
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Biomolecular Research Center Publications and 
Presentations Biomolecular Research Center 

11-16-2023 

Effects of Doxorubicin on Extracellular Matrix Regulation in Effects of Doxorubicin on Extracellular Matrix Regulation in 

Primary Cardiac Fibroblasts from Mice Primary Cardiac Fibroblasts from Mice 

Cameron Skaggs 
Boise State University 

Steve Nick 
Boise State University 

Conner Patricelli 
Boise State University 

Laura Bond 
Boise State University 

Kali Woods 
Boise State University 

See next page for additional authors 

Publication Information Publication Information 
Skaggs, Cameron; Nick, Steve; Patricelli, Conner; Bond, Laura; Woods, Kali; Woodbury, Luke; Oxford, Julia 
Thom; and Pu, Xinzhu. (2023). "Effects of Doxorubicin on Extracellular Matrix Regulation in Primary 
Cardiac Fibroblasts from Mice". BMC Research Notes, 16, 340. https://doi.org/10.1186/
s13104-023-06621-7 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/brc_facpubs
https://scholarworks.boisestate.edu/brc_facpubs
https://scholarworks.boisestate.edu/brc
https://doi.org/10.1186/s13104-023-06621-7
https://doi.org/10.1186/s13104-023-06621-7


Authors Authors 
Cameron Skaggs, Steve Nick, Conner Patricelli, Laura Bond, Kali Woods, Luke Woodbury, Julia Thom 
Oxford, and Xinzhu Pu 

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/brc_facpubs/42 

https://scholarworks.boisestate.edu/brc_facpubs/42


Skaggs et al. BMC Research Notes          (2023) 16:340  
https://doi.org/10.1186/s13104-023-06621-7

RESEARCH NOTE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Research Notes

Effects of Doxorubicin on Extracellular 
Matrix Regulation in Primary Cardiac Fibroblasts 
from Mice
Cameron Skaggs1, Steve Nick1, Conner Patricelli1,2, Laura Bond1, Kali Woods1, Luke Woodbury1,2, 
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Abstract 

Objective Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric can-
cers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. 
In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms 
on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined 
the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity.

Results DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, includ-
ing Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and  TGFβ. Quantitative prot-
eomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway 
analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways 
that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated 
that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No signifi-
cant changes in collagen organization nor glycoprotein production were observed.

Keywords Doxorubicin, Cardiotoxicity, Extracellular matrix, Cardiac fibroblasts, Proteomics

Introduction
Cancer treatment has improved significantly in recent 
years. However, the applicability of some anticancer 
drugs is limited by the risk of cardiotoxicity [1]. One 
classic example is DOX. DOX is a highly effective chem-
otherapeutic used to treat many adult and pediatric 

cancers, such as solid tumors, leukemia, lymphomas and 
breast cancer [2–4]. However, its use is limited due to a 
dose-dependent cardiotoxicity, which can lead to lethal 
cardiomyopathy [5–8]. While multiple mechanisms have 
been shown to be responsible for DOX-induced cardio-
toxicity, it is generally accepted that the principle mecha-
nism is oxidative stress induction through the production 
of reactive oxygen species (ROS) and free radicals in the 
myocardium [4, 6, 9, 10]. The increased level of oxidative 
stress can subsequently induce apoptosis and cell death 
in cardiomyocytes [3, 4, 11]. Efforts to reduce/prevent 
DOX-induced cardiotoxicity using antioxidants have 
largely failed in pre-clinical and clinical trials, indicat-
ing that oxidative stress may only partially explain the 
cardiotoxicity [9]. Thus, novel mechanisms responsi-
ble for DOX-induced cardiotoxicity and corresponding 
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intervention measures need to be explored to expand the 
use of this effective anticancer drug.

The cellular constituents of the heart include cardiac 
fibroblasts, cardiomyocytes, endothelial cells, vascular 
smooth muscle cells, and transient cells such as leuko-
cytes [12, 13]. Fibroblasts are the largest cell population 
in the heart and play a critical role in normal cardiac 
function [12]. The toxic effects of DOX in cardiomyo-
cytes have been extensively investigated [5, 14, 15]. In 
contrast, data on the effects and mechanisms of these 
drugs on cardiac fibroblasts and ECM homeostasis is 
limited. In this study, we examined the potential short-
term effects of DOX on cardiac fibroblasts to further 
our understanding of the mechanisms of DOX-induced 
cardiotoxicity, which may lead to novel intervention 
measures to improve the therapeutic options for cancer 
treatment.

Methods
Cell culture
Cardiac fibroblasts from BALB/c mice were obtained 
from Cell Biologics (Chicago, IL, USA) and cultured in 
fibroblast medium provided by the vendor, which con-
tained fibroblasts growth factor, hydrocortisone, anti-
biotics–antimycotics, 2  mM l-glutamine, and 10% fetal 
bovine serum. Cells were maintained at 37  °C with 5% 
 CO2.

