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A B S T R A C T   

Semi-arid and arid systems cover one third of the earth’s land surface, and are becoming increasingly drier, but 
existing datasets do not capture all of the types of water resources that sustain these systems. In semi-arid en
vironments, small surface water bodies and areas of mesic vegetation (wetlands, wet meadows, riparian zones) 
function as critical water resources. However, the most commonly-used maps of water resources are derived 
from the Landsat time series or single date aerial photographs, and are too coarse either spatially or temporally to 
effectively monitor water resource dynamics. In this study, we produced a Sentinel Fusion (SF) water resources 
product for a semi-arid mountainous region of the western United States, which includes monthly maps of both 
a) surface water and b) mesic vegetation at 10 m spatial resolution using freely available Earth observation data 
on an open access platform. We applied random forest classifiers to optical data from the Sentinel-2 time series, 
synthetic aperture radar (SAR) data from the Sentinel-1 time series, and topographic variables. We compared our 
SF product with three commonly used and publicly available datasets in the western U.S. We found that our 
surface water class contained fewer omission errors than a leading global surface water product in (94 % pro
ducer’s accuracy (PA) vs 84 %) and comparable user’s accuracy (UA) (91 % vs 97 %) with commission errors 
occurring largely in mixed water pixels. Our mesic vegetation class had up to 43 % higher PAs compared to the 
National Wetlands Inventory (NWI) estimates and up to 78 % higher UAs over the Sage Grouse Initiative mesic 
resources maps during the most critical part of the water year. We found that while inclusion of SAR data from 
the C-band Sentinel-1 sensor consistently improved estimates of water resources in each of the last four months of 
the 2021 water year when compared to optical-only + topographic variables, only in September did those im
provements lie outside of the 95 % confidence interval. With nine times finer spatial resolution and more 
frequent image collection, our SF maps characterize intra-annual dynamics of smaller water bodies (<30 m wide) 
and mesic vegetation integral to ecosystem functioning in semi-arid systems compared to leading Landsat- 
derived products. Further, our workflow is easily reproducible using freely available data on an open access 
platform, and can be adopted to help guide land use decisions related to water resources by farmers, ranchers, 
and conservationists in semi-arid environments.   

1. Introduction 

Uncertainty surrounding water availability is increasing due to 
climate change and rising demand for water due to population growth, 
with two-thirds of the global population experiencing freshwater scar
city at least one month per year (Mekonnen and Hoekstra, 2016). Rising 
temperatures and changes in precipitation patterns (Pepin and Lund
quist, 2008; Xia et al., 2017) have led to extended periods of drought 
(Morote et al., 2019) often resulting in devastating ecological and 

economic outcomes (Hoekstra et al., 2012; Yu et al., 2019). Warming 
climates lead to rain on snow events (McCabe et al., 2007) and earlier 
arrival of streamflows due to faster melting reduces late season water 
availability (Maurer et al., 2007). An improved understanding of how 
water availability is changing over time and space is a crucial step to
wards managing water resources effectively. 

Satellite imagery has revolutionized our ability to monitor water on 
the landscape and how it changes over time (Feng et al., 2016; Pekel 
et al., 2016; Yamazaki et al., 2015). Datasets derived from Landsat such 

* Corresponding author. 
E-mail address: nicholaskolarik@u.boisestate.edu (N.E. Kolarik).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2023.109965 
Received 20 September 2022; Received in revised form 19 January 2023; Accepted 28 January 2023   

mailto:nicholaskolarik@u.boisestate.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2023.109965
https://doi.org/10.1016/j.ecolind.2023.109965
https://doi.org/10.1016/j.ecolind.2023.109965
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2023.109965&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 147 (2023) 109965

2

as the Global Surface Water Explorer (GSWE) (Pekel et al., 2016) and the 
Global Land Analysis and Discovery (GLAD) laboratory global surface 
water dynamics maps (Pickens et al., 2020) exemplify the power of 
cloud computing and time series analysis. Both of these open-access 
datasets categorize pixels to describe both inter- and intra-annual 
changes in surface water integral to understanding our changing 
world and the associated effects on surface water. However, both 
products are inadequate for detecting bodies of water less than 30 m 
wide that are characteristic of semi-arid systems, and do not measure 
mesic vegetation indicative water availability. Another Landsat surface 
water product, the Dynamic Surface Water Extent (DSWE) (Jones, 2019, 
2015), developed by the United States Geological Survey, relies on 
spectral mixture analysis (SMA), a technique that describes each pixel as 
proportions of possible land cover classes (water, vegetation, soil). The 
DSWE then produces maps where pixels are categorized as open water 
(high and medium confidence) and partial surface water (conservative 
and aggressive estimates) (Jones, 2019). These 30 m data enable a better 
understanding of surface water dynamics that can inform management 
of water resources over longer time periods (1984-present). While these 
products are well suited to describe synoptic patterns of surface water 
extents and inundation in wetlands over lengthy time periods, they do 
not differentiate mesic vegetation of high ecological importance in semi- 
arid systems and other types of vegetation indicative of a lower func
tioning system. 

More than one third of the earth’s land surface is considered to be 
arid or semi-arid (Wickens, 1998). These biomes differ from other cli
matic zones in that mesic vegetation such as wet meadows, riparian 
zones, and wetlands are indicative of water availability. Mesic vegeta
tion is often referred to as “green groceries” by land managers, utilized 
as a food source by wildlife and livestock, and only available when water 
is present. Furthermore, mesic vegetation is more predominant on the 
landscape and more visible with satellite data. Including mesic vegeta
tion in a water monitoring product is critical to fully understanding the 
dynamics of water changes on the landscape. However, surface water 
and mesic vegetation are typically not both included in water resource 
inventories. Several products focus on mapping mesic vegetation inte
gral to semi-arid land functions, but typically omit surface water and do 
not describe intra-annual variation. The National Wetlands Inventory 
(NWI) represents a leading water resources inventory in the United 
States delineated from aerial images in varying seasons and years, and 
thus, does not capture intra- or inter-annual dynamics. The Inter
mountain West Joint Venture (IWJV) has made substantial advances in 
mesic vegetation mapping and focuses on water resources in the 
American West as they pertain to greater sage grouse and migratory 
waterfowl in the semi-arid Mountain West and deliver maps through 
non-profit agencies like the Sage Grouse Initiative (SGI) (Donnelly et al., 
2020; Donnelly et al., 2019, Donnelly et al., 2016). This group analyzes 
available images in the Landsat time series, but focuses on inter-annual 
variability in terms of habitats for species of concern. The most recent 
IWJV studies use SMA and thus describe proportions of water resources 
per pixel, but the previous products are delivered as 30 m classifications. 
The IWJV maps, while increasingly more robust with regards to water 
resources for migratory fowl, are not designed to describe intra-annual 
water resource dynamics necessary for monitoring water resources 
throughout the water year. 

The Sentinel constellation presents a way to improve water moni
toring in semi-arid systems with freely available data. Optical data 
collected from sensors aboard the Sentinel-2 satellites have been shown 
to effectively map water resources at higher resolutions (Du et al., 2016; 
Kaplan and Avdan, 2017; Pena-Regueiro et al., 2020). The Dynamic 
World (Brown et al., 2022) is an open-access tool that provides a land 
cover classification based on Sentinel optical imagery for a user- 
specified period of interest. The workflow uses all available Sentinel-2 
images within a given time-period to map nine basic land cover clas
ses, but lack the thematic resolution necessary for effective character
ization of mesic resources for semi-arid environments. For example, the 

Dynamic World water-specific classes are a) Water, and b) Flooded 
vegetation, which do not include mesic vegetation that is unflooded (e.g. 
riparian zones or mesic meadows). Concurrently, a synthetic aperture 
radar (SAR) aboard the Sentinel-1 constellation collects data with an 
active sensor unaffected by varying light and cloud conditions and has 
shown to be an effective alternative for mapping water resources, 
particularly in cloudy environments (Huang et al., 2018; Mayer et al., 
2021; Soman and Indu, 2022). Researchers are increasingly using active 
and passive datasets in tandem, and have found this approach useful for 
detection of not only surface water, but wetlands as well (Behnamian 
et al., 2017; Markert et al., 2018; Merchant et al., 2019). However, 
Sentinel data fusion techniques for mapping water resources have yet to 
be implemented in semi-arid regions with highly varying topography. 

