
 

 

 

 

CHARACTERIZATION AND QUANTIFICATION 

 OF GROUND HEAT FLUX 

 FOR LATE SEASON SHALLOW SNOW 

 

 

 

 

by 

Aurele LaMontagne 

 

 

 

 
 

A thesis 

Submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Hydrologic Sciences 

Boise State University 

 
 

Summer, 2009

 



BOISE STATE UNIVERSITY GRADUATE COLLEGE 
 
 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 
 

of the dissertation submitted by 
 
 

Aurele LaMontagne 
 

 
Dissertation Title: Characterization and Quantification of Ground Heat Flux for Late 

Season Shallow Snow 
 
Date of Final Oral Examination: 03 April 2009 

 
The following individuals read and discussed the dissertation submitted by student 
Stephanie Stacey Starr, and they also evaluated her presentation and response to 
questions during the final oral examination.  They found that the student passed the final 
oral examination, and that the dissertation was satisfactory for a doctoral degree and 
ready for any final modifications that they explicitly required. 

 
James P. McNamara, Ph.D.   Chair, Supervisory Committee 
 
Charles H. Luce, Ph.D.   Member, Supervisory Committee 
 
John H. Bradford, Ph.D.   Member, Supervisory Committee 
 
 
The final reading approval of the dissertation was granted by James P. McNamara, Ph.D., 
Chair of the Supervisory Committee.  The dissertation was approved for the Graduate 
College by John R. Pelton, Ph.D., Dean of the Graduate College. 

 
 
 
 
      
 

 
 
 

 

ii 
 



ACKNOWLEDGEMENTS 

 
 

I would like to thank my family, advisor and committee members, remote 

assistants, fellow graduate students, and funding agencies for their contributions to this 

research.   Thank you Paige, Tavish, and Owen, for your incredible patience and support 

throughout this effort.  I thank my parents Armand and Virginia Lamontagne for 

encouraging their children to look beyond the horizon and pursue their dreams.  I thank 

my advisor Dr. James P. McNamara for giving me this opportunity and providing many 

interesting research challenges.  I am grateful for the critical technical assistance 

provided by my committee members Dr. Charles Luce and Dr. John Bradford, Dr. John 

Selker, Dr. Scott Tyler, and Mike Collier.  Absolutely vital to this research was the 

technical assistance from John Dorighi, Agilant DTS engineer.  Countless hours of field 

assistance was provided by Pam Ashlin, Mike Whitson, Ben Stratton, Mike Thoma, Matt 

Weaver, Ivan Geroy, Brian Anderson, and Daniella Makram-Morgos, and many others.  

The necessary funding was provided by NSF-Idaho EPSCoR Program and the National 

Science Foundation under award number EPS-0447689, the Boise State University 

Geoscience Department, and a Geological Society of America Graduate Research Grant.  

My final thanks go to my office mates known as the “Bulls” who provided so much 

comic relief and fishing opportunity it is a wonder any of us made it through the program.  

 
 

iii 
 



ABSTRACT 

Increasing populations, rapid land use changes, and climate change in mountainous 

areas have stressed water resources and reduced available water from snowpacks.  In 

anticipation of warmer temperatures, receding snowlines, and increasing water demands, 

water managers will need detailed snowmelt energy and water balance information from 

the margin as transitional snow replaces deeper snowpacks. Patchy shallow snow, found 

at transitional snow elevations, has a distinct energy balance that includes local advection 

and short wave radiation penetration of snow less than 10 cm deep.  Solar penetration to 

the soil surface provides a heat source that can be absorbed by the soil and conducted 

back to the snow.  The objective of this study is to compare ground heat flux beneath 

snow less than 10 cm depth (shallow) and greater than 10 cm depth to see if solar 

penetration of shallow snow results in the heating of soils and an increased ground heat 

flux.  Further objectives of the study are to evaluate the mathematical model for ground 

heat flux and to assess distributed temperature sensing (DTS) as a tool for measuring 

soil/snow interface temperatures beneath spatially unpredictable shallow snow extents.  

To capture and quantify the additional energy flux below patches of spatially 

unpredictable shallow snow, near surface soil temperatures must be taken at large spatial 

scales.  High spatial resolution DTS was deployed prior to snow season, 2.5 cm beneath 

the soil surface throughout a mid-elevation semi-arid watershed, to capture near surface 

soil temperatures below spatially unpredictable patchy snow.  Ground heat flux was 

modeled from the soil temperatures.  
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 The soil column in this study showed an increasing modeled ground heat flux as 

soil temperature measurement moved closer to the soil-snow interface. This trend violates 

the steady state assumption of the model with respect to the soil column and reveals that 

soil temperature measurement depth has a substantial inverse relationship with the 

magnitude of modeled ground heat flux  

The DTS was successful in capturing soil temperatures beneath the unpredictable 

snow patches. However, due to DTS spatial averaging along the cable to produce point 

measurements, temperature accuracy was compromised. Despite the possible accuracy of 

±0.04°C, this compromise lead to uncertainties in heat sources responsible for soil 

temperature differences beneath shallow and deep snow.   
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1. INTRODUCTION 

One sixth of the world’s population (Barnett et al. 2005) and sixty million people in 

the western United States are dependent on seasonal snowpacks for their water needs 

(Bales et al. 2006).  Increasing populations and rapid land use changes in mountainous 

areas have stressed water resources while anthropogenic climate changes have reduced 

available water from snowpacks (Mote et al. 2005).  Warmer temperatures have reduced 

snowpacks and caused earlier onsets of spring snowmelt (Cayan et al. 2001; Barnett et al. 

2005; Stewart et al. 2005).  In mountain areas of the western U.S., substantial portions of 

the annual precipitation fall at lower elevations having average winter temperatures of  -

3° to 0°C (Maurer et al. 2002 in Bales et al. 2006).  As a result of current warming, and 

with possible increases of 3°C within the next hundred years, greater amounts of 

precipitation will fall as rain, spring runoff will occur earlier, flooding were more 

frequent, and available runoff and water storage for peak summer use will be reduced 

(Bales et al. 2006).  In anticipation of warmer temperatures, receding snowlines, and 

increasing water demands, water managers will need detailed snowmelt energy and water 

balance information from the margin as transitional snow replaces deeper snowpacks.  

Further quantification of lower elevation snowline energy fluxes and water 

balances are needed to identify areas most sensitive to climate change (Bales et al. 2006).  

For example, decreasing snow water equivalents due to rain in the winter are found at the 

snowline (Bales et al. 2006), and warmer temperatures and the exposure of soil and rocks 

in fractional snow cover cause increases in turbulent and radiant heat fluxes (Dozier and 
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Painter 2004).  Due to a “critically limited” number of energy balance monitoring stations 

throughout the western U. S., Bales et al. (2006) calls for detailed studies of the snow 

energy balance fluxes and snow characteristics correlated to elevation and latitude. 

 Snow dynamics and energy balance are generally studied using one-dimensional 

physically based models.  These models use mathematical representations for all of the 

physical processes controlling energy fluxes to and from the snow.  The energy balance is 

used in conjunction with water mass inputs and outputs to predict melt water production.  

The point models can be used to in a distributed fashion to improve accuracy over 

heterogeneous terrain.  The more commonly used point models are SNTHERM (Jordon 

1991),  Simultaneous Heat and Water model (SHAW) (Flerchinger and Saxton 1989), 

Utah Energy Balance Snow Accumulation and Melt Model, and SNOBAL (Marks and 

Winstral 2001).   

 Throughout the semi-arid intermountain west, lower mountain elevations at the 

snow margin are characterized by shallow patchy snow with a different energy dynamic 

than deeper snowpacks at higher elevations.  Shallow snow can be fully penetrated by 

shortwave solar energy causing elevated levels of ground heat flux (Baker et al. 1991).  

Patchy snow, during melt, may receive substantially more of its energy for melt from 

local advection over adjacent bare soil patches (Zuzel and Cow 1978; Liston 1995).   

 An understanding of snow packs at low elevations areas at the snow margins is 

critical as these areas represent the connection between water storage above and water 

use below.  As intermittent and sparse snow packs melt, they participate in a temporal 

and spatial preconditioning of soil moisture.  This soil moisture is critical in establishing 

hydrologic conductivity between areas of deeper snow and water storage above and 
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streams and water users below (McNamara et al. 2005).  In addition, climatic warming 

trends will move these snow margins to higher elevations replacing deeper snowpacks 

and lessening water storage.  To better predict these changes in water production, it is 

necessary to gain more detailed knowledge of the snowmelt energy balance of shallow 

snow. 

Energy fluxes through snow are difficult to measure and model due to their spatial, 

temporal, and transient nature.  The unique components of shallow snow energy, local 

advection and solar penetration elevating ground heat flux, occur over and through 

constantly changing snow patches which cannot be measured with traditional weather 

station measurements in a fixed location.  Studies using mobile weather stations have 

been successful in measuring local advection to patchy snow surfaces. (Granger et al. 

2006).  However, measurement of ground heat flux below patchy shallow snow has not 

occurred due to limitations in measurement equipment. Mobile devices are not practical 

because of the snow disturbance caused by the device.  To overcome this problem, an 

instrument, or many instruments with large spatial coverage, would need to be placed 

near the soil surface ahead of the snow fall to capture temperature measurements below 

transient and patchy snow margins occurring in unpredictable locations.  With the large 

spatial coverage of near surface soil temperature measurements, ground heat flux can be 

calculated beneath the snow patches.  This flux information would then complete the 

energy balance for shallow patchy snow.  

Recently a new technology has shown promising results in temperature 

measurement.  Distributed Temperature Sensing (DTS) uses a fiber optic cable to capture 

accurate temperature readings on large spatial and temporal scales.  The technology has a 
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robust environmental operating range and has been shown to work well in capturing 

temperatures beneath discontinuous snow packs (Tyler et al. 2008).  The study by Tyler 

et al. (2008) was performed as a preliminary run of the DTS instrument in capturing the 

interface temperatures beneath shallow snow.  The experiment was performed in the 

foothills of Boise, Id in the Treeline site of the Dry Creek Experimental Watershed 

(UDCEW).  The watershed was a moderate elevation (1604m) semi-arid site with good 

prospects for intermittent or extended periods of patch and or shallow snow.  In the 2008 

study, the DTS proved capable of giving relative temperatures and accurately 

distinguishing between areas of snow and no snow across two aspects of a semi-arid 

watershed in Idaho.  Although these demonstrations have proven the value of DTS 

technology, few have applied it to snow problems.   