ECM Gene Expression Profiling
Cardiac fibroblasts were seeded at a density of 2 ×  105 
cells per well in 6-well plates. After overnight incubation, 
the cells were treated with 1 μM DOX or a vehicle control 
for 24 h. The selection of 1 μM DOX concentration was 
based on previous cell viability results (unpublished data) 
in our lab that showed approximately 70% cell viability 
after 24-h treatment. At the end of the treatment, cells 
were harvested. Total RNA was extracted from the cells 
using an RNeasy Mini Kit (Qiagen, Germantown, MD, 
USA). The expression of ECM related genes was analyzed 
using a Mouse Extracellular Matrix and Adhesion Mol-
ecules  RT2 Profiler PCR Array (PAMM-013ZA, Qiagen, 
Germantown, MD, USA) following the manufacturer’s 
instructions. Briefly, 100 ng RNA from each sample was 
reverse transcribed into cDNA using a  RT2 first strand 
kit. Twenty five µL of cDNA was then mixed with SYBR 
Green mastermix. Real-time PCR was performed on a 
LightCycler® 96 (Roche Diagnostics Corporation, Indi-
anapolis, IN, USA). A web-based tool from Qiagen,  RT2 
Profiler PCR Data Analysis, was used for differential gene 
expression analysis.

LC–MS based quantitative proteomics analysis
A liquid chromatography-mass spectrometry (LC–MS) 
based quantitative proteomics approach was used to 
assess the relative protein expression in cardiac fibro-
blasts following DOX treatment. A Tandem Mass Tag 
(TMT) labeling assay was used for LC–MS based pro-
tein quantification (Additional file  1: Figure S1). Briefly, 
cardiac fibroblasts were seeded at a density of 5 ×  105 
cells per flask in T25 cell culture flasks. After overnight 
incubation, the cells were treated with 1  μM DOX or a 
vehicle control for 24 h. Cellular proteins were extracted 
using radioimmunoprecipitation assay (RIPA) buffer con-
taining protease and phosphatase inhibitors.

TMT labeling was performed using a reagent kit from 
ThermoFisher Scientific (Waltham, MA, USA). Protein 
sample preparation, including reduction, alkylation, tryp-
tic digestion, and TMT labeling was performed follow-
ing the manufacturer’s instructions. The resulting labeled 
peptide mixtures were fractionated using a Pierce™ 
high pH reversed-phase peptide fractionation kit (Ther-
moFisher Scientific, Waltham, MA, USA). Each frac-
tion was then dried under vacuum and reconstituted in 
5% acetonitrile and 0.1% formic acid. LC–MS analysis of 
the labeled peptides was performed on a Velos Pro Dual-
Pressure Linear Ion Trap mass spectrometer equipped 
with a nano electrospray ionization source and coupled 
with an Easy-nLC II nano LC system (Thermo Fisher 
Scientific, Waltham, MA, USA). Peptide spectral match-
ing and protein identification were achieved by database 
search using Sequest HT algorithms in Proteome Dis-
coverer 2.2 (Thermo Fisher Scientific, Waltham, MA, 
USA). Raw spectrum data were searched against the Uni-
ProtKB/Swiss-Prot protein database for mouse (down-
loaded from www. unipr ot. org on 9/8/2022). A decoy 
database search was performed to calculate false discov-
ery rate (FDR). Proteins containing two or more peptides 
with FDR ≤ 0.01were considered positively identified. 
Protein quantification and differential analysis were per-
formed using Proteome Discoverer 2.2 and MSstatsTMT, 
an R package for statistical analysis of quantitative mass 
spectrometry-based proteomic experiments (Additional 
file  1: Additional method) [16]. Differentially expressed 
proteins were further analyzed using iPathwayGuide 
(iPG; Advaita Bioinformatics, Ann Arbor, MI, USA) to 
identify significantly impacted pathways in the fibroblasts 
[17].

Extracellular matrix staining
Picrosirius red and alcian blue staining were used to 
examine the effects of DOX on the production and struc-
ture  of ECM in cardiac fibroblasts. Cardiac fibroblasts 
were seeded at 2 ×  104 per well in a 6-well plate, incubated 
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overnight, and treated with 1  µM DOX for 72  h. Cells 
were then washed with cold PBS and fixed with cold 
methanol. For alcian blue staining, cells were acidified 
with 3% acetic acid for 3 min and stained with alcian blue 
for 30 min. For Picrosirius red staining, fixed cells were 
incubated with 0.1% Sirius red in saturated picric acid 
for one hours. Cells from both staining procedures were 
washed with PBS and observed under a light microscope.