With the advance of cloud computing and new satellite technologies, 
there is an unprecedented opportunity to improve water mapping in 
semi-arid systems. Until the recent introduction of Google Earth Engine 
(GEE) and other cloud computing platforms, steps for preprocessing, 
classification, and rigorous accuracy assessment over large swaths of 
space and time necessary for fully understanding literal ebbs and flows 
was logistically unachievable (Woodcock et al., 2020). Large time-series 
datasets like Landsat and Sentinel are now fully and freely available 
online. Access to these archives through GEE makes analysis of these 
large datasets more feasible than ever (Gorelick et al., 2017; Pekel et al., 
2016; Pickens et al., 2020). Newer open access data sources with higher 
spatial and temporal resolutions such as the Sentinel time series allow 
for greater detail in time series analyses (Rapinel et al., 2019), but no 
workflows or products have been developed specifically for monitoring 
water resources in aggregate using these data. 

The overarching goal of this study was to implement a workflow for 
automated mapping of water resources specifically for semi-arid systems 
for the duration of the complete Sentinel-2A and − 2B time series (2017- 
present). We developed our workflow in a semi-arid region of the 
western U.S. with a wide range of topographic, vegetation, and land use 
conditions with three main objectives: 1) Map both water and mesic 
vegetation in a single product and quantify intra-annual variability of 
surface water and mesic vegetation in a water limited setting. 2) 
Quantify the value of SAR data when fused with optical and topographic 
variables for estimating abundance of water resources. 3) Demonstrate 
the value of increased spatial and temporal resolution through direct 
comparisons with the publicly available estimates of surface water and 
mesic vegetation produced by Landsat products (Donnelly et al., 2016; 
Pickens et al., 2020). 

2. Study area 

Much of the western United States is characterized by mountainous 
semi-arid systems that rely on snowpack for water delivery in the spring 
and summer months. In these semi-arid mountain systems, uncertainty 
surrounding surface water, riparian zones, wet meadows and wetlands 
(hereafter water resources) is growing in response to intensifying land 
uses, population growth and climate-induced environmental changes 
(Abatzoglou et al., 2017). Within the western U.S., the High Divide is an 
ideal study area for investigation of water resource variability due to 
varying land uses, complex topography, and ubiquity of need for ad
aptations to increase resilience to climatic uncertainty (Fig. 1). The 30 
year normal precipitation and snowmelt received in the High Divide is 
~ 543 mm, reaching its peak in June at ~ 69 mm and its lowest in 
August just below 30 mm (Supplemental Information (SI), Appendix 1 
(A1), Figure S1), with most precipitation falling as snow in winter 
months and released as the days become warmer. Minimum (maximum) 
normal temperatures range from − 11 (-1) in December to 8 (26) degrees 
Celsius in July (Daly and Bryant, 2013) (A1, Figures S2, S3). This region 
of eastern Idaho and western Montana depends heavily on surface water 
and mesic vegetation for sustaining human and wildlife populations. 
Coexistence with the wildlife that migrate through the High Divide be
tween relatively intact ecosystems (Greater Yellowstone, Crown of the 
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Continent, Salmon-Selway) is paramount for conservation and 
ecotourism. Greater understanding of the extent and dynamics of surface 
water and mesic vegetation will enable better conservation imple
mentation and insights into the implications of a changing climate on 
water availability in this multifaceted mosaic of land cover and land use. 

Changes in land use in the High Divide coupled with population 
growth results in exceedingly high water demands for direct consump
tion and agriculture (Jones et al., 2019). Exurban development is more 
likely to occur at the expense of farmland than any other land use 
(Ahmed and Jackson-Smith, 2019) leading to agricultural intensifica
tion. Intensifying agricultural practices often means increasing water- 
use efficiency, which can result in decreased returns of water to the 
hydrological system through groundwater and surface water exchange 
(Van Kirk et al., 2019). Beyond agricultural impacts, wetland areas are 
drained and channels straightened to accommodate exurban develop
ment, altering local hydrology (Johnston, 1994). These losses collec
tively increase the efficiency of water movement through the system and 
reduce areas of high ecological importance to salmonids, sage grouse, 
and other species at the center of conservation discourse (Davee et al., 
2019; Donnelly et al., 2016; Gibson and Olden, 2014). 

Management efforts recognize the trade-off associated with 
increased hydraulic efficiency and aim to restore incised channels and 
concomitant ecosystem functions (Pollock et al., 2014). These efforts 

support a burgeoning ecotourism industry that relies on healthy eco
systems for activities such as angling, hunting, and wildlife tourism. 
Conservation efforts aimed to protect iconic salmonid species that rely 
on deepwater refugia (Bouwes et al., 2016), greater sage grouse, an 
umbrella species that relies on areas of mesic vegetation for nesting and 
rearing young (Donnelly et al., 2016), and amphibians that require 
wetland habitats (Arkle and Pilliod, 2015) all focus on slowing water 
movement through the system, increasing soil water storage, and 
maximizing water resource availability during summer months when 
water is most scarce. 

3. Materials and methods 

3.1. Data inputs 

3.1.1. Optical satellite imagery 
To include as many observations as possible, we used top of atmo

sphere level 1-C Sentinel-2 data, as water and land are separable in these 
data without risking the inclusion of possible bias or loss of information 
from conversion to surface reflectance or normalization (Pekel et al., 
2016; Pickens et al., 2020). These images include four bands (blue, 
green, red, near infrared (NIR)) delivered at 10 m resolution, and six 
bands delivered at 20 m resolution (three red edge bands, a narrow NIR 

Fig. 1. (A) The location of the High Divide. (B) Locations of sampled and test images, archetype sites, and major water bodies. (C–F) PlanetScope (A1 Table S5) false 
color composites (NIR, red, green) of archetype sites (reservoir (C), spring-fed (D), riparian (E), small-stream (F)). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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band, and two short-wave infrared bands (SWIR)) (Table S1). We also 
calculated common normalized difference spectral indices useful for 
detection of productive vegetation and surface water including the 
Normalized Difference Vegetation Index (NDVI) (for all red edge and 
NIR bands) (Tucker, 1979) for detection of photosynthetically active 
mesic vegetation, Normalized Difference Water Index (NDWI) (McFee
ters, 1996) and Modified Normalized Difference Water Index (MNDWI) 
(Xu, 2006) for surface water. We restricted our analysis to images that 
contained less than 50 % clouds, screened by using image metadata. We 
applied the s2cloudless dataset to mask any clouds that were present in 
remaining images (Zupanc, 2020). We also masked areas within our 
study region that contain lava flows, as these dark regions are often a 
source of confusion for some water classifiers (Pekel et al., 2016) 
(Fig. 2). 

3.1.2. Synthetic aperture radar satellite imagery 
We used the ground range detected (GRD) C-band synthetic aperture 

radar (SAR) data collected by the Sentinel-1 platform. GRD data are 

radiometrically and topographically corrected using the Sentinel-1 
Toolbox (European Space Agency, 2020) and delivered as an analysis 
ready product. We used GRD images derived from VV and VH polari
zations where available. VV and VH polarizations are useful for 
measuring properties of soil moisture (Kornelsen and Coulibaly, 2013) 
and vegetation density (Patel et al., 2006) respectively. HH and HV 
polarizations are also collected by Sentinel-1, but mainly in polar re
gions for sea-ice detection and are not applicable for this work. We used 
images exclusively from ascending orbits of the Sentinel-1 satellite over 
the High Divide. There were too many lengthy data gaps in the 
descending dataset as parts of our study area are only partially covered 
with descending scenes during eclipse season (May – September) as not 
foreseen by the present order geometry (Copernicus, personal commu
nication) (A1, Figure S4). Missing acquisitions in the ascending paths 
during the eclipse season prior to 2019 also left considerable gaps in the 
time series and thus, we could not produce a continuous time series 
classification prior to 2019 for all areas in our study area. 

Researchers often choose to smooth SAR data with a spatial filter due 

Fig. 2. Workflow for classification and accuracy assessment of surface water and mesic vegetation in semi-arid ecosystems.  
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to inherent noise associated with SAR backscatter (Behnamian et al., 
2017; Hird et al., 2017; Mahdianpari et al., 2019). However, as we were 
interested in maintaining the spatial integrity of these data, we 
employed a space for time substitution. This substitution implies that 
instead of a spatial filter, we used mean values of available images 
during each month to smooth the data with the goal of filtering out noise 
without sacrificing spatial resolution. Spatial filtering, while often 
employed, is acknowledged to underestimate extents of water bodies 
near edges (Behnamian et al., 2017) and could result in total omission of 
the small tributaries targeted in this study. 