In this study, DTS provides point temperature measurements every meter along a 

fiber optic cable spanning our entire watershed. The point measurements represent the 

center of the average temperature of a section of cable just over one meter in length.  This 

property will limit the value of direct measurement of a point temperature but is very 

adept at capturing area averaged soil temperatures beneath transient unpredictable snow 

patches of differing snow depths.  When coupled with heat flux plate measurements, 

these cable averages allow us to investigate soil temperatures over large spatial extents in 

complex terrain.  Ultimately, these measurements will allow relative comparison of soil 

temperature between deep and shallow snow.  

This study investigates the spatial and temporal variability of ground heat flux 

beneath shallow patchy snow using DTS.  The DTS will allow the measurement of near 
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surface soil temperatures used to calculate ground heat flux and its contribution to the 

energy balance of shallow snow.  
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1.1 Background 

    Presently, the need to predict anthropogenic changes to climate and the 

consequent changes to the water balance has drawn attention to the snowmelt energy 

balance of shallow snow at the snow margin; the area most affected by climate change. 

There are three lines of literature relevant to this thesis and the study of shallow 

snow: studies on the energy balance of snowmelt over unfrozen soil, studies on the 

unique energy balance of shallow, patchy snow, and incoming solar penetration through 

shallow snow.  These segments of literature are fundamental to the current understanding 

of shallow snowmelt.  

1.1.1Snow Energy Balance  

The energy budget for a snow pack volume is 

  ( ) tQQQQQQQS mgehlelisn Δ++++++=Δ     (1) 

where ∆S is the change in snowpack energy content (J) during a time period Δt , Qsn, Qli, 

and Qle, are radiative fluxes of net shortwave (0.3µ-1.2µ), incoming longwave, and 

outgoing longwave radiation.  Qh, and Qe, are turbulent fluxes of sensible and latent heat, 

Qg, is conductive heat from the soil, and Qm is advected heat from the snow by meltwater 

draining from the snowpack.  All energy fluxes are in energy per time (J/t). (Marks and 

Dozier 1992).  Water mass contained in the snowpack is accounted for in both the 

accumulation and melt phases.  The mass balance is expressed as the change in water 

equivalent, ΔW (snow water equivalent, SWE) during a time period Δt and can be written 

as  

tEMPPW rsr Δ−−+=Δ )(        (2) 
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where Pr, Ps, Mr, and E are precipitation as rain or snow added to the pack and melt or 

evaporation leaving the snowpack. Figure 1.1 shows a schematic of the energy and mass 

balances of a melting snowpack.  
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Figure 1.1. Schematic of energy and mass fluxes to and from a melting snowpack.  

 
The study of snowpack energy and mass balances has undergone an evolution.  

Beginning with a focus on understanding and modeling large energy flux components of 

mid latitude alpine snowpacks, subsequent studies focused on specialized terrain or minor 

energy balance components and processes.  This evolution or change in focus is outlined 

in the following paragraphs.  

Snowpack energy balance studies focus on the largest energy components, net 

radiation and turbulent exchange, and generally ignore ground heat flux (Qg) commonly 

referred to as G.  Zuzel and Cox (1975) found that using net radiation, vapor pressure, 

and wind (for turbulent exchanges), improved snowmelt modeling 13% over temperature 

alone; signaling the need for more physically based snowmelt modeling.    
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Comprehensive snowmelt energy studies emerged confirming net radiation and 

turbulent exchange as the dominant energy fluxes to deep snowpacks.  Despite the 

deserved cursory treatment, many of these studies allude to the importance of G at certain 

locations or times or leave the importance of G quietly in the results.  During snowmelt at 

Emerald Lake in the Sierra Nevada Mountains, Marks and Dozier (1992) found radiation 

provided 66%-90% of the energy for snowmelt with ground heat flux (G) accounting for 

up to 12% when viewed on a monthly time scale.  The authors commented that although 

G was small, it produced significant melt during midwinter.  Cline (1997), investigating a 

very high elevation site in Colorado (3517m) found net radiation and turbulent fluxes to 

provide 75% and 25% of snowmelt energy over the winter season. Despite leaving G out 

of the energy budget, use of a heat flux plate helped verify that ground heat flux was 

insignificant except at the very end of the melt when snow was very thin.  Şensoy et al. 

(2006) studied high elevation sites at 40° latitude that were frequently very cold with 

shallow snow covers.  Results from the study find net radiation and turbulent fluxes 

accounting for 70% and 30% of the melt.  In addition the authors found that setting the 

soil temperature to 0°C beneath snow with a temperature less than 0°C gave them an 

unexpectedly high G.  To remedy the unexpected result, they used soil temperatures 

taken at 20cm depth from a geographically similar weather station.   

There are studies that find G to be very important at certain times of the winter or 

stages of melt. Expressed in graphic but not written form throughout the study by Şensoy 

et al. (2006) is the fact that G occasionally accounts for over 50% of the 5 day average 

energy balance. This usually occurs early in the season or later when the snow is 0.5m or 

less and the weather more volatile with both warm and cold periods.  The relative 
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contribution to the energy balance is particularly pronounced after spring cold spells 

when the snow pack cools and temperature gradients increase at the warm soil surface, 

increasing the soil heat flux towards the snow.  At a wind sheltered site, G accounted for 

over 50% of the energy fluxes for one fifth of the 5-day time intervals representing the 

winter.   

At the Reynolds Creek watershed near Boise, Idaho, Marks and Winstral (2001) 

found net radiation or sensible heat to be the dominant energy source during meltout.  At 

their ridge site, where winds are stronger and snowpacks are thinner, sensible heat flux is 

the dominant source of melt energy with G equal in magnitude to net radiation and 

essentially canceling it.  This situation results from meltout occurring before the 

crossover from negative to positive net radiation. Crossover occurs later in spring when 

sun angles are higher and days are longer allowing the magnitude of shortwave radiation 

to overcome thermal emission from the snowpack.  For the two years during meltout at 

the ridge site, G as a proportion of energy transferred was 10% and 19%.  For the same 

periods, when considering net radiation, net turbulent, and G as positive contributors to 

melt, G provides 20% and 82%.  This example does not show that G is large in 

magnitude but emphasizes the importance of G for melt at a time and location 

characterized by shallow snow and early meltout.  

Pomeroy et al. (2003) expressed results emphasizing potential daily values of G.  

While studying aspect affects on different components of melt energy in the Arctic, heat 

flux plates measured peak downward values of G exceeded 80W/m2.  The readings 

followed a melting period where the snow became patchy and shallow.  The high value is 

downward due to the frozen soil below the flux plates.  Fluxes of 20W/m2, directed 
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towards the snow, followed as a result of thawed ground below the plates and cloudy, 

cooler conditions cooling the snow above.   

Smith et al. (2007) suggests a feedback loop created by the addition of ground heat 

to the base of the snowpack.  The loop shows ground heat creating ground melt which 

increases soil moisture and soil thermal conductivity.  The increased thermal conductivity 

creates a positive feedback loop increasing the rate of heat conduction to the snowpack. 

Smith et al. (2007) supports the hypothesis that there is enough G to generate the 

measured ground melt by demonstrating that at most only 28% of G was needed to 

produce all of the ground melt.  In addition, the study finds that ground heat was 

responsible for up to 36% of all midwinter melt.  

Hawkins and Ellis (2007) followed an observation from a study by Cayan et al. 

(2001)  stating that 10% of the variation in all of the western United States SNOTEL data 

came from 3 sites in Arizona.  To explain this variance, Hawkins and Ellis (2007) 

demonstrated the difference between the energy budget of commonly studied higher 

altitude deep snowpacks and the energy budget of shallow transient snow found in the 

southwestern US.  Hawkins and Ellis (2007) found G accounted for up to 18% of the 

entire ablation period for one site.  The relative contribution of G is increased due to 

shallower snow depths with more atmosphere-ground interaction over several ablation 

intervals.  Climate is responsible for the increased G.  In the this region of the southwest, 

peak SWE is 35 days earlier and final ablation is 54 days earlier than the earliest of all 

other regions in the western US.  For midwinter ablation periods, incoming shortwave is 

suppressed due to low sun angles and short days.  In addition, the arid subtropical air 
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mass promotes a negative latent exchange through increased evaporation and 

sublimation, elevating the importance of G in the southwestern US. 

  Mazurkiewicz et al. (2008) addresses rain on snow events (ROS) and the shows 

that ground heat flux is an important component of the snow energy balance in the 

Pacific Northwest.  It is important to note that soil temperatures remained above 0°C 

throughout the water years under investigation.  In contrast to the notion, Mazurkiewicz 

et al. (2008) reports for individual water years, G accounted for 8%-42% and 42%-85% 

of the energy balance.  During ROS events, G accounted for 8%-24% of melt energy.  

Despite his analysis of G contributions to ROS, and concern for the non-influential 

reputation of G, Mazurkiewicz et al. (2008) doubts his G calculations due to “some bias” 

in his soil temperatures, stating the soil temperatures should have been 0°C in the spring 

due to percolating meltwater.   

