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Rayleigh wave dispersion curve inversion: Occam versus the L1-norm
Matthew M. Haney∗ and Leming Qu, Boise State University

SUMMARY

We compare inversions of Rayleigh wave dispersion curves
for shear wave velocity depth profiles based on the L2-norm
(Occam’s Inversion) and L1-norm (TV Regularization). We
forward model Rayleigh waves using a finite-element method
instead of the conventional technique based on a recursion
formula and root-finding. The forward modeling naturally
leads to an inverse problem that is overparameterized in depth.
Solving the inverse problem with Occam’s Inversion gives the
smoothest subsurface model that satisfies the data. However,
the subsurface need not be smooth and we therefore also solve
the inverse problem with TV Regularization, a procedure that
does not penalize discontinuities. The use of such a regular-
ization scheme for such an overparameterized inverse problem
means blocky subsurface models can be obtained without fix-
ing the layer boundaries in advance. This represents an entirely
new philosophy for surface wave inversion.

INTRODUCTION

Obtaining a depth profile of shear wave velocity from surface
wave dispersion curves is one of the oldest geophysical inverse
problems, with research dating back to at least Dorman and
Ewing (1962). A standard approach to the problem involves
parameterizing the subsurface as a small number of homoge-
neous layers with fixed boundaries. The shear wave velocities
of the layers are then found through a regularized inversion of
an overdetermined system of equations (Gabriels et al., 1987;
Xia et al., 1999). The system is overdetermined since the num-
ber of data points defining the dispersion curve is larger than
the small number of layers used to parameterize the subsur-
face.

A different approach to the inversion of surface wave disper-
sion curves is to overparameterize the subsurface with many
thin layers and find the smoothest model. This methodology,
known as Occam’s inversion, has been advocated by Constable
et al. (1987) and deGroot-Hedlin and Constable (1990). The
inverted model is found by imposing smoothness constraints
on the solution. This is accomplished by penalizing the L2-
norm of a roughening operator (e.g., first or second derivative)
applied to the model.

Although there may be reasons to expect the subsurface to
be smooth, many instances exist when the subsurface may in
fact be discontinuous. Moreover, the depths of the disconti-
nuities may not be known in advance. For this situation, we
develop an inversion approach that penalizes the L1-norm of
the first derivative of the model, known as the Total Varia-
tion (TV) Regularization. We first discuss the forward model-
ing of Rayleigh waves with a finite-element method that natu-
rally leads to an overparameterized subsurface model. We then
compare subsurface models obtained using Occam’s inversion

(L2-norm) and TV Regularization (L1-norm). For a synthetic
example, we find that TV Regularization is able to reconstruct
a blocky, discontinuous model without prior knowledge of the
location of layer boundaries.

RAYLEIGH WAVE FORWARD MODELING

We forward model Rayleigh waves using a method originally
put forward by Lysmer (1970) and recently dicussed by Mas-
terlark et al. (2010) and Haney (2010; submitted to Geophysics).
For Rayleigh wave modes, we discretize the depth dependence
of the mode shapes using a finite set of basis functions. The
horizontal r1 and vertical r2 depth shapes are discretized as

r1(z) =
N∑

K=1

rK
1 φK(z), (1)

r2(z) =
N∑

K=1

rK
2 φK(z). (2)

Here, we use linear basis functions as in Lysmer (1970). For
a non-uniform 1D spatial discretization with element thick-
nesses hK spanning the depth interval [0,zN+1], these basis
functions are mathematically defined as

φK(z) =





(z− zK−1)/hK−1 if zK−1 ≤ z≤ zK ,
(zK+1− z)/hK if zK ≤ z≤ zK+1,
0 otherwise.

(3)

By organizing the vector of unknown nodal displacements with
alternating vertical and horizontal coefficients as

~v = [ ... rK−1
1 rK−1

2 rK
1 rK

2 rK+1
1 rK+1

2 ... ]T , (4)

the complete system is a generalized quadratic eigenvalue prob-
lem in terms of the wavenumber k

(k2B2 + kB1 +B0)~v = ω2M~v, (5)

where ω is the angular frequency, B2, B1, and B0 are stiffness
matrices only dependent on the elastic properties λ and µ , and
M is the mass matrix only dependent on density ρ . All four of
the matrices are real-valued and symmetric (Lysmer, 1970), a
property that takes on an important role in the development of
the inverse problem. The structure of the matrices B2, B1, B0,
and M is discussed in detail by Lysmer (1970).