3.1.3. Topographic variables 
Topography is a first order determinant of hydrological processes 

and we incorporate these data to account for temporally invariant pro
cesses that contribute to water allocation. For example, slope dictates 
direction of flow and duration of water presence and aspect is a deter
minant of soil moisture, and thus indicative of areas with higher po
tential for surface water and mesic vegetation (Western et al., 1999). We 
produced values for aspect and slope through built-in GEE functions 
using the 1/3 arc second USGS National Elevation Dataset (NED). We also 
calculated a topographic wetness index (TWI) (equation 1) where α is 
the upslope contributing area and tanβ is the local grade known to be a 
good predictor of wetlands and mesic vegetation (Hird et al., 2017). We 
used the flow accumulation tool with a flow direction raster in ArcMap 
10.4.1 to calculate α (similar tools exist in open-source GIS platforms 
such as QGIS) and produced a TWI map via the GEE cloud computing 
platform. 

TWI = ln(α/tanβ) (1). 
We also included a wetland probability layer from (Hansen et al., 

2022). In that study they created a global wetland map derived from 
Landsat metrics as well as hydrologic metrics following the methods of 
Bwangoy et al., (2010) and Margono et al., (2014). The reflectance 
metrics were statistical subsets of Landsat observations. The hydrologic 
metrics were derived from the elevation collected by SRTM and of 
greatest importance were layers representing the relative elevation of 
each pixel within various catchment sizes. This layer represents the 
modeled probability of wetland formations at 30 m. 

3.1.4. Training data 
We used five distinct classes to distinguish water resources from 

other areas: water, shadow, snow/ice, upland, and mesic vegetation. We 
manually delineated polygons for each class to encompass all types of 
each class in 29 randomly selected images. For example, the surface 
water class included rivers, lakes, retention ponds, reservoirs, etc. as 
they were available in the training images. Similarly, the mesic vege
tation class included sampled areas of wooded riparian zones, irrigated 
agriculture, seasonal wetlands, and wet meadows. We iteratively added 
training examples of initially problematic areas in the images (i.e. 
shallow water, small channels) until these areas were adequately rep
resented. Our final training area set consisted of more than 1.3 million 
pixels in the sample pool. We extracted point values from the image 
stacks using 29 Sentinel-2 images randomly selected from April-October 
of 2017–2020 (A1, Table S2), the associated monthly means of the SAR 
backscatter, and the topographic variables. We used these months to 
extend beyond the typical growing season with the intent of reducing 
the classifier’s sensitivity to anomalous conditions. 

3.1.5. Validation data 
We used an equal allocation stratified random sampling design to 

validate our classifier for each of the growing season months (June - 
September) of 2021, a year that we did not include in the training 
sample pool. Our rationale for equal allocation stratification was to in
crease sampling rates for classes of interest that are relatively rare in the 
study region (e.g. surface water, mesic vegetation) to increase precision 
in the accuracy assessment compared to a simple random sampling 
design (Stehman and Foody, 2019). This approach also ensures each 

pixel with data during our period of interest has a non-zero selection 
probability, and should provide a reasonable dataset to serve as refer
ence data for accuracy assessment (Olofsson et al., 2014). We defined 
the strata in a hierarchical approach using the maps we produced with 
all variables included. Each stratum corresponds to a map class and was 
defined as all pixels with presence of that class in any of the four 
monthly maps by first identifying surface water pixels, and then mesic 
pixels within the remaining set, then shadow and snow accordingly. All 
remaining pixels with valid data were assigned to the upland land 
stratum. We then randomly selected 100 pixels per stratum, resulting in 
a total sample size of 500 (Table 1). We used the same 500 pixels for 
each month, randomly distributed throughout the entire study area, and 
recorded the land cover class observed in each, resulting in 2,000 total 
validation observations (500/month). As suggested in Stehman and 
Foody (2019), the number of reference pixels we chose resulted in suf
ficiently narrow confidence intervals for overall and user’s accuracies to 
be useful for mapping and monitoring surface water and mesic vegeta
tion extents. For each of the 500 pixels, the lead author used expert 
knowledge and familiarity with the study area to create a monthly 
reference label of surface water, mesic vegetation, shadow, snow, or 
other land via visual inspection of a monthly composite assembled from 
Sentinel-2 images (examples shown in A1 Fig. S5, S6). In our study area, 
these land covers have high separability in Sentinel imagery, in partic
ular in the NIR, red, and green bands, and thus are highly distinguish
able using a false color composite and in-scene context. In rare instances 
where a pixel could not be clearly identified in the monthly composite, 
we chose to label the nearest identifiable pixel. 

3.2. Classification 

We accessed all data (Sentinel optical and SAR time series, and NED) 
and produced a Random Forest (RF) classifier in GEE. RF is a nonpara
metric machine learning approach routinely used for land cover classi
fication, and well suited for multi-class problems where other similar 
classifiers (i.e. support vector machine) are intrinsically-two-class 
(Breiman, 2001; Nguyen et al., 2020; Pal, 2005). Further, RFs have 
been successfully implemented for wetland classification, making RF an 
obvious choice (Berhane et al., 2018; Hird et al., 2017). From the 
training samples collected across the 29 images throughout the time 
series, we randomly sampled 40,000 pixels to represent each class and 
train the RF classifier. The rationale behind this equally allocated sam
pling design is to boost sampling rates of underrepresented classes 
(surface water and mesic vegetation) to reduce omission bias while 
capturing samples randomly over the spatial and temporal domains of 
our dataset (Jin et al., 2014). We then classified all image stacks and 
produced monthly maps using the mode pixel value for each month. 

We tuned the number of variables per split parameter for the RF 
using the tuneRF function in the randomForest package in R v3.6.3 (Liaw 
and Wiener, 2002). Regardless of the number of variables for the model 
we tuned, the optimal value was consistently equal to the square root of 
the number of features in the model, consistent with studies using RF for 
remote sensing applications (Belgiu and Drăguţ, 2016), and the default 
parameter in GEE (A1, Figure S7). We also tested for the optimal number 
of trees in the RF (50, 200, 500), which did not reveal meaningful dif
ferences (A1, Table S3A and B). The final RF we implemented used 50 

Table 1 
Counts of reference pixels as derived from stratified random samples from 
monthly SF maps.   

Upland Mesic Water Snow Shadow Total 

June 225 80 96 96 3 500 
July 325 78 91 2 4 500 
August 343 62 85 0 10 500 
September 336 46 81 0 37 500 
Total 1229 266 353 98 54   
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trees as there were only small improvements in classification results 
with a higher number of trees and computational times were consider
ably lower with a smaller forest. 

We isolated classes of interest (surface water, mesic vegetation) in RF 
models to determine important variables for separability of each class. 
Using this approach, we distinguish which variables (A1, Table S1) are 
most useful for each respective class through variable importance plots 
and describe the relative importance of each data source as the mean 
decrease in Gini importance (Han et al., 2016). 

3.3. Accuracy assessment 

To assess the accuracy of the SF classifier, we evaluated the monthly 
maps of the entire study region for June through September of 2021 with 
a probability-based sample of reference data (see section 3.1.5). The 
sample locations were selected using a stratified random sampling 
design as described in section 3.1.5 to reduce the uncertainty in classes 
of interest. We calculated overall accuracy (OA), producer’s accuracy 
(PA), and user’s accuracy (UA) as well as estimated areas using equa
tions 1–8 and equation 10 as found in Olofsson et al. (2014). We used 
area adjusted producer’s accuracies (PA) to estimate the omission bias of 
the classifiers for a given class (sensitivity), and user’s accuracies (UA) to 
estimate commission biases (specificity), as well as associate variance 
estimators to calculate 95 % confidence intervals. 

3.4. Comparisons with surface water and mesic vegetation datasets 

To provide an objective comparison of the accuracy of our SF product 
to the accuracy of other leading datasets, we conducted an additional 
accuracy assessment with the following steps. First, we chose four 
archetype sites to represent common water resource types in our study 
area. Second, we manually delineated areas of water (mesic) and land 
(other) of PlanetScope imagery to represent a high-resolution indepen
dent dataset for comparison with other products. Third, we chose three 
leading datasets meant to describe spatial extents and locations of water 
resources. Finally, we conducted formal accuracy assessments between 
all the products and PlanetScope classifications. 

3.4.1. Archetype sites 
We chose four sites to serve as representatives of typical water re

sources in the western U.S. to conduct comparisons with existing water 
mapping products; three for surface water monitoring, and a fourth to 
focus on mesic vegetation extents in a small-stream system. First, res
ervoirs are commonly built to store water from early season snowmelt to 
be delivered throughout the growing season. We used Mackay reservoir 
in central Idaho as our reservoir site (Fig. 1C). Second, we focus on an 
anomalous spring-fed area named Thousand Springs Creek near Dickey, 
Idaho (i.e. spring-fed site; Fig. 1D). Small water sources such as Thou
sand Springs Creek are integral to ecological functioning. For example, 
as wildlife migrate throughout the region they actively seek these water 
resources. Third, we investigated a portion of the Big Lost River drainage 
(i.e. riparian site; Fig. 1E) upstream of the Mackay reservoir. Relatively 
small riparian systems such as the Big Lost are typical in drainages 
throughout the High Divide and the Mountain West and represent 
important refugia for wildlife, forage for livestock, and water sources 
more generally. 

