ —
surveys can find what community members think and what policies make sense. Ernst and Lambe (1983) designed
and implemented a survey of people using parking meters. A similar survey instrument could be developed to
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determine what the public’s feelings are on speeding taxis. If the community at large responds that safety is more
important than other factors, then taxi drivers wishing to maximize revenue by speeding might be discouraged to speed
with new fare/meter rules (e.g., shutting the meter off if taxi is speeding).

The issue of taxi driver taking inefficient routes could be mitigated. The optimal driving distance in miles could be
calculated via a routing software and GPS technology when the fare ends (the pickup and drop off latitude and
longitude are recorded by the taxi system automatically now). Perhaps the fare according to mileage could be
automatically lowered to a threshold. For example, if the miles driven were more than 10% over the calculated optimal
route, the fare based on mileage would be set to the minimum of the actual or 10% over. Idle time is not in the driver’s
interest and often outside their control (waiting at traffic lights), so fee units would still be added (for when the vehicle
was below 6 MPG). Kourtit et al. (2016) proposed the use of digital data systems for smart city policy. With the
existing taxi data used for this study and the real time in car tracking systems, better decisions can be made on public
transportation needs, and the state of taxi driver safety practices.
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