DISPERSION CURVE INVERSION

Although Lysmer (1970) fully addressed the forward modeling
of Rayleigh waves, the inverse problem was not investigated.
As shown in Masterlark et al. (2010), Lysmer’s method can be
extended to address inversion as well. The matrix-vector for-
mulation of the forward problem is well-suited for developing
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the inversion using straightforward perturbation theory. It can
be shown that the perturbation in phase velocity c due to per-
turbations in the material properties at fixed frequency is given
by

δc
c

=
1

2k2Uc~vT M~v

( N∑

i=1

~vT ∂ (k2B2 + kB1 +B0)

∂ µi
~vδ µi

+

N∑

i=1

~vT ∂ (k2B2 + kB1 +B0)

∂λi
~vδλi

−ω2
N∑

i=1

~vT ∂M
∂ρi

~vδρi

)
. (6)

Note that, for the application discussed here, the eigenvector~v,
wavenumber k, and phase velocity c all correspond to the fun-
damental mode; however, equation (6) applies individually to
each mode and therefore it is useful for the inversion of higher
modes. The matrices appearing in equation (6) are the same as
those in the forward problem, equation (5). Thus, the connec-
tion between the forward and inverse problems are clear using
the matrix-vector notation. Equation (6) is the discrete version
of the continuous relations found in Aki and Richards (1980).
The derivatives of matrices with respect to the material prop-
erties shown above represent the derivatives applied to each
individual matrix element.

Evaluated over many frequencies, the above equation results
in a linear matrix-vector relation between the perturbed phase
velocities and the perturbations in material properties

~δc
c

= Kc
µ
~δ µ
µ

+Kc
λ

~δλ
λ

+Kc
ρ
~δρ
ρ

, (7)

where Kc
µ , Kc

λ , and Kc
ρ are the phase velocity kernels for shear

modulus, Lamé’s first parameter, and density, respectively. Note
that the kernels shown here are for relative perturbations in the
phase velocities and material properties.

Although equation (7) is a linear relation between phase veloc-
ity perturbations and perturbations in all three material prop-
erties, Rayleigh wave phase (or group) velocities are typically
only inverted for depth-dependent shear-wave velocity profiles
in practice. This is because the Rayleigh wave velocities are
most dependent on shear wave velocity in the subsurface (Xia
et al., 1999). To find the linear relation between phase velocity
perturbations and shear-wave velocity, we use the following
relations valid to first order:

δ µ
µ

= 2
δβ
β

+
δρ
ρ

, (8)

and

δλ
λ

=

(
2α2

α2−2β 2

)
δα
α
−
(

4β 2

α2−2β 2

)
δβ
β

+
δρ
ρ

, (9)

where α is the compressional wave velocity and β is the shear
wave velocity. In matrix-vector form, equation (8) and (9) be-
come

~δ µ
µ

= 2
~δβ
β

+
~δρ
ρ

, (10)

and
~δλ
λ

= D1
~δα
α
−D2

~δβ
β

+
~δρ
ρ

, (11)

where D1 and D2 are matrices whose only nonzero elements
lie on the main diagonal. Substituting equation (10) and (11)
into equation (7) and setting perturbations in P-wave velocity
and density to zero gives

~δc
c

= [2Kc
µ −Kc

λ D2]
~δβ
β

= Kc
~δβ
β

, (12)

which is the linear relation between phase velocity and shear
wave velocity. Under the assumption of no perturbations in P-
wave velocity and density, the shear-wave velocity kernel is a
weighted sum of the λ and µ kernels.

A similar linear relation as in equation (12) can be set up for
group velocity (Rodi et al., 1975)

~δU
U

= KU
~δβ
β

. (13)

This equation is the basis for group velocity inversion. The lin-
ear relations shown in equations (12) and (13) are usually set
up in terms of absolute perturbations instead of relative pertur-
bations. Denoting the group velocity kernel in this case as GU ,
the absolute perturbation kernel can be given in terms of the
relative perturbation kernel as

GU = diag(~U)KU diag(~β )−1, (14)

where diag(~U) is a matrix with the vector ~U placed on the main
diagonal and off-diagonal entries equal to zero.

OCCAM’S INVERSION

Occam’s inversion adopts a type of regularization that yields
optimally smooth solutions to the inverse problem. We employ
a method based on weighted-damped least-squares. Data co-
variance and model covariance matrices, Cd and Cm, are cho-
sen, as in Gerstoft et al. (2006). The data covariance matrix is
assumed to be a diagonal matrix

Cd = σ2
d I, (15)

where I is the identity matrix and σd is the data standard devi-
ation. For simplicity, the standard deviation is assumed to be
the same for all data points. The model covariance matrix has
the form

Cm(i, j) = σ2
m exp(−|zi− z j|/`), (16)

where σm is the model standard deviation, zi and z j are the
depths of the i-th and j-th nodes, and ` is a smoothing distance.