Fourth, for mesic vegetation monitoring, we chose to focus on a site 
where the stream width was typically smaller than the width of a 
Sentinel pixel (10-m) but the riparian zone with mesic vegetation can be 
used as a proxy for water presence and abundance. We chose to use the 
confluence of Hailey, Sheep, and Baugh Creeks east of Ketchum, ID (i.e. 
small-stream site; Fig. 1F), a site where some low-tech stream restora
tion projects are ongoing, typical of those occurring elsewhere in the 
High Divide in need of consistent monitoring efforts (Silverman et al., 
2019). 

3.4.2. PlanetScope reference data 
We used monthly maps described in section 3.2 to produce binary 

water/land (or mesic/other) maps and make quantitative discrete class 
comparisons between products. For reference datasets, we trained RF 
classifiers using cloud-free, single date PlanetScope images at our 
archetype sites to quantitatively compare our Sentinel Fusion (SF) out
puts with the leading products, with the rationale that water resources 
are relatively stable at the monthly time step (Pickens et al., 2020). We 
iteratively added training polygons until we considered our reference 
maps to be as high quality as if we had digitized these relatively small 
areas by hand. We then resampled these reference maps to the Sentinel 
grid, and used a 50 % threshold for assigning pixels to water and land 
classes (or mesic and other) prior to comparison. At archetypical surface 
water sites (reservoir, spring-fed, riparian sites) we conducted our 
comparisons in July 2019 (wet year) and July 2021 (dry year). For mesic 
vegetation (small-stream site), we conducted comparisons using repre
sentative PlanetScope images for each of the last three months of the 
water year (July, August, September) in 2019 and 2021 (Tables S5 and 
S6) to highlight the dynamic nature of mesic vegetation extents and the 
intra-annual information gained using the SF product. 

3.4.3. Comparison with leading datasets 
We compared our SF product with three leading publicly available 

water monitoring products (Table 2). Though these products are not 
derived from the same source imagery, our goal is to compare our results 
with leading products used for monitoring and assessment of water re
sources and their management. 

Surface water: We compared the SF outputs in July 2019 and July 
2021 to those of the Global Land Analysis and Discovery (GLAD) labo
ratory Global Surface Water Dynamics product (Pickens et al., 2020) at 
the reservoir, spring-fed, and riparian sites. These months able us to 
assess accuracy both within the training period (2019) and beyond 
(2021), as well as wet (2019) vs dry (2021) years. With the goal of 
mapping surface water dynamics for the entire globe from 2000 to 
present, the GLAD product represents a leading surface water product 
for capturing temporal changes. We used a threshold of 50 % to create 
binary monthly maps directly comparable to SF monthly maps. 

Mesic vegetation: We conducted the mesic vegetation map compar
isons at the small-stream site in the last three months of the 2019 and 
2021 water years (July, August, and September). We compared the SF 
mesic vegetation extents to the National Wetlands Inventory (NWI). 
Though highly spatially detailed (minimum mapping unit of 0.2 ha 
(Subcommittee, FGDC Wetlands, 2009)), the NWI contains no time se
ries information or any indicator of dynamism. We also used the IWJV 
Sage Grouse Initiative (SGI) mesic resources dataset for comparison of 
mesic vegetation extents. The SGI polygons are aggregated from Landsat 
images (30 m pixels) and are described each year from 1984 to 2017 
using the annual maximum NDVI value (Donnelly et al., 2016) (accessed 
here: https://map.sagegrouseinitiative.com/ecosystem/mesic-res 
ources). While the SGI dataset describes inter-annual variation in 
mesic vegetation quality for pre-determined areas, it does not capture 
intra-annual variability, or any resources beyond the static polygons 
initially determined as mesic resources. 

4. Results 

We applied our classifier to 310 image stacks in June, 305 in July, 
272 in August, and 293 in September to produce monthly maps in our 
study area in 2021. The most important variable for the surface water 
class was the wetland probability layer, followed by the VV polarization 
from ascending C-band Sentinel-1 SAR data, and slope (Fig. 3A). Slope 
was the most important variable for distinguishing mesic vegetation 
from all other land covers, followed closely by the wetland probability 
layer (Fig. 3B). 
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4.1. Intra-annual variability of surface water and mesic vegetation 

Our SF product distinguished all classes well, with overall accuracies 
(OAs) ranging from 95 % (±2 %) to 98 % (±1 %) (Table 3). The lowest 
producer’s accuracy (PA) for the water class was 64 % (±32 %) in July 
and the highest PA was 100 % (±0 %) in September. User’s Accuracies 
(UAs) for the water class were generally high, ranging from 99 % (±2 %) 
in September, to 100 % (±0 %) in July. Mesic vegetation PAs range from 
79 % (±11 %) in August to 94 % (±5 %) in June and UAs range from 85 
% (±8 %) in June to 95 % (±7 %) in September. 

Our area estimations for each class demonstrate the rarity of water 
resources in our study area (Table 3), with surface water ranging from 
the lowest areal coverage of 1,991 km2 (±48 km2) at the end of the 
water year in September (0.70 % of the study area) and the peak of 
3,184 km2 (±1,588 km2) in July (1 % of the study area) (Table 3). Mesic 

vegetation steadily decreased throughout the growing season, with the 
peak of 57,558 km2 (±5,736 km2) estimated in June (20 % of the study 
area) reduced to 22,593 km2 (±3,562 km2) in September (8 % of study 
area). These estimates suggest that all other cover types are estimated as 
approximately 3.7 times as abundant as water resources in aggregate 
(surface water and mesic classes) in June, 4.8 times as abundant in July, 
7.5 times as abundant in August, and 10.6 times so in September, 
indicating a continued decline of water resources from late spring to 
early fall. 

We also directly compared our estimates to the GLAD surface water 
dynamics product in 2021, using a 50 % threshold to make binary maps 
from the GLAD monthly product. We then used a pixel counting 
approach to produce the GLAD estimate. Table 4 shows that using the SF 
approach results in higher estimates of surface water in each month. 

Table 2 
Sentinel Fusion (bold) and comparison product details for Sentinel Fusion (SF), Global Land Analysis and Discovery dynamic surface water (GLAD), National Wetlands 
Inventory (NWI) and Sage Grouse Initiative mesic resources maps (SGI).  

Dataset Source data Time series Automated Inter-annual Intra-annual Thematic resolution Spatial resolution 
SF Sentinel 2017 - present Yes Yes Yes Mesic, water, upland 10 m 

GLAD Landsat 1999 - present Yes Yes Yes Water 30 m 
NWI aerial photos; surveys No No No No Wetland types Polygons greater than 0.2 ha 
SGI Landsat 1984–2017 Yes Yes No Mesic Polygons derived from 30 m pixels  

Fig. 3. Variable importance as measured by mean decrease in Gini importance (MDG) for the top ten covariates for A) surface water and B) mesic vegetation.  

Table 3 
Area estimations and area adjusted accuracy metrics with 95% confidence intervals for the full Sentinel Fusion (SF) classifier, and the classifier with the SAR variables 
omitted. We omit the snow and shadow classes here due to low sample sizes in late and early months respectively that lead to unreliable area estimates and accuracy 
metrics.        