The majority of snowmelt energy balance studies reviewed are classified as mid-

latitude alpine and focus on the energetics of seasonal, persistent snowpacks.  At these 

higher elevations, warm autumn soils are covered early, and gradually cooled throughout 

the winter.  By late spring, sun angles are high and snow ablation progresses quickly 

through the final stage. In this final stage soil temperatures are near 0°C with melt water 

removing the remaining temperature gradient and G flux.  These studies confirm that G is 

a minor contributor to the seasonal energy balance of the snow pack but can generate 

substantial melt throughout the midwinter season.  However, previous to final ablation, 

during rain on snow events, or at lower elevations or latitudes, snowpacks may become, 

or be characterized as, shallow and patchy at which time the energy balance of melt 

undergoes fundamental shifts at seasonal, monthly or daily time scales.  
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A few studies emphasize how a lack of spatially varying soil temperature data from 

has led to a lack of understanding of the importance of ground heat flux. In a study 

estimating meteorological variables for distributed snowmelt modeling over the Boise 

River near Boise, ID, Garen and Marks (2005) found that only 3 of 8 meteorological 

stations had soil temperature and moisture data.  These three locations were between 

1764 and 2338 meters elevation indicating season long sustained snowpacks over the 

soil.  Summarizing temperature data from these three sites, soil temperatures were set to 

0°C for snowmelt modeling, eliminating the temperature gradient between the soil and 

snow, essentially setting ground heat flux to 0 W/m2.  This treatment concurs with 

Mazurkiewicz et al. (2008) who states that the importance of ground heat flux is often 

ignored due to a lack of soil temperature measurements.  Garen and Marks (2005) go on 

to conclude that site location is as important as the variables measured.  For the Boise 

watershed in particular, the limited and high elevation range of data created difficulties 

with variable interpolations over the watershed with an elevation range of 1000-3200m. 

This limitation also suggests a lack of data from lower elevation areas with transient 

snow.  

1.1.2 Modeling of Ground Heat Flux  

Many methods for modeling G use a vertical temperature gradient in the soil.  Heat 

flux plates can measure ground heat flux directly but not at the soil surface.  Measured 

ground heat flux at the soil surface is typically derived from ground heat flux measured 

with heat flux plates, soil temperature, and soil properties at specified depths.  

Commonly, the soil temperature gradient is recorded as the difference between a near 
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surface temperature and a temperature taken at a depth where the diurnal signal is 

dampened.  Soil down to the dampening depth is referred to as the active layer.   

There are many models available for calculating G from soil and snow 

temperatures and conductivities; however, all are based on the equation for one-

dimensional steady state heat flow for a homogenous soil media  

  
dz
dTKG =           (3)  

where K is the soil conductivity and dT is the temperature change over distance dz. 

There are several ways of estimating a temperature gradient between the soil and 

snow.  The upper temperature can be of the soil or snow, either near the soil-snow 

interface. The lower temperature measure is usually taken at the diurnal dampening depth 

in the soil. At the dampening depth, the soil temperature remains at the theoretical annual 

average temperature of the air at the soil surface and is not subject to diurnal fluctuations.  

On an annual scale this is true, but when considering a melt period of a few days, weeks, 

or even months, this annual average temperature does not represent the true temperature 

at depth.  Figure 1.2 reveals the diurnal dampening occurs between 30cm and 45cm depth 

for the time period of interest and location in this study.  The depth of soil temperature 

measurement was of particular interest in this study as our measurements were taken 

between 1 and 3cm depth.  This depth is relatively close to the surface compared with 

other studies accounting for ground heat flux.  Also important to this study was the use of 

both soil and snow temperatures in establishing the temperature and the inclusion of 

vapor flux in the heat conductivity of the soil.  All of these factors are included in a 

model for ground heat, with alterations, used by Marks and Dozier (1992), the method 

selected for this study.  
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Figure 1.2. Plot shows a dampening of diurnal temperature fluctuations between 
30 and 45cm depth. This represents the lower extent of the active soil layer. The 
instantaneous spikes in temperature are due to instrument noise and do not 
reflect temperature variations in the soil due to surface processes.  

 Vapor flux can significantly affect soil heat conductivity.  For frozen soils, Chung 

and England (2006) showed that late winter and early spring ground flux can increase the 

snowpack energy by 17%.  They further concluded that despite air convection and vapor 

diffusion being 10-7 of conduction, vapor fluxes can be large when soils are unfrozen and 

wet; indicating that vapor diffusion and G increase for unfrozen soils. This finding further 

supports the formulation for G  (Marks and Dozier 1992) which takes into account vapor 

diffusion in both soil and snow thermal conductivities. 

When considering the importance of various energy components, temporal scale 

can obscure the relative importance of heat fluxes.  Long-term averages can dilute the 

magnitude and importance of fluxes at different times.  Marks and Dozier (1992) note 
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that hourly average energy fluxes can be greater than +500 W/m2 despite daily averages 

rarely exceeding + 200 W/m2.  For example, radiation as the largest percent of the annual 

snow energy balance is true only if snow ablation continues into late spring when sun 

angles are higher and days are longer (Mazurkiewicz 2008). This notion is supported by 

Marks and Winstral (2001) with their crossover concept when net radiation shifts from 

negative to positive in spring.  In the literature, monthly ground heat flux values of 1-

14W/m2 are often reported (Table 1.1).  Less often are reports of the percentage of 

monthly positive flux these values represent which can be as high as 100% (Marks and 

Dozier 1992; Smith et al. 2007).  At these times, such as throughout mid-winter, 

groundmelt is the only melt taking place and is attributed solely to groundheat.   

Table 1.1: Snow energy and mass balance studies including a range of G values, G 
as a percent of total energy flux, elevations, soil or landscape type, and method of G 
calculation.  
 G  W/m2 % of total Q Elevation Soil or lanscape Method Authors

7-1 1-12 3085 Gravel, sand Calculated Marks and Dozier 1992
8-1 1-17 2800 Meadow Calculated Marks and Dozier 1992

0-4.6 - 500 Lacustrine farm Measured Pomeroy et al. 1998
5-14 - 2097 Sagebrush Steppe SNOBAL Marks and Winstral 2000
0-14 - 2061 Aspen/Fir grove SNOBAL Marks and Winstral 2000
>10 1 2112 Steppe SNOBAL Şensoy et al. 2006
1-5 17 - Steppe SYNTHERM Chung and England 2006
6-1 1-18 2325 Ponderosa SYNTHERM Hawkins and Ellis 2007

6-19.5 - 1455-1765 Arizona G=Kdt/dz Smith et al. 2007
- 8-85 1018-1294 Pacific NW unfrozen SNOBAL Mazurkiewicz et al. 2008
- 8-24 1018-1294 Rain on snow SNOBAL Mazurkiewicz et al. 2008  

 
Shallow snow develops from local conditions and has an energy balance different 

from deeper snowpacks.  When snow is patchy, local advection dominates the melt 

energy.  When snow is shallow, below 10cm depth, solar radiation can penetrate the 

snow and warm the underlying soil generating significant additional ground heat flux to 

the snow (Baker et al. 1991).  

Shallow patchy snow can develop through differential accumulation or melt or 

both.  This patchiness usually occurs early and late in the snow season and has been 
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documented in a variety of environments including arctic and alpine tundra, grasslands,  

under forest canopies, and the arid Southwest (Marsh 1999; Hawkins and Ellis 2007). 

Differential accumulation can be attributed to orographic effects, canopy 

interception or drifting up until the time of peak SWE (Blöschl and Kirnbauer 1992; Luce 

and Tarboton 2001) For open complex terrain, differential melt results from the 

topographic features slope and aspect.  In the western US, storm patterns typically scour 

southwest facing slopes while depositing on northeast facing slopes. 

Slope can cause variations in incoming and reflected solar.  Aspect can affect 

albedo and exposure to direct incoming solar radiation.  The melt patterns in the western 

US, loosely defined by north and south facing aspects, result from thinner patchy 

snowpacks on southwest slopes receiving the most radiation for melt.  As snow depth 

recedes, terrain features such as bushes, rocks, and bare soil, with their reduced albedo, 

promote small scale differential melt resulting in patchiness on individual faces.  

When viewed at scales below approximately 8km, dominant radiation and regional 

scale advection are overcome by local advection from adjacent snow free soil and 

vegetation (Liston 1995).  Bare ground or vegetation, with albedo ranging from 5%-30%, 

can heat to temperatures far above the 0°C limit for snow (Grey and Male 1981).  This 

additional sensible heat is then transferred downwind to an adjacent snow patch at a rate 

declining with distance from the leading upwind edge of the patch (Essery et al. 2006).  

As an example of how local advection shifts the energy balance, Zuzel and Cox (1978) 

note that over a continuous snow surface, 60% of melt energy is from net radiation, but 

over a single snowdrift, 60% of the melt energy comes from advected heat radiated just 

from  the surrounding bare soil and vegetation.   
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Liston (1995) modeled the surface energy balance over patchy snow finding up to a 

30% increase in convective melt energy but his surface model intentionally disregards 

snow depth and ground heat flux. Olyphant and Isard (1988) found that increasing wind 

speed resulted in modeled increases of 138-347W/m2 of available sensible heat from 

snow free patches to the leading edge of a snow patch.   At 1000m from the leading edge, 

additional sensible heat was reduced to 58W/m2. These values compared to calculated net 

radiation values of 93-138W/m2. The modeled results differ from their empirical 

estimates of less than 1 W/m2.  In a field study on advection by Neumann and Marsh 

(1998), ground heat flux plates were not installed below the snow patch, therefore G was 

not included in the snow patch energy balance.  

1.1.3 Solar Shortwave Radiation Penetration of Shallow Snow 

 Visible light in the wavelength band 0.3 -1.2µ, penetrates shallow snow providing 

energy to heat the underlying soil resulting in increased heat conduction (G) to the snow 

(Baker et al. 1991).  The magnitude of light penetrating the snow follows a characteristic 

extinction curve with increasing snow depth (Figure 1.3).  Therefore, as the snow depth 

decreases, greater solar inputs to the soil are expected to increase surface soil 

temperatures and melt.    
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Figure 1.3. The figure adapted from O’Neill and Grey (1973) light extinction 
through the snow surface as the percent of incident light reaching a given depth.  
The light is wavelengths 0.3µ-1.2µ. 

Solar radiation penetrating snow less than 10cm in depth, is absorbed, and 

conducted back into the snowpack (Baker et al. 1991).  The snow is porous so the 

reflectivity occurs not at the surface but throughout  near surface depths of 5-100cm 

(Baker et al. 1991).  More important is the percent of incident radiation to the snow 

surface that reaches the ground resulting in increased soil temperatures.  

The amount of shortwave radiation reaching the soil shares a coupled relationship 

with snow albedo (O'Neill and Gray 1973).   During the melt period, snow albedo can 

range from 0.85 to 0.45 for new and old snow surfaces.  After a quick decline in albedo 

within 2-3 days, the albedo follows a decreasing rate of change as the snow surface ages 

(Dingman 2002).  In addition, solar penetration increases with snow grain size allowing a 
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larger proportion of solar energy to penetrate as the snow ripens (O'Neill and Gray 1973).  

