4-15-2019

Microbial Induced Calcite Precipitation (MICP) in Stabilizing Expansive Soils

Anish Pathak
Boise State University

Connor Asmus
Boise State University
Microbial Induced Calcite Precipitation (MICP) in Stabilizing Expansive Soils

Anish Pathak, MSCE
Team Member: Connor Asmus, BSCE
Advisor: Bhaskar Chittoori, Ph.D., PE.

Field Implementation of Microbial Induced Calcite Precipitation

Background

- Expansive soils undergo vast changes in volume when subject to change in water content and cause damage to civil structures.
- Traditional methods to tackle expansive soils involve adding cement or lime to the soil, which are not the most environmentally friendly solutions.
- Studies have shown that urease producing bacteria, which are naturally found in expansive soils, are capable of producing calcite (CaCO₃) in the soil.
- Laboratory tests done with natural clays in the SuRGE lab at Boise State University showed that MICP can significantly improve strength and reduce swelling of expansive soils.
- MICP in a natural soil could be achieved using injections of enrichment solution - to help bacterial growth, and cementation solution - to induce precipitation of calcite.

Objectives

- To understand the feasibility of microbial induced calcite precipitation in field.
- To study the effects of enrichment and cementation injections through calcite content and swelling potential.

Injection Method

- Injection points are drilled into the ground at varying distances.
- 2” diameter holes were drilled into the ground up to a depth of 4 feet.
- Two grids were used to inject solutions into the ground.
- A pneumatic packer tube was inserted into the injection point to seal and prevent the leakage of solution on the surface.
- Solutions were injected through the packer into the ground at a pressure of 20 psi.

Injected Solution

- Enrichment solution – To help bacterial growth in soil
  (Urea 20 gm/ltr, Sodium Acetate Anhydrous 8.2 gm/ltr, Solulys 0.5 gm/ltr)

- Cementation solution – To induce precipitation of calcite
  (Calcium Chloride 27.74 gm/ltr, Urea 20 gm/ltr, Sodium Acetate Anhydrous 4.1 gm/ltr, Solulys 0.5 gm/ltr)

Injection Timeline

- Day 0 – Enrichment Solution
- Day 7 – Cementation Solution 1
- Day 14 – Cementation Solution 2
- Day 21 – Cementation Solution 3
- Day 35 – Cementation Solution 4

Flow of solution was seen into neighboring injection points within distance of 16 inches.

Field Observation

- Flow of solution from one injection point to another
- Solution flowing from one injection point to another

Conclusions

- The calcite content increased significantly with each successive injection of cementation solution and reduced swelling potential.
- Microbial induced calcite precipitation can be successfully replicated in the field through successive injections of enrichment and cementation solutions into the soil.

Acknowledgements

The research team is deeply grateful to the NCHRP for supporting this research project. We would also like to extend our gratitude to the Idaho Department of Transportation for providing a field site to conduct the test.