SF classifier      SAR omitted    
Month  km2 km2± PA PA± UA UA± OA OA± PA PA± UA UA± OA OA±

Upland 190,960 10,352 95.8 2.23 85.54 4.38 85.5 3.72 96.6 2.08 86.06 4.29 86.2 3.65 
June Mesic 58,399 6148 92.7 5.96 84.27 7.61   92.8 5.86 85.23 7.46    

Water 2862 1415 74.8 37 98.96 2.04   57.5 34 98.95 2.06     

Upland 231,142 5997 97.5 1.42 96.04 2.11 94.3 2.17 97.2 1.52 95.15 2.32 93.3 2.35 
July Mesic 46,222 5521 86.1 7.81 85.19 7.78   82.1 8.32 83.54 8.23    

Water 3184 1588 63.8 31.8 100 0   63.2 32 100 0     

Upland 245,276 5464 98.9 0.64 95.98 2.07 95.3 1.95 98.9 0.71 96.25 2 95.4 1.93 
Aug Mesic 31,249 4499 79.1 10.7 94.64 5.95   78.4 11 91.38 7.29    

Water 2431 915 80.8 30.4 98.82 2.31   68.6 29.6 98.81 2.33     

Upland 242,343 5952 97.3 1.07 95.78 2.17 94 2.1 97.4 1.08 94.94 2.35 93.2 2.26 
Sep Mesic 22,850 3751 80.5 12.5 95.24 6.52   68.8 12.7 92.11 8.69    

Water 1991 48 100 0 98.78 2.39   79.7 31.8 98.77 2.42    
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4.2. Quantify the value of SAR data when fused with optical and 
topographic variables for estimating abundance of water resources 

When including SAR with the optical and topographic covariates, we 
found negligible commission differences for all classes, in particular the 
surface water and mesic vegetation classes of interest, but greater 
omission of surface water. The classifier that omits SAR data has high 
UAs for surface water ranging from 99 % (±2 %) to 100 % (±0 %), which 
are all within 0.01 % of the respective UAs from the maps including SAR 
data (Table 3). The mesic vegetation class monthly UAs are lower, but 
still high, ranging from 84 % (±8 %) to 92 % (±9 %) and are all within 
3.6 % of those with SAR included. For the water class, excluding SAR 
results in a PAs ranging from 58 % (±34 %) to 80 % (±32 %), with 
monthly decreases of 17 %, 1 %, 12 %, and 20 %, respectively. These 
differences were often only due to the omission of one pixel (A2, 
Tables S1–S8), but amplified due to the relatively low map proportions 
of the water class. 

For the mesic vegetation class, exclusion of SAR results in PAs 
ranging from 71 % (±12 %) to 94 % (±5 %) which are all with 4 % 
except September which was 11 % lower (Table 3). 

4.3. Impacts of increased spatial and temporal resolution 

In this section, we report the results of the product comparisons for 
four archetype sites with leading products. We have included detailed 
results for 2021 (dry year) in the main text as this serves as our test 
period, while results for 2019 (wet year, during the training period) can 
be found in the supplement. 

4.3.1. Surface water 
The SF product had higher PA than the GLAD product at the four 

archetypal sites for July 2021 (Fig. 4; A2 Tables S9–S12). The riparian 
site, in particular, demonstrates how the higher spatial resolution of the 
SF product is better suited for monitoring surface water in water limited 
environments where small water bodies are critical to landscape func
tion. At the riparian site (Big Lost River) (Fig. 5E, F), the SF product 
omitted 72 % of water pixels (28 % PA; Fig. 4; A2 Table S11), but the 
GLAD product failed to detect any water pixels (0 % PA, Fig. 4; A2 
Table S11). The SF product detected water in stream at a much higher 
rate, despite the small width of the channel at the riparian site (Fig. 5E 
and F). 

In Fig. 5A, the difference maps reveal relatively similar omission and 
commission rates the reservoir site where the PA of the surface water 
class is 88 % compared to 97 % and UA of 97 % and 91 % for GLAD and 
SF, respectively (Fig. 4; A2 Table S9). Omission rates at the spring-fed 
site are slightly lower in the SF output, with 66 % PA compared to 59 
% using the GLAD product. GLAD does overestimate water at this site at 
a higher rate, with a UA of 68 % versus 96 % using the SF workflow 
(Figs. 4, 5C, D; A2 Table S11). We see similar patterns in 2019 (wet year; 
A2, Figure S1, Tables S13–S16), with the caveat that we found higher 
rates of commission and omission using the GLAD dataset, resulting in 
lower accuracy metrics when compared to the SF maps. 

4.3.2. Mesic vegetation 
At the small stream site in 2021, we observed highest overall 

agreement with the reference maps for all three months (July, August, 
September) using the SF product (98 %, 97 %, 97 % OAs; Fig. 6; A2 
Table S17), striking a balance between omission and commission errors. 
The NWI had the lowest PAs among all products for July and August at 
the small-stream site (41 %, 47 % PAs; Fig. 6; A2 Table S19), with SF 
showing a slightly lower PA (51 %) than the NWI (55 %) in September. 
Conversely, the SGI polygons consistently overestimated the mesic 
vegetation extents (29 %, 24 %, 17 % UAs; Fig. 6; A2 Table S18). Fig. 7 
helps to highlight the spatial locations of underestimations (omission 
errors) of mesic vegetation using the NWI, and the overestimations 
(commission errors) using the SGI dataset. 

We highlight the way we can use the SF workflow to monitor mesic 
vegetation dynamics throughout the growing season in Fig. 7. While 
static datasets like the NWI and SGI remain constant, the SF maps show 

Table 4 
Monthly surface water area estimates (km2) for SF and GLAD in 2021.  

Surface Water Estimate June July August September 

SF 2,862 3,184 2,431 1,991 
GLAD 1,540 1,460 1,471 1,670  

Fig. 4. Overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) of the SF surface water and GLAD datasets at each of the three surface water 
archetype sites and the aggregate accuracy metrics for July 2021. Tabular results can be viewed in Tables A2 S9–S12. 
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Fig. 5. Three examples (first, second, and third archetype sites) of differences between the Sentinel Fusion (SF) surface water and GLAD monthly products in July 
2021. We subtracted GLAD monthly estimations from SF monthly maps, so yellow tones indicate higher rates of detection of surface water by GLAD and pink tones 
SF. Panels A and B are the reservoir site (Mackay Reservoir), panels C and D the spring-fed site (Thousand Springs Creek), and panels E and F the riparian site (Big 
Lost River). For reference, we included PlanetScope images for each site (A1, Table S5) beneath the difference layers. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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varying mesic vegetation extents with the spring pulse early in the 
season, stabilization with baseflow in summer months, and subsequent 
senescence at the end of the growing season as indicated by the false 
color PlanetScope composites in Fig. 7. Our quantitative comparisons 
show the consistency of SF to communicate accurate intra-seasonal 
dynamics compared to the other products (Fig. 6; A2 Tables S17–S19). 
Where the NWI omits a lot of pixels from the mesic class early in the 
summer and gets increasingly more accurate as the dry season pro
gresses (41 %, 47 %, 55 % PAs; Fig. 6; A2 Table S19), SF shows a higher 
omission rate as the season progresses, but PA remains higher than the 
NWI in July and August, but slightly lower in September (84 %, 59 %, 
51 %; Fig. 6; A2 Table S17). On the other hand, SF maps consistently 
show highest UAs throughout the end of the water year (93 %, 96 %, 95 
%; Fig. 6; A2 Table S17), where SGI maps continue to commit more 
pixels to the mesic class as the summer gets drier (29 %, 24 %, 17 % UAs; 
Fig. 6; A2 Table S18). We see a similar pattern in 2019, where SF omits 
fewer pixels than the NWI, and commits fewer than SGI in all three 
months (A2 Fig. S2; A2 Tables S20–S22). 

These comparisons show two important advances of the SF product 
over existing mesic vegetation monitoring products. First, existing mesic 
vegetation monitoring maps are static and thus do not capture intra- 
annual changes, but in semi-arid environments rapid seasonal changes 
are characteristic, and a critical part of monitoring. Second, the NWI 
generally substantially underestimates mesic vegetation, whereas the 
SGI product substantially overestimates mesic vegetation (Fig. 7). The 
SF product represents a suitable balance between commission and 
omission errors. Further, products that measure only surface water 
would totally omit this resource area and would be inadequate for 
mapping critical sustaining resources in this system. 

5. Discussion 

5.1. Intra-annual variability of surface water and mesic vegetation extents 

The workflow we document in this study using open access data in 
GEE is robust enough to effectively estimate water resource abundance 
in aggregate throughout the growing season in a semi-arid system. Our 
area estimations indicate that water resources are relatively scarce 
across the landscape, which aligns with our knowledge of these semi- 
arid systems. Further, our area estimations validate the importance of 
mesic vegetation and suggest that it should be considered in the moni
toring of water availability in semi-arid mountain systems, as in 
aggregate these slowly wane as the water year progresses (Petersen 
et al., 2012; Tulbure et al., 2016). The exclusion of mesic vegetation and 
monitoring of only surface water using data at the 10 m scale, results in 
a different pattern of water availability, where June appears to have less 
water than in July. We suspect that in June, water is allocated not in 

main channels low in the valleys, but rather in smaller channels and in 
the soil, remaining undetected at the 10 m scale. Using mesic vegetation 
abundance and health as a proxy for water availability seems to be a 
reasonable approach to monitoring this dynamic. Furthermore, our 
findings show that mesic vegetation extents exhibit temporal dynamism 
and are not bound to specific spatial regions on an intra-annual basis as 
is represented by the products to which we compared the SF results, 
which are limited by either a single date in time (NWI) or a single annual 
value (SGI) and do not capture these intra-annual dynamics that dictate 
habitat suitability and forage availability. As efforts throughout the West 
focus on restoring incised channels and re-wetting valley bottoms 
(Bouwes et al., 2016; Silverman et al., 2019), both spatial and temporal 
dynamics of these resources should be monitored within the growing 
season when demands for water resources are at their highest. 