A snow surface albedo of 70% is considered the minimum to negate surface albedo 

reduction from underlying dark plant or soil surfaces (O'Neill and Gray 1973; Baker et al. 

1991).  To re-phrase, once the snow albedo is above 0.7, underlying plants and soil no 

longer affect snow surface albedo.  Translating this to snow depth, Baker et al. (1991) 

used plant cover to categorize the masking depths and found 5.0, 7.5, and 15cm for bare 

soil, sod, and alfalfa. 

Figure 1.3, adapted from O’Neill and Gray (1973), shows the percent of surface 

radiation (0.3 -1.2µ) that reaches a given depth of snow.  For a black surface, 40% of 

incoming solar will reach the surface below 1cm of snow and 3%-4% will reach the 

surface below 10 cm of snow.  For solar energy levels sufficient to raise soil 

temperatures, 10 cm is the accepted maximum depth (Baker et al. 1991).  

To capture and compare the effects of solar penetration on soil temperatures, it is 

necessary to measure soil temperatures beneath undisturbed snow greater and less than 10 

cm depth.  During spring melt, shallow snow is unpredictable due to its transient nature 

in space and time.  A point measurement may capture soil temperatures below various 

depths of snow but, not at comparable times.  To make a reasonable comparison between 

deep and shallow snow, many point measurements would have to be made beneath 

unpredictable snow conditions and locations simultaneously.  As a solution to this 

problem, recent DTS technology has offered high spatial resolution temperature 

measurements derived from a watershed scale length fiber-optic cable placed just under 

the soil surface previous to snow fall.  The cable can measure soil temperatures from 

multiple locations at the same time.  
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1.1.4 DTS Theory 

Capturing temperatures at the snow/soil interface can be done at the point scale 

which may not represent variations over time and space.  Conditions at the snow/soil 

interface can vary with many variables such as time, snow depth, aspect, and 

environmental conditions.  Recently, Distributed Temperature Sensing (DTS) has 

emerged as a technology capable of large spatial applications in environmental research.  

Soil/snow interface temperatures (Tyler et al. 2008),  groundwater borehole logging, 

groundwater/stream interactions, physical limnology studies, and atmospheric profiles 

(Selker et al. 2006 ) represent the variety of current uses for DTS.  The advantage for all 

of these applications is the high temperature and spatial resolution not possible with 

traditional hydrologic instruments.  

 DTS receives accurate temperature measurements with high spatial resolutions 

from common fiber-optic cable over distances up to thirty meters.  The technology is 

based on Optical Time Domain Reflectometry (OTDR) where pulses of laser light are 

sent down the cable, reflected back, and sensed to calculate temperature and location. 

With this technology, high resolution, 1m, 10s, and 0.1°C snow soil interface 

temperatures enable a detailed study of the snow-soil interface temperatures over varying 

areas of complex terrain throughout the winter and melt periods.  

Physical properties of the cable including refractive index and the silica molecular 

lattice, are used to calculate temperature, location along the cable, and the spatial 

resolution of the measurement. Light pulses are sent down the length of the cable.  The 

light energy excites the lattice structure and silica molecules of the fiber causing the 

structure to vibrate.  This vibration scatters the light sending several forms of backscatter 

 



21 
 

back along the same path within the cable.  The Raman backscatter used to calculate 

temperature has two components.  A Stokes signal is returned with a wavelength greater 

than the incident light which is stable with respect to temperature and an anti-Stokes 

return has a wavelength lower than the incident light and is responsive to temperature.  

The ratio of anti-Stokes to Stokes has a linear relationship to temperature and is used is 

calculating a raw temperature reading.  The raw temperature readings, or return signal, 

are altered by a linear attenuation of signal along the fiber and by discrete losses of signal 

from the system, cable connections, or damage to the fiber.  Through a variety of 

calibration techniques using know temperatures, the raw signal data is corrected and 

converted to actual temperatures.  Details of the calibration used in this study are given in 

the methods section of this thesis.  The following paragraphs explain how the DTS takes 

measurements and follow the examples from (Smolen and van der Spek 2003).  

The location of measurement along the cable is determined by the round trip time 

of the light pulse and the speed of light in the cable.  First the light velocity of the cable is 

determined by dividing the speed of light by the refractive index of the cable.  The 

unitless refractive index for the glass in our cable is ~1.5 (1.46).  The speed of light in the 

cable is therefore (3x108ms)/1.5 or 2x108m/s.  The distance to a point on the cable, is half 

of the round trip time of the outgoing light pulse and backscatter multiplied by the speed 

of light.  

The temperature measurement along the cable is taken using the average 

temperature of the cable over the spatial resolution set by the user.  In this study, a 1m 

spatial resolution was set.  This means that the temperature readings are the average 

temperature of each 1m section of cable, centered over the respective 1m sections.  The 

 



22 
 

1m spacing is controlled by a shutter accepting the incoming scattered light.  The shutter 

is open for a length of time necessary to capture one meter (z) of light.  The open shutter 

time is determined by dividing the round trip time of a meter of light by the speed of light 

in the cable.  Therefore, the open shutter time is (2*1m)/2x108m/s, 10-8s, or 10ns.  

The temperature measurements are taken continuously and averaged over a period 

of time set by the operator. The accuracy of temperature measurement is a trade-off 

between cable length and measurement time. A shorter cable will give a more accurate 

temperature measure. A longer averaging time will give a more accurate the temperature 

measurement.  These tradeoffs are expressed in Figure 1.4.  This study used a short 375m 

cable, and a long, hourly averaging time to achieve temperature accuracies of ± 0.03˚C.   

 
Figure 1.4. Temperature resolutions (exponential fit) of the DTS for 1 and 10 
minute averaging times for up to 4 km of fiber-optic fiber. (Soto et al. 2007). 

How the Agilent DTS records point measurements is fundamental to spatial 

accuracy.  To report the measurements, the Agilent averages temperature over one spatial 

scale while reporting at another. In this study, the spatial resolution of the averaging 

(light pulse width) and reporting were set at one meter, the finest setting.  The point 

measurement is centered over the pulse width.  However, the pulse does not have sharp 
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edges and uses temperatures found about 0.1m past the ends of the 1m light pulse.  This 

has two implications: first, if you are trying to measure the temperature of a target that is 

not a full meter wide, the DTS will average in temperatures from outside your target and 

second, temperatures are taken slightly beyond the pulse width so there will be influences 

in your temperature measurement from outside the specified pulse width.  For the Agilent 

machine, meter 0 is at the connection to the DTS machine (Dorighi 2009a). When using a 

DTS it is very important to consult the manufacturer on specifications for the averaging 

properties as the tapered averaging can greatly affect measurement.   

In March of 2007 the DTS was tested in the Treeline site to assess the capability of 

the instrument for measuring snow/soil interface temperatures beneath varying snow 

cover in complex terrain.  Initial results were promising and led to the justification of the 

present study.  The publication of this work (Tyler et al. 2008) includes two similar 

studies: one done by a team in Mammoth, California and another done in Boise, Idaho.  

The following paragraph summarizes the findings of the two studies in the publication.  

Two similar studies were performed in different locations testing DTS capabilities in 

capturing snow soil interface temperatures.   In a late-spring study at Mammoth 

Mountain, California, a 24 hour effort using 330m of fiber-optic cable produced 

temperature accuracies of 0±0.2°C using 10s averaging (Tyler et al. 2008).  Of note at the 

mammoth Mountain site was the lack of damage to the cable after being buried for the 

entire winter and temperatures recorded as high as 40°C where the cable was snow free, 

exposed on the soil surface.  Tyler et al. (2008) also highlights a similar study occurring 

at the same time at the Treeline site in the foothills outside of Boise Idaho.  In the Idaho 

study, 36 hours of DTS data were collected from an 85m section of fiber-optic cable 
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buried just beneath the soil surface.  The cable captured the differential melt occurring on 

opposing North and South facing slopes following a 50cm late-season snowfall.  The 

DTS proved effective in capturing conditions beneath unpredictably located patches of 

snow and showing differential melt patterns due to the effects of solar heating on the 

opposing slopes.  

1.2  PROBLEM STATEMENT 

 At lower latitudes or elevations, regional air masses or local climates can create 

seasonal conditions characterized by persistent or transient shallow snowpacks with 

unique a unique energy balance (Figure 1.9).  In these areas, the relative importance of 

ground heat flux may differ from high alpine snow energy balances on seasonal or 

monthly scales (Yenko 2003).  For single events, Mazurkiewicz et al. (2008) showed G 

to be significant despite large amounts of meltwater infiltration beneath the snowpack.  

At daily scales, Pomeroy et al. (2003) demonstrated ground heat flux to be very high 

following a period of rapid ablation.  These studies represent a recent interest in ground 

heat flux beneath shallow snow or report unexpected or unusual ground heat flux values 

found at a time when shallow or patchy snow was present.  None of the studies address 

the range of ground heat flux values found as snow depth recedes from deep, >10cm, to 

complete ablation.  According to the light extinction curve (Figure 1.3), it is likely there 

is a measurable soil temperature response below snow up to 2cm depth with a rapidly 

decreasing effect below 2 to 10 cm snow depth.  Because there is little documentation of 

ground heat flux values under shallow snow, doubt is often cast when measured or 

modeled values for ground heat flux exceed those found in the literature.   
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The objective of this study is to compare ground heat flux beneath snow less than 

10 cm depth (shallow) and greater than 10cm depth to see if solar penetration of shallow 

snow results in the heating of soils and an increased ground heat flux.  Further objectives 

of the study are to evaluate the mathematical model for ground heat flux and to assess the 

DTS as a tool for measuring soil/snow interface temperatures beneath spatially 

unpredictable shallow snow extents.  