With the covariance matrices so chosen, group velocity inver-
sion proceeds using the algorithm of total inversion (Tarantola
and Valette, 1982; Muyzert, 2007). The n-th model update ~βn
is calculated by forming the augmented system of equations
(Snieder and Trampert, 1999; Aster et al., 2004):

[
C−1/2

d
0

] (
~U0− f (~βn−1)+GU

n−1(
~βn−1−~β0)

)
=

[
C−1/2

d GU
β

C−1/2
m

]
(~βn−~β0), (17)
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where ~U0 is the group velocity data, f is the (nonlinear) for-
ward modeling operator, and n ranges from 1 to whenever the
stopping criterion is met or the maximum allowed number of
iterations is reached. The stopping criterion we use is (Gou-
veia and Scales, 1998)

( f (~βn)−~U0)C−1
d ( f (~βn)−~U0)≤ F, (18)

where F is the number of measurements (number of frequen-
cies where group velocity has been measured). An identical
weighted-damped least-squares scheme applies for phase ve-
locity inversion. The augmented matrix-vector relation can be
passed to a conjugate gradient solver, for instance LSQR.

CONSTRAINED TV REGULARIZATION

The advantage of using an L2-norm regularization, as in the
previous section, is that a closed form solution is available for
a linearized phase or group velocity inversion. But the L2-
norm regularization is based on the prior belief that the subsur-
face shear wave velocity follows a Gaussian distribution from
a Bayesian statistics perspective, i.e. the model is smooth.
In practice, subsurface shear wave velocity may have sharp
changes or jumps, thus making the assumption of a smooth
model inappropriate. Total variation (TV) regularization is
a method which works well for the inversion of non-smooth
or piece-wise smooth 1D curves or 2D images (Rudin et al.,
1992; Chan et al., 2005). We adopt TV regularization to in-
vert Rayleigh wave phase or group velocity. From a Bayesian
statistics perspective, the 1D TV-norm regularization corre-
sponds to the prior belief that the first difference of phase or
group velocity to be inverted follows a Laplace distribution
(also named double exponential distribution), hence a non-
smooth model or a sparse model in the first difference trans-
form domain.

In addition to the prior belief that the shear wave velocity ~β
is piece-wise smooth, we might have other constraints such
as bound constraints. For example, non-negativity is a special
type of bound constraint. Routh et al. (2007) examined various
approaches to obtain non-smooth models and models within
prescribed physical bounds in addition to non-smoothness. We
denote these constraints as ~β ∈C where C is a closed convex
set. The unconstrained case corresponds to C = Rp where p
is the dimension of the discretized ~β . We will be especially
interested in bound constraints given by:

C = {~β : L≤ β i ≤U, ∀ i}, (19)

where β i denotes the i-th entry. Bound constraints describe
the situation in which ~β has lower and upper bounds. We do
not restrict the lower and upper bound to be finite. For exam-
ple, the choice L = 0 and U = ∞ corresponds to non-negativity
constraints.

The constrained TV-regularized inversion of Rayleigh wave
phase or group velocities aims to find a shear wave velocity
profile which fits the observed phase or group velocity data
subject to TV and closed convex set constraints. That is, we

consider the following the optimization problem:

β̂ (λ ) = argmin
β∈C
||d− f (~β )||2 +2λTV(~β ), (20)

where β̂ is the inverted model, d ∈ Rq is the observed phase
or group velocity data, f the nonlinear forward modeling op-
erator, and λ > 0 a regularization parameter which balances
the trade- off between the data misfit ||d− f (~β )||2 and the TV
penalty. The discrete TV(~β ) is

TV(~β ) =
p−1∑

i=1

|β i+1−β i|. (21)

Solving the above constrained nonlinear TV-regularized mini-
mization problem is a challenging task. A common approach
is to iteratively solve a linearized minimization problem by a
linear approximation. The linear approximation entails a first-
order Taylor expansion about the current solution ~βn, where
the subscript n represents the iteration number:

f (~β )≈ f (~βn)+Gn(~β −~βn). (22)

The q× p size Jacobian matrix Gn is given by equation (14)
for group velocity.