While we initially intended to develop a product to be useful at the 
reach scale for monitoring surface water and mesic vegetation in single 
valley bottoms in restoration settings, we found that our approach helps 
in synoptic assessments as well. The currently available 30 m global 
surface water product we explored returns much lower estimates of 
surface water due to omission errors of even medium-sized rivers such as 
the Big Lost River. These are resource areas that sustain semi-arid sys
tems and their omission can alter landscape level assessments. 

5.2. Quantify the value of SAR data when fused with optical and 
topographic variables for estimating abundance of water resources 

We observe consistent, although slight improvements in mapping 
surface water when including SAR data in our list of covariates in the RF 
model in June, August, and September. However, in all instances, these 
improvements are due to a single validation pixel committed to another 
class using the classifier without SAR variables. The relative scarcity of 
the water class exacerbates these differences with the area adjustment 
formulae and we are reluctant to make strong claims regarding the 
importance of using SAR based on our results, but these data can be 
incorporated rather easily and show no signs of decreasing the quality of 
the model. We recommend including these for future work, particularly 
given that SAR data are particularly well suited for bolstering optical 
times series fraught with cloudy scenes (Markert et al., 2018; Pham-Duc 
et al., 2017), obfuscated by wildfire smoke (Ban et al., 2020), and during 
periods of inundation (Canisius et al., 2019). While we found the VV 
band from the Sentinel-1 SAR data to be the second strongest predictor 
of surface water based on MDG, we suspect that considerable amounts of 
correlation among the Sentinel-2 predictors leads to identifiability 
problems where importance is then spread among all correlated pre
dictors (Strobl et al., 2008). 

Generally, the SAR data do not show to contribute to improvements 
of estimates of mesic vegetation in our study area. This result could be 

Fig. 6. Overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) of the NWI (red), SF (green) and SGI (blue) maps for each of the last three months 
of the 2021 water year (July, August, September) at the small-stream site. Tabular results can be viewed in Tables A2 S13–S15. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. A comparison of mesic vegetation at the fourth archetype site captured by the dynamic SF product versus the static NWI data layer shown in pink, and the 
Sage Grouse Initiative (SGI) mesic maps in blue with PlanetScope false color composites from respective months (A1, Table S5). From right to left, top to bottom are 
monthly modes of the SF product from June (top left) to September (bottom right). In each classified map, we show SF outputs for mesic vegetation (green), surface 
water (blue), upland areas (brown), and shadow (black). We also show the NWI polygons (pink outline) and SGI polygons (blue hatch) for comparison. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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attributed to the way that we defined this class, including multiple 
vegetation types with starkly different physical properties. For example, 
we expect backscattering mechanisms would vary greatly from riparian 
trees such as Populus sp. (cottonwoods) or Salix sp. (willows) to wet 
meadows to irrigated agriculture; all considered to be important mesic 
vegetation in the Mountain West (Donnelly et al., 2016; Krosby et al., 
2018; Macfarlane et al., 2017). We also expect that SAR products 
delivered at a similar spatial resolution from sensors with longer 
wavelengths such as L-band data from the upcoming NISAR mission will 
be able to penetrate upper canopies and be better suited to detect dif
ferences in soil and canopy moisture, as well as quantify seasonal 
inundation extents left undetected with C-band data from Sentinel-1 
(Bwangoy et al., 2010; Merchant et al., 2019). 

5.3. Impacts of increased spatial and temporal resolution 

We found that the higher spatial and temporal resolution of Sentinel 
imagery enable more accurate and detailed inventories of water re
sources compared to existing datasets derived from only Landsat im
agery. In terms of spatial resolution, we show that the Sentinel data with 
nine times as many pixels are better suited than Landsat data for 
detecting smaller water bodies with widths smaller than 30 m that are 
characteristic of semi-arid waterscapes. This study highlights the scalar 
mismatch of Landsat data relative to surface water bodies in semi-arid 
systems, and shows they are often inadequate for detecting changes in 
the dynamics of water resources in our study area where even small 
changes in surface water availability can have large impacts on land 
functions (Hansen et al., 2002; Hillis et al., 2020; Huntsinger, 2016). 

Another compelling finding was the importance of higher temporal 
resolution in estimating water resources. We suspect that more frequent 
image collection in the Sentinel-2 time series leads to improved monthly 
estimates, translating to higher temporal precision in monitoring efforts. 
The bulk of commission errors we observed in the SF product were found 
at the transition zone of the reservoir site in 2021, where these are likely 
mixed pixels of water and reservoir substrate, making even the inter
pretation of PlanetScope imagery difficult. Erroneously classified pixels 
as found in the GLAD maps for 2019 comparisons can be avoided using 
the Sentinel time series. Erroneous observations simply hold less weight 
when incorporating more scenes into a monthly product, leading to 
maps with fewer errors that are more applicable for monitoring efforts 
on intra-annual scales. With 2019 being an overall wetter year, likely 
causes of misclassifications of the Landsat product are turbid water or 
undetected haze (Arst et al., 2003; Pekel et al., 2016), and an overall 
absence of clear observations in the few opportunities afforded by the 
relatively coarse 8–16 day revisit time, resulting in both underestimates 
and overestimates of water resources at the monthly scale shown in our 
archetype site comparisons. These misclassifications indicate the 
importance of the higher number of observations in the SF product. In 
this instance, the SF approach benefits from the shorter revisit time of 
Sentinel 2a and 2b, where the GLAD product, using Landsat, may only 
have one observation per month deemed uncontaminated by cloud or 
haze. We expect this result to be increasingly important as contaminated 
observations due to frequent wildfire events could lead to low numbers 
of observations in the driest months of the year when monitoring water 
resources is most important (Abatzoglou and Williams, 2016; Ban et al., 
2020; Burke et al., 2021). While we focus entirely on Sentinel data to 
deliver maps at 10 m spatial resolution, the freely available Harmonized 
Landsat and Sentinel-2 (HLS) (Claverie et al., 2018; Tulbure et al., 2022) 
dataset could also be considered for monitoring in contexts where 30 m 
spatial resolution is considered sufficient and the focus is on surface 
water monitoring in larger water bodies. 

5.4. Global vs Regional perspectives 

Global products, while useful for global scale analyses, are often too 
general to be applied in highly nuanced regions (Wyborn and Evans, 

2021). We demonstrate that our regionally parameterized machine 
learning approach is better suited to capture surface water dynamics in a 
semi-arid system than are leading global products. With so much spec
tral variability among water resources (Pekel et al., 2016), heterogenous 
atmospheric loading, and other regional considerations such as varying 
topography (Feyisa et al., 2014) we find that a regional approach is 
important for monitoring water resource dynamics in water limited 
environments where even small errors can have profound implications 
for management. 

5.5. Caveats and limitations 

Our SF product shows improvement over Landsat products for 
capturing dynamics of surface water and mesic vegetation in our study 
area, but this workflow will need training and testing data specific to 
another study are if adopted by a manager outside of the High Divide. 
Further, those that need to monitor water resources at even finer spatial 
and temporal scales could explore other Earth observation (EO) data 
sources that are not currently open-access. Bhushan et al. (2021) show 
that high resolution terrain models can be extracted from PlanetScope 
images to accompany the four band spectral products. These images are 
costly to acquire, however, and require additional expertise and soft
ware beyond that of GEE. Alternatively, monitoring agencies could 
collect their own high-resolution data from unoccupied aerial systems 
(drones) at the expense of their own time and labor (Carbonneau et al., 
2020). Processing and analyzing these ultra high-resolution alternatives 
require considerable computational resources and technical expertise 
that could potentially act as a barrier to effective monitoring, particu
larly over broad spatial and temporal scales. We urge managers 
considering adoption of EO monitoring datasets to clearly define the 
goals of their monitoring program before implementing any EO product 
into their decision-making process (Beier et al., 2017; Tulloch et al., 
2015). Understanding the tradeoffs in decision making when selecting 
the necessary data and methods of analysis are important when trying to 
develop any monitoring protocol, and EO are no different. However, we 
encourage users to harness the power of these freely available data and 
consider incorporating them into their calculus to make sound envi
ronmental decisions. 