 

Figure 1.5. Conceptual model of shallow patchy snow energy balance. Qsn is net 
short wave radiation; Qli is incoming longwave radiation; Qle is outgoing 
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by meltwater draining from the base of the snowpack.  The 10cm line represent
the maximum penetration depth of solar radiation.  
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2. STUDY SITE 

2.1 Study Site 

2.1.1 Site location 

The Dry Creek Experimental Watershed (DCEW) was established in 1998 by the 

Agricultural Resource Service and Boise State University to investigate watershed 

processes.  The watershed is situated in the Foothills to the north of Boise, Idaho (Lat: 

43° 34'N, Long: 116° 14'W) which represent the southwestern extent of a mountain range 

that extends the Rocky Mountains to the Canadian border.  The DCEW is represented by 

four experimental sites at four elevations: 1151m, 1640m, 1700m, and a SNOTEL site at 

1932m.  The lowest site is primarily snow free throughout the winter whereas the upper 

two sites experience deeper persistent snowpacks throughout the winter.  The remaining 

site at 1640m is characterized by intermittent snowpacks therefore offering the greatest 

opportunity for capturing the characteristics of shallow, patchy snow. 

The Treeline site at 1640m is a 0.02km2 sub basin of the Dry Creek Watershed 

(Figure 2.1).  The watershed has three ephemeral streams with a central intermittent 

stream splitting the watershed and draining to a southeast azimuth of 139°.  
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Figure 2.1. Treeline watershed site map. 

2.1.2 Soils 

The Treeline site has sandy loam soils with properties listed in Table 2.1.  It is 

important in this study to note that soils drain very quickly and overland flow does not 

occur.  In addition, because of the lower elevation of the site, soils can remain unfrozen 

under the snow, or frozen in years when the there is little snow and soils are exposed to 

freezing air temperatures.  
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Table 2.1. Soil properties for Treeline (Gribb et al. 2009).  
Soil Properties g/cm3 %

Soil Depth (cm)
Bulk 

Density
Particle 
Density Gravel

Course  
Sand

Fine    
sand Silt Clay Porosity

0-24 1.5 2.6 22 55 16 5 2
24-52 1.5 2.6 25 53 16 5 1 0.38

 

2.1.3 Climate 

Pacific maritime air masses drive the precipitation regime for the Boise region.  

The majority of precipitation is delivered between December and June by northwest 

winds and cold fronts originating from the Aleution Low (Williams 2005).  Treeline 

receives an annual precipitation of 57cm, intermediate between Boise (31cm) on the 

valley steppe below and approximately 100cm at the forested Bogus Basin SNOTEL site 

above (Williams 2005).  In summer, a Pacific high pressure system dominates the region 

with occasional thunderstorms temporarily relieving very dry conditions.   

 The Treeline site is situated between 1600 and 1650m. This elevation marks the 

start of an ecotone where the sagebrush-steppe gives way to the coniferous forests above. 

The sagebrush-steppe has a Köeppen classification of BSk indicating an annual average 

temperature below 18°C, with at least one month averaging below 0°C, and annual 

average precipitation of 25-50cm (10-20 inches).  A climatograph for Boise is provided 

in Figure 2.2.  The Treeline site receives an annual precipitation of 57cm which provides 

sufficient conditions for coniferous trees to take hold. Therefore, the Treeline has 9% 

canopy coverage during the winter season provided by 18 Ponderosa Pine and Douglass 

Fir trees (NOAA 2001).  
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Figure 2.2: Climatograph of average monthly temperature (Line) and 
precipitation (Bars) from 1971-2000 for Boise, Idaho, elevation 858m (2008). 

2.2 Snow Year 2008-2007 

 The winter of 2007-2008 was average for the mountains and above average at the 

Treeline site.  Figure 2.3 shows a SWE history from the National Resource Conservation 

Service (NRCS) Bogus Basin snow survey site approximately half a mile from, and at the 

same elevation as, the Treeline site.  March 1 SWE for 2008 is the 6th highest on record.  

The deep snow, cold temperatures, and intermittent snow storms extended the snowmelt 

with April 22 as the final meltout day for the watershed.   
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Figure 2.3. NRCS Bogus Basin snow course March 1 SWE measurements for 1956-
2008. The 2008 winter brought the sixth largest SWE measurements ever recorded 
at this lower elevation. Adapted from NRCS (2008) 
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3. METHODS 

 The Treeline site provided an optimum location and size, with its moderate 6400m 

elevation to capture the energy dynamics of shallow snow.   A DTS system was deployed 

throughout the watershed to capture soil/snow interface temperatures.  The DTS 

measurements provided ground heat flux to complete weather data logged hourly by a 

permanent weather station and soil pits.  One soil pit was outfitted with two heat flux 

plates to validate G calculations from DTS output.  Snow surveys were used to track 

snow depth and SWE for the entire melt period.  After complete meltout in late April, the 

DTS cable was removed from the watershed for calibration.  

3.1 Snow Surveys 

3.1.1 Basin SWE  

Surveys of snow depth and snow water equivalent (SWE) were performed weekly 

throughout the snowmelt season at thirteen sites chosen for redundant sampling of 

representative aspects and slopes (Figure 3.1).  Sample point selections, equipment, and 

techniques follow the recommendations found in Grey and Male (1981).  The authors 

suggest that five samples, no more than 30m distance between samples, be taken at each 

site. Due to the small size of the watershed, three samples were taken within 1m at each 

site with sites no more than 50m apart.  
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3.1.2 Transect Depth Measurements 

When snow patches developed over the fiber-optic cable, transects were set up over 

the snow above the cable.  Daily snow depth measurements were taken along the string 

transects over the snow patch (Figure 3.1).  Marks were made on the string every half 

meter with whole meter marks coinciding with meter marks on the DTS cable below the 

string.  A 4mm rod was inserted into the snow to measure depths with an accuracy of 

0.5cm.  The holes had very little to no effect on the melt rates as evidenced by the lack of 

surface cupping around the holes and the holes being present with less than 0.5cm of 

snow on the ground. 

 

 
Figure 3.1. Thirteen points used for weekly snow surveys. The points were chosen 
to represent redundant sampling for all faces and slopes in the watershed.  DTS 
Fiber optic-cable placement yielding snow-soil interface temperatures.  
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A Federal Snow Sampler was used to take samples of snow depth and SWE at the 

thirteen sites. At each site, three samples were averaged for depth and SWE. If the snow 

depth is below 25cm, the three samples were weighed together in a plastic bag. In 

addition, the average of two depths were taken every 3 meters from one site to the next 

using a Life Link metric snow probe.  Basin averaged SWE had a maximum of 22.4 cm 

on February 13 with the final melt on April 22 (Figure 3.2).  
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Figure 3.2. Measured basin average snow water equivalent normalized to 
maximum SWE of 22.4 cm. 
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3.2 Meteorology 

3.2.1 Instrumentation 

The Treeline watershed has an instrumented weather station and several 

instrumented soil pits on the two primary aspects.  A distributed temperature system was 

used to log soil-snow interface temperatures throughout the watershed. See Table 3.1 for 

specifications on all of the instruments used in this study.  

Table 3.1. Specifications for meteorological and soil instruments used in this study. 
Instrument Range Accuracy
Campbell CR10XTCR Thermocouple Reference T  -35 to 50°C ± 0.5°C
Belfort 5915-12 weighing bucket raingage 12 in ± 0.5%
03101 R.M. Young Wind Sentry Anemometer 0 to 50 m/s ± 0.5 m/s
Campbell CS215 Temperature and RH Probe 0 to 100% ± 2%
Campbell CMP3 Pyranometer 0.3 to 2.8µm ± 5%
Agilent N4385A Distributed Temperature System -10° to 60°C ± 0.03°C
Campbell HFT3 Soil Heat Flux Plates ± 100 W/m2 ± 5%
Campbell CS615 Water Content Reflectometer (VWC)  0 to 50% ± 2.5%
Traceable 4000 Digital Thermometer  -50 to 150°C ± 0.05°C  

3.2.2 Precipitation Data  

Precipitation data for 2008 was gathered using a weighing bucket rain gage and 

processed using the Automated Precipitation Correction Program (APCP) (Nayak 2008).  

Precipitation was logged at 15-minute intervals from a bridel shielded Belfort 12 inch 

capacity weighing-recording rain gage 2 meters above the ground.  Using the APCP, 

electronic and wind noise, decanting effects, and out of range values were removed from 

the precipitation data. APCP filtered data was then wind corrected using the program 

DFIR Intercomparison Shielded Gage (Figure 3.3) (Yang et al. 1998).  The program 

accepts hourly inputs of precipitation data (mm), wind speed (m/s), and temperature (°C).  

Precipitation is first classified as rain, mixed, or snow, based on critical temperature 
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settings. The upper temperature limit of 3°C defines all precipitation as rain and a lower 

limit of 1°C defines all precipitation as snow. Any precipitation falling between these 

limits is considered mixed rain and snow. In the current time-step, the program uses the 

temperature classification to choose one of three equations for the adjusting calculation.  

The wind correction formulas are those for shielded gages (Campbell 2003).  Because the 

only factor in gage under-catch is wind speed (Yang et al. 1998), in each time-step, only 

precipitation class, wind speed, and precipitation average are used to calculate the wind 

correction for a shielded rain gage.  
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Figure 3.3. 2008 noise and wind corrected precipitation for the Treeline shielded 
rain gage. 
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3.3 DTS 

3.3.1 Soil-Snow Interface Temperatures 

 To assess ground heat flux through time and space, a high resolution Distributed 

Temperature System (DTS) was deployed to capture soil-snow interface temperatures.  

These temperatures and depths of measurement were later used to calculate G.   

 The DTS has two components: a multi-mode optical fiber cable (Kaiphone 

Technology Co., ltd, 50/125 PE Jacketed Armored Optical Fiber Cable) that responds to 

temperature and an Optical Time Domain Reflectometer (Agilent Technologies N4386A)   

that detects temperature along the cable length.  To capture snow-soil interface 

temperatures, 375m of fiber-optic cable were buried an average depth of 2.5cm beneath 

the soil (Figure 3.4) covering all aspects and slopes of the UDCEW (Figure 3.1).  The 

DTS uses light pulses to measure temperatures every meter along a fiber optic cable with 

an accuracy of ± 0.03°C.  
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Figure 3.4. Burial depth for 375 meters of DTS fiber-optic cable used for 
sampling snow-soil interface temperatures. The cable marks represent 
measurement locations not absolute distance from the measuring device. 