Starting with an initial guess ~β0, at the n-th iteration we solve
the following constrained TV-regularized optimization prob-
lem to obtain the n-th model update ~βn:

~βn = argmin
~β∈C
||yn−1−Gn−1

~β ||2 +2λTV(~β ), (23)

where yn−1 = d− f (~βn−1)+Gn−1
~βn−1 is the working data at

n-th iteration.

There is a rich literature on numerical methods for solving an
unconstrained TV- regularized convex minimization problem:

min
~β
||yn−1−Gn−1

~β ||2 +2λTV(~β ). (24)

Beck and Teboullem (2009) gave a non-exhaustive list of these
methods. In contrast, the algorithms for solving a constrained
TV- regularized convex minimization problem (23) are grad-
ually appearing. Routh et al. (2007) solved the optimization
with non-smooth regularization and physical bounds using an
interior point method. Krishnan et al. (2009) developed a primal-
dual active-set algorithm for bound constrained TV deblurring
problems. Chartrand and Wohlberg (2010) solved a TV regu-
larization with bound constraints by a splitting approach, thus
allowing existing TV solvers be employed with minimal al-
teration. Beck and Teboullem (2009) derived a fast algorithm
named MFISTA for the constrained TV-based image deburring
problem. A simple version of MFISTA requires users to spec-
ify an upper bound on the Lipschitz constant of the gradient of
the data misfit ||yn−1−Gn−1

~β ||2:

∇||yn−1−Gn−1
~β ||2 = 2GT

n−1(yn−1−Gn−1
~β ). (25)

For our specific problem, we do not know what this upper
bound is. Hence, we are not able to apply MFISTA directly.
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Figure 1: Comparison of inversion results based on TV Regularization (left) and Occam’s Inversion (right).

However, a modified version of MFISTA with a variable step
size can handle the case when the Lipschitz constant is un-
known.

We apply the SpaRSA algorithmic framework proposed in Wright
et al. (2009) to solve problem (23). SPARSA is an iterative
method. When applied to equation (23), each iteration of SpaRSA
requires solving a constrained TV-denoising subproblem. We
apply the FGP algorithm proposed in Beck and Teboullem
(2009) for the constrained TV-denoising subproblem. The FGP
algorithm is implemented in the TV FISTA Matlab package
distributed publicly by its authors.

SYNTHETIC EXAMPLE

With the implementations of Occam’s inversion and TV Reg-
ularization described above, we tested the methods for group
velocity inversion with a simple subsurface model consisting
of 3 layers. The subsurface model is shown as a solid blue line
and labelled as the true model in Figure 1. The shallowest layer
is 60 m thick and the layer beneath it is 110 m thick. The deep-
est layer is taken to be a halfspace. Rayleigh wave group ve-
locity dispersion curves are modeled over the frequency band
from 3-13 Hz and corrupted with 1% Gaussian noise to sim-
ulate actual data. For this range of frequencies, the individual
finite-elements in the forward model are 10 m thick. The initial
model for the inversions is taken to be a homogeneous halfs-
pace and is plotted as a dashed red line in Figure 1.

The results for Occam’s inversion and TV Regularization are
plotted as dash-dotted black lines in Figure 1. Both inversions
were able to fit the dispersion curve for the true model to within
one standard deviation. As expected, the Occam’s inversion re-
turned an optimally smooth model that indicates the presence

of a low velocity layer; however, it does not constrain the up-
per interface of the low velocity layer present in the true model.
The inversion based on TV Regularization, on the other hand,
is able to reconstruct the sharp upper interface without knowl-
edge of the depth to the interface. Although the upper interface
is reconstructed by TV Regularization, the inversion ultimately
loses resolution at the lower interface due to the inherent decay
of surface waves with depth.

CONCLUSION

We have discussed two methods for surface wave inversion:
one an implementation of Occam’s inversion and the other
based on the L1-norm. Both methods differ from standard
approaches to surface wave inversion in that the subsurface
model is overparameterized with many thin layers. For Oc-
cam’s inversion, the overparameterization results in an opti-
mally smooth model. There is nothing fundamentally wrong
with a smooth model. Indeed, such a model may be warranted
in certain geological settings. However, an inversion based on
TV Regularization is able to accurately reconstruct a blocky
true model. Surface wave inversion with TV Regularization
should be a valuable technique to resolve structure when a
blocky subsurface is expected a priori. The ability to invert
for a blocky model without advance knowledge of the location
of interfaces represents an entirely new philosophy for surface
wave inversion.
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