We acknowledge that we are likely overestimating highly func
tioning mesic areas as a result of the predominance of irrigated agri
culture exhibiting characteristics of and subsequently classified as mesic 
vegetation. We chose not to mask agriculture with the recognition that 
some irrigated areas and crops provide ecosystem functions and refugia 
for wildlife; these functions, however, vary among crop and resource 
types (Donnelly et al. 2016). We are also aware that the accuracy of the 
NED is variable across space due to the variable quality of the elevation 
models used to produce it (Gesch et al., 2014). As is the case, the ac
curacy of important topographical metrics may be lacking, but could 
improve along with the quality of open-access elevation data. We further 
acknowledge that the scope of this study is limited to utilizing only 
backscatter coefficients to describe surface properties with SAR data. 
Mayer et al. (2021) use five SAR indices in a deep learning approach to 
map surface water with SAR data only. When we tested these indices in 
our RF model, however, we observed only slight increases in accuracy 
metrics for water and mesic classes, with no meaningful qualitative 
improvements. Further, variable importance plots revealed that all five 
indices were ranked lowest among all variables included in the classifier 
for distinguishing surface water and mesic vegetation from other land 
covers. These results indicate that these indices increase complexity of 
the analysis without substantial benefit, so we opted to omit them 
altogether. 

6. Conclusion 

The workflow we present represents considerable improvement 
upon maps that are currently available for monitoring surface water and 
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mesic vegetation dynamics in our semi-arid study area. We found that by 
aggregating surface water and mesic vegetation resources, we are better 
able to get a pulse on intra-annual dynamics of water resources in semi- 
arid regions sustained by small surface water bodies. Using 10-m 
Sentinel data, we found that our monthly estimates were less likely to 
omit water resource pixels than leading Landsat products due to higher 
spatial resolution. The higher temporal resolution of Sentinel data can 
also reduce both omission and commission errors caused by bad ob
servations and low observation counts using Landsat products at the 
monthly time step. We observed small, but consistent improvements 
when including C-band SAR data with optical data, and recommend 
consideration of this data fusion approach for mapping water resources 
in any environment. Using a regionally specific approach, the workflow 
we have outlined in this study uses freely available data on an open- 
access platform and can be adopted by anyone seeking to develop 
water resources maps tailored to their study area. 
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Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications 
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi. 
org/10.1016/j.isprsjprs.2016.01.011. 

Berhane, T.M., Lane, C.R., Wu, Q., Autrey, B.C., Anenkhonov, O.A., Chepinoga, V.V., 
Liu, H., 2018. Decision-tree, rule-based, and random forest classification of high- 
resolution multispectral imagery for wetland mapping and inventory. Remote Sens. 
10, 580. https://doi.org/10.3390/rs10040580. 

Bouwes, N., Weber, N., Jordan, C.E., Saunders, W.C., Tattam, I.A., Volk, C., Wheaton, J. 
M., Pollock, M.M., 2016. Ecosystem experiment reveals benefits of natural and 
simulated beaver dams to a threatened population of steelhead (Oncorhynchus 
mykiss). Sci. Rep. 6, 28581. https://doi.org/10.1038/srep28581. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A: 
1010933404324. 

Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., 
Czerwinski, W., Pasquarella, V.J., Haertel, R., Ilyushchenko, S., Schwehr, K., 
Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., Tait, A.M., 2022. Dynamic 
world, near real-time global 10 m land use land cover mapping. Sci Data 9, 251. 
https://doi.org/10.1038/s41597-022-01307-4. 

Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J., Wara, M., 2021. The changing 
risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. 118 https:// 
doi.org/10.1073/pnas.2011048118. 

Bwangoy, J.-R.-B., Hansen, M.C., Roy, D.P., Grandi, G.D., Justice, C.O., 2010. Wetland 
mapping in the Congo Basin using optical and radar remotely sensed data and 
derived topographical indices. Remote Sens. Environ. 114, 73–86. https://doi.org/ 
10.1016/j.rse.2009.08.004. 

Canisius, F., Brisco, B., Murnaghan, K., Van Der Kooij, M., Keizer, E., 2019. SAR 
backscatter and InSAR coherence for monitoring wetland extent, flood pulse and 
vegetation: a study of the amazon lowland. Remote Sens. 11, 720. https://doi.org/ 
10.3390/rs11060720. 

Carbonneau, P.E., Belletti, B., Micotti, M., Lastoria, B., Casaioli, M., Mariani, S., 
Marchetti, G., Bizzi, S., 2020. UAV-based training for fully fuzzy classification of 
Sentinel-2 fluvial scenes. Earth Surf. Process. Landf. 45 (13), 3120–3140. 

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., 
Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data 
set. Remote Sens. Environ. 219, 145–161. https://doi.org/10.1016/j. 
rse.2018.09.002. 

Daly, C., Bryant, K., 2013. The PRISM Climate and Weather System – An Introduction. 
Davee, R., Gosnell, H., Charnley, S., 2019. Using Beaver Dam Analogues for Fish and 

Wildlife Recovery on Public and Private Rangelands in Eastern Oregon 38. 
Donnelly, J.P., Naugle, D.E., Hagen, C.A., Maestas, J.D., Lepczyk, C., 2016. Public lands 

and private waters: scarce mesic resources structure land tenure and sage-grouse 
distributions. Ecosphere 7 (1), e01208. https://doi.org/10.1002/ecs2.1208. 

Donnelly, J.P., Naugle, D.E., Collins, D.P., Dugger, B.D., Allred, B.W., Tack, J.D., 
Dreitz, V.J., 2019. Synchronizing conservation to seasonal wetland hydrology and 
waterbird migration in semi-arid landscapes. Ecosphere 10. https://doi.org/ 
10.1002/ecs2.2758. 

Donnelly, J.P., King, S.L., Silverman, N.L., Collins, D.P., Carrera-Gonzalez, E.M., Lafón- 
Terrazas, A., Moore, J.N., 2020. Climate and human water use diminish wetland 
networks supporting continental waterbird migration. Glob. Change Biol. 26, 
2042–2059. https://doi.org/10.1111/gcb.15010. 

Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X., 2016. Water Bodies’ Mapping from 
Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m 
Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 8, 354. 
https://doi.org/10.3390/rs8040354. 

European Space Agency, 2020. Sentinel-1 Toolbox - Sentinel Online [WWW Document]. 
URL https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1 (accessed 5.7.22). 

Feng, M., Sexton, J.O., Channan, S., Townshend, J.R., 2016. A global, high-resolution 
(30-m) inland water body dataset for 2000: first results of a topographic–spectral 
classification algorithm. Int. J. Digit. Earth 9, 113–133. https://doi.org/10.1080/ 
17538947.2015.1026420. 

Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., 2014. Automated Water Extraction 
Index: A new technique for surface water mapping using Landsat imagery. Remote 
Sens. Environ. 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029. 

Gesch, D.B., Oimoen, M.J., Evans, G.A., 2014. Accuracy Assessment of the U.S. 
Geological Survey National Elevation Dataset, and Comparison with Other Large- 
Area Elevation Datasets—SRTM and ASTER: U.S. Geological Survey Open-File 
Report 2014–1008, 10 p., https://doi.org/10.3133/ofr20141008. 

Gibson, P.P., Olden, J.D., 2014. Ecology, management, and conservation implications of 
North American beaver (Castor canadensis) in dryland streams: CONSERVATION 
IMPLICATIONS OF NORTH AMERICAN BEAVER IN DRYLAND STREAMS. Aquat. 
Conserv. Mar. Freshw. Ecosyst. 24, 391–409. https://doi.org/10.1002/aqc.2432. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google earth engine: planetary-scale geospatial analysis for everyone. remote sens. 
Environ. Big Remotely Sensed Data: tools, Appl. Exp. 202, 18–27. https://doi.org/ 
10.1016/j.rse.2017.06.031. 