3.3.2 Calibration of DTS 

Fiber optic cable and the connectors on each end of the cable have unique 

properties.  The cable has a natural attenuation of signal as a function of distance from 

the signal source/receiver and requires a correction.   The connectors introduce a discrete 

loss of signal.  For this study, the two connectors reside between the signal 

source/receiver and the origin of the cable used for the measurements.  Therefore the 

connector losses are consistent for all temperature measurements.  The DTS system, 

source/receiver, cable, and connectors, require a temperature correction to “offset” the 

loss of signal that is consistent for all temperature measures beyond the point of discrete 

loss.  

Calibration of the DTS cable was complicated by damage to the cable.  At 

approximately 90m out on the cable, rodents had chewed the cable to the inner sheath 
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without breaking the glass fiber.  This damage created two discrete sections of cable each 

with unique but consistent properties requiring separate calibrations of attenuation and 

offset (Dorighi 2009b). This damage appears as a break in slope of the raw temperatures 

(Figure 3.5).  The calibration was performed in three steps after the cable was extracted 

from the soil on April 22, 2008.   
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Figure 3.5. February 28 raw temperature trace (uncalibrated) for 370 meters of 
cable under uniform conditions and negligible melt.  The break in slope 
represents damage to the cable at the break.  

Initial calibration of the DTS cable for attenuation and offset was performed using 

a single ended DTS measurement with a dual bath method.  Two eleven meter sections of 

the 550m field fiber-optic cable were placed in two water baths of 17.58°C and 20.95°C 

respectively.  The two calibration sections were located within the front section of the 

cable, previous to, or left of, the damaged area (Figure 3.5).  The cable was calibrated for 

a 10 minute averaging period.  Water bath temperatures stayed within ± 0.03°C during 
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the calibration as monitored using VWR Traceable Digital Thermometers with an 

accuracy rating of ± 0.001°C.  

The calibration trace was later processed using the Agilent recommended method 

of reducing the calibration trace signal back to the component Anti-stokes and Stokes 

return signals and recalculating the attenuation ratio and offset.  The resulting attenuation 

and offset calculations did not reproduce bath temperatures well and was not used.  The 

two bath method may have been flawed with the baths close in temperature and utilizing 

cable sections too closely spaced.  The value of this step was the know temperature of the 

baths that later provided know target temperatures when calculating the temperature 

offset.  

For the second step, the cable damage location was identified and separate 

corrections for cable attenuation were performed on the front and back sections of cable.  

The new attenuation correction was found using all points in the front section and 140m 

immediately beyond the damage. The 140 pts beyond the damage have the most 

consistent attenuation slope and least amount of variability in both terrain conditions and 

raw temperatures.  The raw temperatures were taken from an in situ temperature trace on 

February 28, 2008 in the Treeline watershed.  The trace had several desirable 

characteristics. On February 28th, conditions in the watershed had been stable for several 

days with essentially no melt or runoff coming from the watershed as evidenced by the 

weir at the mouth of the watershed.  The section had a narrow temperature variation of 

0.91°C making the linear attenuation obvious and predictable.  Attenuation corrections of 

-0.374 and 0.245dB/km for the front and back sections respectively were calculated and 

applied to remove the slopes (Figure 3.6).   
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Figure 3.6.  Calibrated February trace.   

The third step was to find an offset that would match cable temperatures to the bath 

temperatures from the initial calibration. For this step, the front and back section 

attenuation corrections were applied to the initial calibration, raw temperature trace from 

the two bath calibration. Next, the difference was found between the average of the two 

bath temperatures and average of the two cable sections representing the baths.  The 

difference was added as an offset adjustment to bring the cable temperatures to within 

0.01% of each of the respective bath temperatures.  Finally, the new offset was applied to 

the February 28 trace to produce the calibrated plot in Figure 3.6.  

 

3.3.3 Coordination of Cable Location and DTS Point Measurements 

 Coordinating the DTS point measurements with the corresponding location on the 

cable is critical to relating near surface soil temperatures to overlying snow depths.  

Several factors necessitate this coordination.  There are meter marks on the buried fiber- 
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optic cable but they do not coordinate exactly with the distance measured by the machine.  

The buried cable has been cut arbitrarily and spliced to an intermediate section of 

connection cable designed to protect the actual connection to the machine.  As bare 

patches of soil emerged in the early melt, it was possible to accurately locate 

measurement points on the cable.  Figure 3.7 shows a temperature trace over two bare 

soil patches separated by a 1.9m snow patch. Cable meter 1295 has at least ¾ of a meter 

of soil to each side of it.  DTS temperature averaging occurs ½ meter to each side of the 

point with a rapidly tapering temperature influence for the next ½ meter beyond the 

theoretical measurement width.  Point 1295 represents nearly the true temperature of the 

soil.  Point 1299 is located in a soil patch 1.15m wide.  Because the soil temperature is 

nearly that of the wider soil patch the 1299 cable mark must be nearly centered in the soil 

patch.  From this inference, the DTS point measurements can be coordinated with the 

numbered cable marks.  
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Figure 3.7.  Elevated DTS temperature measurements are coincident with 
narrow bare soil patches allowing coordination of the DTS measurements with 
precise cable location. 
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3.4 Ground Heat Flux 

3.4.1 Measured Ground Heat Flux  

The procedure for calculating ground heat flux (G) from heat flux plates follows 

the calculations outlined in the Campbell Scientific HFT3 manual (2001).  Ground heat 

flux was measured by averaging two HFT3 ground heat flux plates at 8cm depth.  Two 

pairs of thermocouples over the flux plates at 2 and 6cm depth were averaged to measure 

the temperature of the overlying soil.  A CS615 Water Content Reflectometer at 5cm 

depth measured the volumetric soil moisture content which is used to adjust the soil 

conductivity (Cs).  The change in soil heat storage (S) is calculated using the following 

equation:  

  
t

dCTS ssΔ
=          (4) 

 

Where ΔTs is the temperature change during each time interval, d is the depth of 

measured heat flux (d=0.08m), and t is the time interval.  The soil heat flux at the surface 

(Gsfc) is given by: 

           (5) SGG cmsfc += 8

3.4.2 Calculating G from DTS Temperature Measurements 

 The ground heat flux model chosen and modified for this study is based on 

the equation for one-dimensional steady state heat flow for a homogenous soil media 

(Equation 3).  The assumption of a homogenous media with steady state heat flow 

remains for the equation but is violated by the actual soil conditions. The varying soil  
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conditions and implications are discussed in results and discussion section 4.1 “Affects of 

Soil Temperature Measurement Depth.”  

The model was chosen primarily for its use of single soil and snow temperatures in 

establishing a temperature gradient at the snow soil interface and a detailed accounting of 

vapor diffusion in calculating effective soil conductivity.  The original model found in 

Marks and Dozier (1992) considers the diffusion properties of both the soil and snow and 

assumes that homogenous, thermally active soil and snow layers are in contact with each 

other.  The thicknesses of the active layers are represented by the distance from the snow 

soil interface to the temperature measures for the respective layers. In addition, the 

method applies a vapor diffusion correction to soil and snow conductivities. Ground heat 

flux is approximated using the following equation from Marks and Dozier (1992): 

gesseg

sgeges

zKzK
TTKK

G
+

−
=

)(2
         (6) 

Where Kes and Keg are effective snow and soil heat conductivities, Tg and Ts are 

temperatures of the ground and snow taken at their respective vertical distances from the 

soil-snow interface Zg and Zs.   

All of the DTS temperature measurements were made after the commencement of 

melt when the temperature of the entire snowpack (Ts) was 0°C.  Additional energy from 

the soil cannot raise the temperature of the snowpack and can only cause melt or heating 

of percolating melt water which is assumed to be immediately removed from the 

snowpack.  Because the snowpack cannot change temperature by storing the additional 
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energy, conductive properties of the snow are irrelevant and can be removed from 

equation 6 resulting in the simplified one dimensional equation:  

g

sg
eg z

TT
KG

)( −
=           (7) 

The soil thermal conductivity (Keg) is very sensitive to soil moisture.  However, the 

well drained sandy loam soil at Treeline maintained a consistent soil moisture and 

conductivity throughout the melt period.  The thermal conductivity of Treeline sandy 

loam soil (ρ =1.34 g cm-3, period average θ = 0.18) is 1.13 W m-1 K-1, equal to a value 

found by (Abu-Hamdeh 2001) for a sandy loam with a density of 1.36 g cm-3 and equal 

moisture content.   

Soil thermal conductivity was corrected for vapor diffusion. Temperature and 

pressure gradients cause vapor diffusion from warm soil to the snow releasing latent heat 

of vaporization (Marks and Dozier 1992). In effect, this diffusion changes the thermal 

conductivity of the soil necessitating an adjustment to create an effective soil 

conductivity (Keg).  The added correction value depends on the assumed saturated 

specific humidity of the soil (qg) equal to 4.847 x 10-3 (g/kg, dimensionless), and a unique 

effective water vapor coefficient (De).  To calculate De for local temperatures and 

pressures, the following equation is applied: 

  
Tn

melt

s
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oee T

T
P
PDD ⎥

⎦

⎤
⎢
⎣

⎡
= 0

,         (8) 

Where De,o is the effective diffusion coefficient for vapor in saturated soil at sea level    

(10-5 m-2 s-1), Po is sea level pressure (101 kPa), Pa is the UDCEW pressure (78 kPa), Ts 

(273.16 K), and Tmelt (273.16 K).  The exponent, nT (14), is a non-critical value given the 

temperature relationship and reducing effects of the pressure ratio in the calculation.  
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The effective conductivity was calculated using the effective diffusion coefficient 

De, specific humidity qg, and latent heat of vaporization Lv (2.834 x 106 J/kg): 

  [ ]gevges qDLKK +=         (9) 

The correction resulted in a 15% increase to the soil thermal conductivity.   
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4. RESULTS AND DISCUSSION 

The snow year 2007-8 was the sixth largest for 50 years of record (Figure 2.3).  