N.E. Kolarik et al.                                                                                                                                                                                                                              

https://code.earthengine.google.com/?accept_repo=users/nekolarik/SF_MS
https://code.earthengine.google.com/?accept_repo=users/nekolarik/SF_MS
https://github.com/neko1010/SentinelFusion
https://doi.org/10.1016/j.ecolind.2023.109965
https://doi.org/10.1016/j.ecolind.2023.109965
https://doi.org/10.1175/BAMS-D-16-0193.1
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1002/ece3.1627
https://doi.org/10.1002/ece3.1627
https://doi.org/10.1038/s41598-019-56967-x
https://doi.org/10.3390/rs9121209
https://doi.org/10.1111/conl.12300
https://doi.org/10.1111/conl.12300
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.3390/rs10040580
https://doi.org/10.1038/srep28581
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/s41597-022-01307-4
https://doi.org/10.1073/pnas.2011048118
https://doi.org/10.1073/pnas.2011048118
https://doi.org/10.1016/j.rse.2009.08.004
https://doi.org/10.1016/j.rse.2009.08.004
https://doi.org/10.3390/rs11060720
https://doi.org/10.3390/rs11060720
http://refhub.elsevier.com/S1470-160X(23)00107-3/h0085
http://refhub.elsevier.com/S1470-160X(23)00107-3/h0085
http://refhub.elsevier.com/S1470-160X(23)00107-3/h0085
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.1002/ecs2.1208
https://doi.org/10.1002/ecs2.2758
https://doi.org/10.1002/ecs2.2758
https://doi.org/10.1111/gcb.15010
https://doi.org/10.3390/rs8040354
https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1002/aqc.2432
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031


Ecological Indicators 147 (2023) 109965

14

Han, H., Guo, X., Yu, H., 2016. Variable selection using Mean Decrease Accuracy and 
Mean Decrease Gini based on Random Forest. In: IEEE International Conference on 
Software Engineering and Service Science (ICSESS). Presented at the 2016 7th IEEE 
International Conference on Software Engineering and Service Science (ICSESS), 
pp. 219–224. https://doi.org/10.1109/ICSESS.2016.7883053. 

Hansen, M.C., Potapov, P.V., Pickens, A.H., Tyukavina, A., Hernandez-Serna, A., 
Zalles, V., Turubanova, S., Kommareddy, I., Stehman, S.V., Song, X.-P., 
Kommareddy, A., 2022. Global land use extent and dispersion within natural land 
cover using Landsat data. Environ. Res. Lett. 17 (3), 034050. 

Hansen, A.J., Rasker, R., Maxwell, B., Rotella, J.J., Johnson, J.D., Parmenter, A.W., 
Langner, U., Cohen, W.B., Lawrence, R.L., Kraska, M.P.V., 2002. Ecological Causes 
and Consequences of Demographic Change in the New WestAs natural amenities 
attract people and commerce to the rural west, the resulting land-use changes 
threaten biodiversity, even in protected areas, and challenge efforts to sustain local 
communities and ecosystems. BioScience 52, 151–162. https://doi.org/10.1641/ 
0006-3568(2002)052[0151:ECACOD]2.0.CO;2. 

Hillis, V., Berry, K.A., Swette, B., Aslan, C., Barry, S., Porensky, L.M., 2020. Unlikely 
alliances and their implications for resource management in the American West. 
Environ. Res. Lett. 15, 045002. https://doi.org/10.1088/1748-9326/ab6fbc. 

Hird, J.N., DeLancey, E.R., McDermid, G.J., Kariyeva, J., 2017. Google earth engine, 
open-access satellite data, and machine learning in support of large-area 
probabilistic wetland mapping. Remote Sens. 9, 1315. https://doi.org/10.3390/ 
rs9121315. 

Hoekstra, A.Y., Mekonnen, M.M., Chapagain, A.K., Mathews, R.E., Richter, B.D., 2012. 
Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water 
Availability. PLOS ONE 7, e32688. https://doi.org/10.1371/journal.pone.0032688. 

Huang, W., DeVries, B., Huang, C., Lang, M., Jones, J., Creed, I., Carroll, M., 2018. 
Automated extraction of surface water extent from sentinel-1 data. Remote Sens. 10, 
797. https://doi.org/10.3390/rs10050797. 

Huntsinger, L., 2016. The tragedy of the common narrative: re-telling degradation in the 
american West. In: Behnke, R., Mortimore, M. (Eds.), The End of Desertification?, 
Springer Earth System Sciences. Springer, Berlin Heidelberg, Berlin, Heidelberg, 
pp. 293–323. https://doi.org/10.1007/978-3-642-16014-1_11. 

Jin, H., Stehman, S.V., Mountrakis, G., 2014. Assessing the impact of training sample 
selection on accuracy of an urban classification: a case study in Denver. Colorado. 
Int. J. Remote Sens. 35, 2067–2081. https://doi.org/10.1080/ 
01431161.2014.885152. 

Johnston, C.A., 1994. Cumulative impacts to wetlands. Wetlands 14, 49–55. https://doi. 
org/10.1007/BF03160621. 

Jones, J.W., 2015. Efficient wetland surface water detection and monitoring via landsat: 
comparison with in situ data from the everglades depth estimation network. Remote 
Sens. 7, 12503–12538. https://doi.org/10.3390/rs70912503. 

Jones, J.W., 2019. Improved automated detection of subpixel-scale inundation—revised 
dynamic surface water extent (DSWE) partial surface water tests. Remote Sens. 11, 
374. https://doi.org/10.3390/rs11040374. 

Jones, K., Abrams, J., Belote, R.T., Beltrán, B.J., Brandt, J., Carter, N., Castro, A.J., 
Chaffin, B.C., Metcalf, A.L., Roesch-McNally, G., Wallen, K.E., Williamson, M.A., 
2019. The American West as a social-ecological region: drivers, dynamics and 
implications for nested social-ecological systems. Environ. Res. Lett. 14, 115008. 
https://doi.org/10.1088/1748-9326/ab4562. 

Kaplan, G., Avdan, U., 2017. Object-based water body extraction model using Sentinel-2 
satellite imagery. Eur. J. Remote Sens. 50, 137–143. https://doi.org/10.1080/ 
22797254.2017.1297540. 

Kornelsen, K.C., Coulibaly, P., 2013. Advances in soil moisture retrieval from synthetic 
aperture radar and hydrological applications. J. Hydrol. 476, 460–489. https://doi. 
org/10.1016/j.jhydrol.2012.10.044. 

Krosby, M., Theobald, D.M., Norheim, R., McRae, B.H., 2018. Identifying riparian 
climate corridors to inform climate adaptation planning. PLOS ONE 13, e0205156. 
https://doi.org/10.1371/journal.pone.0205156. 

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2, 
18–22. 

Macfarlane, W.W., Gilbert, J.T., Jensen, M.L., Gilbert, J.D., Hough-Snee, N., McHugh, P. 
A., Wheaton, J.M., Bennett, S.N., 2017. Riparian vegetation as an indicator of 
riparian condition: detecting departures from historic condition across the North 
American West. J. Environ. Manage. 202, 447–460. https://doi.org/10.1016/j. 
jenvman.2016.10.054. 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., 2019. The 
first wetland inventory map of newfoundland at a spatial resolution of 10 m using 
sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. 
Remote Sens. 11, 43. https://doi.org/10.3390/rs11010043. 

Margono, B.A., Bwangoy, J.-R.-B., Potapov, P.V., Hansen, M.C., 2014. Mapping wetlands 
in Indonesia using Landsat and PALSAR data-sets and derived topographical indices. 
Geo-Spat. Inf. Sci. 17, 60–71. https://doi.org/10.1080/10095020.2014.898560. 

Markert, K.N., Chishtie, F., Anderson, E.R., Saah, D., Griffin, R.E., 2018. On the merging 
of optical and SAR satellite imagery for surface water mapping applications. Results 
Phys. 9, 275–277. https://doi.org/10.1016/j.rinp.2018.02.054. 

Maurer, E.P., Stewart, I.T., Bonfils, C., Duffy, P.B., Cayan, D., 2007. Detection, 
attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada. 
J. Geophys. Res. Atmospheres 112. https://doi.org/10.1029/2006JD008088. 

Mayer, T., Poortinga, A., Bhandari, B., Nicolau, A.P., Markert, K., Thwal, N.S., 
Markert, A., Haag, A., Kilbride, J., Chishtie, F., Wadhwa, A., Clinton, N., Saah, D., 
2021. Deep learning approach for Sentinel-1 surface water mapping leveraging 
Google Earth Engine. ISPRS Open J. Photogramm. Remote Sens. 2, 100005 https:// 
doi.org/10.1016/j.ophoto.2021.100005. 

McCabe, G.J., Clark, M.P., Hay, L.E., 2007. Rain-on-snow events in the western United 
States. Bull. Am. Meteorol. Soc. 88, 319–328. https://doi.org/10.1175/BAMS-88-3- 
319. 

McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the 
delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. https://doi. 
org/10.1080/01431169608948714. 

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. 
Sci. Adv. 2, e1500323. 

Merchant, M.A., Warren, R.K., Edwards, R., Kenyon, J.K., 2019. An object-based 
assessment of multi-wavelength SAR, optical imagery and topographical datasets for 
operational wetland mapping in boreal Yukon, Canada. Can. J. Remote Sens. 45 (3- 
4), 308–332. 
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