The snowpack remained deep into mid-April with shallow areas appearing and melting 

out quickly due to high air temperatures and sun angles.  The south facing slope quickly 

became patchy presenting the best opportunities to set depth measurement transects over 

the DTS cable (Figure 4.1).  Despite setting several transects, overnight melt outs and a 

lack of adjacent deep and shallow snow areas over the cable limited the useable transects 

and data.  However, two transects transitioned from deep to bare soil, with mid-day 

shallow snow, providing enough width for the DTS to resolve soil temperature 

differences beneath shallow and deep snow (Figure 4.2).  Measurement of these transects 

occurred on 4/11 14:00 and 4/12 17:00.  From 4/11 to 4/13, the weather was clear with a 

10° C rise in temperature with equal solar input on all three days marking the final 

meltout of Treeline’s southwest facing slope. 
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A

B 

C 

Figure 4.1. Circles represent transect locations above the DTS cable.  A is the 
transect covering meters 1332-1352. B is the transect covering 1375-1406.  C is 
the north facing area where the cable temperatures are compared to soil pit 
temperature measures. 
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Figure 4.2. Example of DTS cable temperatures resolving overlying snow 
conditions 
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4.1 Affects of Soil Temperature Measurement Depth  

Soil temperature measurement depth will affect the calculation of ground heat flux 

because the temperature gradient in the soil column varies with soil depth.  The 

calculation of ground heat flux using Equation 7 treats the soil column as a single layer 

from the soil-snow interface to the depth of soil temperature measurement (z). Using the 

single layer, it is assumed that heat transfer is uniform at all depths within the layer.   

Heat transfer occurs due to a difference in temperature between media.  In a soil 

column with a uniform linear heat gradient, the rate of heat transfer, or ground heat flux, 

would be the same at all depths.  In this study, the heat gradient is curvilinear with the 

transfer rate increasing as you approach the soil surface (Figure 4.3).  The steepest heat 

gradient is found in the 0-5cm interval in Figure 4.3.  The maximum heat gradient is 

found at the interface between the soil and 0°C snow.   

In summary, using a deeper soil temperature measurement will yield a lower heat 

transfer expressed as a lower ground heat flux to the snow.  To accurately represent 

ground heat flux, the soil temperature measurement depth must be as close to the soil-

snow interface as possible.  
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Figure 4.3.  Heat gradients (dT/dz) at depth intervals taken on 4/11 14:00 show a 
curvilinear relationship between soil depth and heat gradient with greater heat 
transfer near the surface.  Soil temperatures are from thermocouples installed in 
a soil pit at depths 5, 15, 30, 45, 65, and 100cm depth.  The 0 depth temperature is 
that of a melting snowpack, 0°C.  

The phenomenon of varying temperature gradients at different depths is further 

demonstrated with time-series plots in Figure 4.4A-C.  The depth of soil between the soil 

temperature measurement and the overlying snow (0°C) has a great affect on the 

calculated magnitude of G due to the attenuation of this gradient with greater soil 

temperature measurement depth.  Figures 4.4a-c use atmospheric data from the weather 

station, soil temperature and moisture data from soil pits at 5 and 45 cm depth, soil 

temperatures from the DTS at 1.4cm depth, and ground heat flux calculations using 

Equation 7.  The soil temperatures and G from 5 and 45 cm depth can be compared 

directly.  DTS temperatures and G show the capability of the DTS in capturing the 

weather events and should not be compared directly with soil pit data.   

 

 

 

 



50 
 

Ground Heat Flux

-50

0

50

100

150

200

250

4/10 4/11 4/12 4/13 4/14 4/15

G
 F

lu
x 

at
 s

ur
fa

ce
  (

W
/m

2)

1.4cm
5cm
45cm
Measured G

Soil Temperature

-1

0

1

2

3

Te
m

pe
ra

tu
re

 a
t D

ep
th

 (C
)

1.4cm
5cm
45cm

B

C

Volumetric Water Content

0.15

0.2

0.25
Vo

lu
m

et
ric

 W
at

er
 C

on
te

nt
 (%

)
5cm
45cm

A

 
Figure 4.4a-c. Measurement 1.4 is from the DTS, 5 and 45 are from soil pits, and 
measured G is from heat flux plates. Figure 4.4a shows increasing meltwater 
influx to the soil on 4/14 to 4/14. On 4/14 a cold front reduces the meltwater 
influx to the soil surface. Dispersion mutes the soil moisture response at the 
deeper (45cm) depth.  Figure 4.4b shows the rapid melt suppressing soil 
temperatures at shallow 1.4 and 5cm depths and a delayed suppression at 45cm 
depth.  As infiltration subsides due to a cold front on the 14th, shallow soil 
temperatures are restored by ground heat flux.  Figure 4.4c shows rising near 
surface temperatures result in increasing G. At 45cm depth, moderated 
fluctuations in soil moisture and temperature result in a moderated G.  
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On April 10th through April 14th, the snowpack was reduced from 18 to 15cm depth 

as clear skies and warm temperatures produced substantial melt infiltration. Near surface 

soils were flushed with cool melt water while the soil at 45 cm remained warm due to a 

delay in the wetting front from the cold melt (Figure 4.4b).  As a cold front moved in on 

the 14th, surface melt and the cold flushing of surface soils tapers off as the snowpack 

drains its remaining meltwater and soil volumetric water content declines (Figure 4.4a).  

The near surface soil temperature was then restored by ground heat from below (Figure 

4.4B).  The moderating affects of the deeper soil have masked the near surface 

fluctuations in modeled G and violated the assumptions of the heat transfer equation.  As 

the near surface soil temperatures rise, and without the buffering capacity of a thick soil 

layer, G increases substantially along the increased soil-snow temperature gradient.   

In summary, the model does not account for the variations in heat gradient with soil 

depth.   If heat were being transferred to the snow pack, as you would find with 

snowpacks below 0°C, the near surface soil temperature measurement is better than the 

deeper because the near surface soil better reflects temperature gradients near the snow 

soil interface.  In the case of ripe melting snowpacks, any ground heat flux reaching the 

snowpack will result in more melt with no change in temperature of the snow.  During 

this study, melt rates of up to 4cm SWE per day have likely eliminated the heat gradient 

between the soil and snow, essentially eliminating ground heat flux to the snow.  Under 

these conditions, the ground heat flux that remains will heat the influx of melt.  

There is another source of ground heat flux worth noting.  In addition to ground 

heat, patchy snow receives lateral heat transfer from adjacent bare soil to soil beneath the 

snow margin.  On April 18th 9:00-10:00, pairs of ground heat flux plates were placed 
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vertically in the soil: one at the snow margin and the other 10 cm away from the snow 

margin.  Positive readings indicate heat fluxes toward the snow with negative fluxes 

away from the snow.  Of the 16 measurements taken, the average flux for the plates 10cm 

from the snow margin was 6W/m2 with both positive and negative values.  The average 

of the plates at the snow margin was 49W/m2 with all positive values.  This flux is 

capable of warming the soil under the snow margin and accelerating melt. 
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4.2 Measured Soil Temperature and Calculated Ground Heat Flux 

Two transects were used in this analysis of soil temperature and G flux beneath 

shallow and deep snow.  The first transect data taken on 4/11/08 14:00 included 21 

meters of cable from 1332-1352 (Figure 4.1 transect A), the second section on 4/12/08 

17:00 included 32 meters from 1375-1406 (Figure 4.1 transect B).  Two transect 

locations were chosen in this analysis because each had comparable adjacent patches of 

shallow snow, deep snow, and bare soil of sufficient width for the DTS to resolve the 

temperature and ground heat flux values without direct influences to the cable from the 

adjacent, dissimilar snow conditions. The two transects used in this study were located on 

a similar aspect with common antecedent soil moisture conditions from previous melt 

rates of 2-4cm SWE per day.  However, there are notable differences between the two 

transect locations. The 4/11 transect had no brush, ran perpendicular to the more 

moderate slope,  was closer to the snow free ridge top, and was measured at 14:00.  The 

4/12 transect had sage brush near the cable, the cable ran down the fall line of a steeper 

slope, was farther down slope with snow above the transect, and was measured at 17:00, 

a time with half the incoming solar of the previous day.  Table 4.1 summarizes the 

meteorological conditions at the time of measurement for the two days.  The snow depths 

are averages for point measurements under a given snow condition.  Each point used 

under a given snow condition is at least one meter from adjacent conditions.  The soil 

depth averages are the burial depth for the section of cable beneath the given snow 

condition.   Figure 4.5 shows the twenty-four hour range of soil temperatures for 4/11 and 

4/12 under the three snow conditions of interest.  

 



54 
 

Table 4.1. Meteorological, snow, and DTS burial conditions for two transects.  
 Parameter 4/11/08 14:00 4/12/08 17:00

Air temperature (ºC) 5.7 13.0

Precipitation rate (m/h) 0.0 0.0

Wind speed (m/s) 2.0 0.9

Relative humidity (%) 0.53 0.44

Incoming solar (W/m2) 846 468

Net solar (W/m2) 877 486

Soil depth to cable                        
for shallow snow (cm) 1.2 1.7

Soil depth to cable                        
for deep snow (cm) 1.2 2.0

Snow depth shallow (cm) 7 6

Snow depth deep (cm) 18 17

T of soil for shallow snow (°C) 1.5 0.8

T of soil for deep snow (°C) 0.9 1.3

G under shallow snow (W/m2) 215 49

G under deep snow (W/m2) 100 96  
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Figure 4.5. Soil temperature ranges for 24 hour periods on 4/11 and 4/12.  The 
soil temperature averages are for all readings below the stated snow condition 
and associated average snow depth.  
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Soil temperatures were similar for both transect locations on both days.  On 4/11, 

soil temperatures beneath shallow and deep snow were 1.5 and 0.9°C with bare soil 

temperatures averaging 19.7°C (Figure 4.6-4/11).  On 4/12, soil temperatures beneath 

shallow and deep snow were 0.8 and 1.3°C with bare soil averaging 19.2°C (Figure 4.6-

4/12).   Figure 4.6 shows corresponding G values calculated from soil temperatures for 

each day respectively.  For 4/11, shallow snow G was 215W/m2 and for deep snow, 

100W/m2 (Figure 4.7-4/11).  On 4/12, G for shallow snow was 49W/m2 and for deep 

snow, 96W/m2 (Figure 4.6-4/12).  The soil temperatures beneath shallow and deep snow 

account for the difference in modeled G on 4/11 (Figure 4.7-4/11).  Differences in 4/12 

soil temperature and measurement depth (zg) account for differences in G beneath 

shallow and deep snow (Figure 4.7-4/12).  The deeper cable depths on 4/12 have 

moderated the heat flux when compared to 4/11. 
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Figure 4.6. Soil temperatures below shallow and deep snow and bare soil for 
transects on 4/11 14:00 and 4/12 17:00.  
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Figure 4.7. Ground heat flux for two transects on two days beneath shallow and 
deep snow.  Differences in heat flux arise from differences in soil temperature 
and measurement depth.  
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Elevated April 11th soil temperatures beneath shallow snow when compared to deep 

snow may be attributable to varying factors.  At 14:00 hours the sun is delivering over 

800W/m2 to the shallow snow surface.  However, solar penetration reaching the snow 

soil interface, through 7cm of snow, is less than 5% of the incident radiation according to 

the solar extinction curve presented in Figure 1.3.  The energy gained at the snow/soil 

interface would result in a small increase in melt and further remove a temperature 

gradient between the snow and soil.  It is unlikely that this would result in a 0.6°C 

heating of the meltwater and soil volume (1.5°C) above and around the cable when 

compared to the adjacent soil (0.9°C) below deeper snow.    

By the next day, the shallow area of the April 11 transect was snow free.  On April 

11, the soil temperature rises throughout the afternoon (Figure 4.4).  This may indicate 

that that later in the day the snow has become very shallow, less than 2cm deep, when 

70% of the incident solar can reach the snow soil interface (Figure 1.3).   Had this section 

become snow free, a rapid rise in soil temperature should have appeared as a break in 

slope, independent of the sinuous daytime curve.  A more likely scenario is that adjacent 

bare soil is influencing or encroaching on the transect causing the DTS to average in high 

temperature, bare soil influences.  It should also be noted that there was no snow upslope 

of this transect. With its perpendicular positioning, there is little to no excess water 

flushing across the transect from above to moderate the heating of adjacent bare soil.  

Soil temperatures were insignificantly elevated for deep snow on April 12 (Figure 

4.5) rather than shallow snow as found on April 11.  This is likely due to cable averaging 

and adjacent conditions with brush and bare soil patches causing greater temperature 

variations under both snow conditions. The significant difference between the two days is 
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found in the 24 hour plots of soil temperatures for the two transects (Figure 4.5).  On 

4/12, soil temperatures beneath both shallow and deep snow areas remained similar and 

suppressed throughout the day.  The soil temperatures are also similar to the deep snow 

area of the 4/11 transect.  This indicates that the availability of meltwater from overlying 

snow is driving the near surface soil temperature regime.  The 4/12 transect runs down 

the fall line of the twenty degree hill slope with patchy snow above the transect and the 

deeper snow area upslope of the shallow snow area.  With melt rates of 2 to 4cm SWE 

per day, there is a substantial amount of cold water flowing laterally through the soil from 

above the transect into the deeper snow section, and from the deeper snow section into 

the soils beneath the shallow snow section.  This would also be true for the 4/11 transect 

until sections became snow free.  This large amount of cold melt and lateral flow has 

suppressed the soil temperatures in both sections of the cable with snow cover.    

In summary, the near surface soil temperature is held close to 0°C beneath deep, 

>10cm, or shallow snow cover of 6-7cm.  Temperatures for bare exposed saturated soils 

for both transects were equal despite their location on the hill slope indicating that 

exposure to large magnitude solar radiation can heat the near surface saturated soils 

quickly even when only few meters down slope from a meltwater source.  The 

progression of soil temperatures beneath the shallow snow on 4/11 is likely due to 

instrument temperature averaging and a proximal receding snow margin. However, the 

progression also suggests that very shallow snow, with its porous nature, may allow 

enough solar energy to penetrate and begin heating the soil in its transition to complete 

ablation and bare exposure.  
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4.3 DTS Use Under Snowpacks 

 Use of the DTS system in snow over extended periods presents many unique 

problems.  The precision of the instrument may not match its accuracy for the intended 

purpose.  Fiber cable must be installed prior to the winter season and may be out of step 

with the availability of the DTS machine jeopardizing a good calibration.  Power is a 

problem over extended periods.  Despite the ruggedness of the DTS, natural conditions 

can be unpredictable and costly.  

 The averaging scheme of the DTS is an important consideration in capturing 

accurate and precise measurements.  The DTS is capable of measuring temperatures to 

0.04°C but does so by averaging over a distance.  With this property, adjacent conditions 

may reduce accuracy of the measurement.  In the case of this study, lateral snow melt 

caused the shallow edges of snow margins to recede so quickly that it was difficult to find 

patches of shallow snow of sufficient width to produce an accurate temperature without 

the influence of the actively encroaching bare soil conditions.  

 With snow studies, it is common to measure undisturbed conditions necessitating 

an early installation of the fiber cable.  Due to high instrument costs and increasing 

demands for borrowed DTS equipment, logging time may be limited or out of step with 

other elements of your study.  In this case, the period of interest was throughout the 

spring melt, months after the cable installation.  The calibration was done on the cable 

after extricating it from the study site.  The fragile connectors on the ends of the cable are 

prone to breakage and deterioration of signal transmission with every insertion or 

withdrawal from junction points.  This can create problems with calibrations done on a 

cable and connecters that have spent time under snow, soil, or water.  In the case of this 
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study, deteriorating connectors rendered calibration efforts useless.  To remedy the 

problem, a new connector was spliced to the cable and a calibration performed.  Using a 

different connector for the calibration of the cable may affect the processing of all of the 

previous data.  

 One of the great advantages of the DTS is the temporal resolution.  The DTS can be 

programmed to match the sampling interval of other instruments in a study.  However, 

this requires an adequate power supply for continuous measurement.  In this study, a 

sufficient size solar panel (195 Watt) to power the DTS in the winter months was too 

costly. The solution was a bank of batteries and a gas powered generator.  My site 

required three large RV batteries to power the DTS and a laptop for 1½ days between 

charges.  The demands of this power system precipitated gaps in the data.   Although the 

battery solution cuts costs and is reasonable for a few days, the difficulty in transporting 

the batteries and maintaining the charge should be carefully considered especially with 

remote locations.  

 Finally, natural conditions are hard on the fiber cable.  The DTS machine held up 

extremely well for the two months it spent in winter conditions.  However, the fiber-optic 

cable is prone to damage.  The connectors are very fragile and must be protected at all 

times.  The cable, despite the multiple all-terrain coatings, can easily be severed by 

rodents.  The UDCEW is in a migratory corridor for Elk herds.  One morning I found 

several Elk had walked on and pushed my cable farther into the soil for a distance of 30 

meters.  Be careful with the cable and, if possible, calibrate and test it for damage using 

the DTS before it is deployed in the field.  
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 The DTS is a unique and versatile tool yielding high temperature, temporal, and 

spatial resolutions.  Using the DTS should be carefully considered with respect to spatial 

scale, availability of equipment, maintenance while in use, and the likely hood of damage 

over long periods of use.  
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5. CONCLUSIONS 

 The goal of this study was to accurately measure ground heat flux and assess the 

contribution of ground heat flux to the energy balance of shallow snow less than 10cm 

depth.  Because instruments for measuring G must be placed in the ground prior to snow 

accumulation and before the locations of shallow and patchy snow are known, a method 

for obtaining snow-soil interface temperatures at high spatial and temporal resolutions is 

required.  DTS offers a solution with limitations imposed by a spatial averaging scheme 

that may bring adjacent conditions into point temperature measurements.  Regardless, the 

precision of distributed relative temperature measurements with the DTS coupled with 

absolute G measurements at limited locations provide insight into the dynamics of G in 

shallow, patchy snow and offers considerations for future use of DTS in snow 

applications.  

 Ground heat flux beneath shallow patchy snow must be modeled from soil 

temperatures due the need for high spatial measurements currently available only for 

temperature.  The models are based on the assumption of steady state heat flux 

throughout the soil column.  In this study soil temperatures showed a cooling trend from 

100cm depth to the soil surface with temperature gradients the highest between 5cm soil 

depth and the snow.  This violation of steady state has strong implications when 

considering soil temperature measurement depth and the calculation of ground heat flux.  

For the non-uniform temperature soil column found in this study, calculated magnitude of 
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G was inversely related to soil temperature measurement depth, a situation not accounted 

for in the heat transfer equation assumptions.  

 Light energy can penetrate snow to the soil surface but follows an exponential 

extinction curve as snow depth increases. As an example, 70% of incident light can reach 

the soil surface through 2cm snow depth but is almost eliminated through 10cm of snow.  

In this study of late season shallow snowmelt, two transects measuring soil temperatures 

were used in calculating and comparing ground heat flux beneath two overlying snow 

conditions: shallow snow 6-7 cm depth and snow >10cm depth.  A transect taken on 4/11 

14:00 showed a 0.6°C higher soil temperature below shallow snow when compared to the 

deep snow.  This higher temperature also results in a greater calculated ground heat flux 

for shallow snow.  Under 6-7 cm of snow, light penetration is <5% which cannot transfer 

enough energy to the soil surface to cause a 0.6°C warming of the saturated soil above 

and around the DTS cable.  A proximal and approaching snow margin may have allowed 

the higher temperature bare soil to conduct heat to the soil under the shallow snow and 

influence the temperature measurement.  However, the shallow snow was gone by the 

following day indicating that the shallow area may have progressed through a very 

shallow depth <2cm during the late afternoon following the 14:00 depth measurements. 

This progression may have allowed enough solar penetration and associated energy flux 

to be partially responsible for the increasing soil temperatures under the shallow snow as 

the day progressed.  

 Using the DTS deserves careful consideration with respect to spatial scale, 

availability of equipment, maintenance while in use, and the likely hood of damage over 

long periods of use.  Some difficulties are exacerbated in snow studies due to early cable 
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placement, previous to the snow season, prior to calibration.  The sustained exposure to 

natural elements and use can adversely affect the cable connectors and expose the fiber-

optic cable to damage due to handling in rough terrain or damage from wildlife.  This 

damage can result in a compromised calibration which in turn may compromise the 

collected data.  Despite the complications of shallow snow, the DTS is a unique and 

versatile tool yielding high temperature, temporal, and spatial resolutions and its explored 

in other snow applications.   
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