Results
ECM Gene Expression Profile
We used a Mouse Extracellular Matrix and Adhesion 
Molecules RT2 Profiler PCR Array obtained from Qiagen 
to examine the effect of DOX on the expression of the 
ECM related genes in primary cardiac fibroblasts. Several 
genes were significantly downregulated after cells were 
treated with 1  µM DOX for 24  h (Fig.  1). These genes 
include Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, 
Fbln1, Lama2, Mmp11, Mmp14, Postn, and  TGFβ. These 
results indicate that DOX treatment induced an interfer-
ence with the expression of genes that are involved in the 
maintenance of ECM homeostasis in cardiac fibroblasts.

Quantitative Proteomics Analysis
A LC–MS based quantitative proteomics analysis was 
implemented to examine the global changes in the pro-
teome in primary cardiac fibroblast following DOX treat-
ment. The results of this experiment show that DOX 
induced changes in the expression of several proteins in 
the cardiac fibroblasts after 24-h treatment (Table 1). A 
pathway analysis using iPG of the differentially expressed 
proteins revealed changes in a list of biological pathways 

in the cells that involve cell adhesion, cytotoxicity, and 
inflammation response (Additional file 1: Table S1).

Extracellular matrix staining
Cardiac fibroblasts were stained with Picrosirius red to 
examine the effects of DOX on the production and struc-
tural organization of collagens. No significant changes in 
collagen organization were observed (Fig. 2 A, B). How-
ever, an apparent increase in Picrosirius red staining 
indicates that DOX induced an increase in collagen pro-
duction in cardiac primary fibroblasts after 3-day treat-
ment at 1 µM concentration (Fig. 2 A, B). No significant 
changes were observed in alcian blue staining for glyco-
proteins (Fig. 2 C, D).

Discussion
DOX, a member of the anthracycline family, has been 
one of the most widely used anticancer drugs since it was 
first approved by the U.S Food and drug Administration 
(FDA) for clinical use [18]. It is well documented that this 
drug induces a dose-related cardiotoxicity, which is one 
of the most common etiologies of cancer chemother-
apy-associated heart failure [18–20]. Toxicity of DOX in 
cardiomyocytes has been extensively studied in the last 
several decades, and multiple mechanisms have been 
proposed, including oxidative stress, topoisomerase inhi-
bition, ferroptosis, cardiogenetics, mitochondrial bio-
energetics, etc. [18, 21–23]. In this study, we investigated 
the potential adverse effects of DOX on a different major 
cellular constituent of the heart, cardiac fibroblasts.

Cardiac fibroblasts are the main cell type respon-
sible for the synthesis, deposition, and degradation of 
cardiac extracellular matrix (ECM) [12]. Cardiac ECM 
not only provides structural support for cardiac cells, 
but also plays important roles in electrical signaling, 
secretion of growth factors and cytokines, and poten-
tiating blood vessel formation [12]. There were limited 
reports indicating  DOX may affect fibroblast function 
and the homeostasis of cardiac ECM, but the mecha-
nisms and impacts on cardiomyocyte functions are 
not clear [24–30]. Our results demonstrated a signifi-
cant alteration in the expression of ECM related genes 
associated with maintenance, structural organiza-
tion and remolding when exposed to DOX. We found 
that DOX induced the downregulation of Adamts1, 
Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, 
Mmp11, Mmp14, Postn, and  TGFβ. These genes play 
important roles in structural organization and remod-
eling of ECM. Col4a1 and Col4a2 encode the collagen 
IV protein α1 and α2 chains, respectively [31]. Colla-
gen IV is the major structural component of the base-
ment membrane and is essential for its integrity and 
functionality [32–34]. Disruption of collagen IV has 

Fig. 1 Effects of DOX on the expression of the ECM and adhesion 
genes in primary cardiac fibroblasts isolated from BALB/c mice. Cells 
were treated with 1 µM DOX for 24 h. Experiments were performed 
in triplicates. Student’s t-test with Bonferroni correction was used 
for statistical analysis
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been linked to cardiovascular diseases [31, 33, 35]. 
Col5a has been found to regulate wound healing and 
scar size after heart injury [36]. Depletion of collagen 
V led to enhanced myofibroblast differentiation and 
increased post-infarction scar size with worsening of 
heart function [36]. ADAMTS (a disintegrin and met-
alloproteinase with thrombospondin motifs) is a fam-
ily of 19 proteases with diverse functions, including the 
processing of collagen, cleavage of matrix proteogly-
cans, and proteolysis of von Willebrand factor [37–39]. 
ADAMTSs have been shown to play multiple distinct 
roles in cardiovascular tissues [38]. As the major ECM-
degrading enzymes, matrix metalloproteinases (MMPs) 
have been a focus of cardiovascular research for dec-
ades [40, 41]. MMPs have been associated with many 
cardiovascular conditions, including atherosclerosis, 
coronary artery disease, myocardial infarction, and 
heart failure [41, 42]. Transforming growth factor beta 
 (TGFβ) regulates the phenotype and function of cardio-
myocytes, fibroblasts, immune cells and vascular cells, 
and plays a major role in cardiac fibrosis [43, 44]. Three 
of the additional genes downregulated by DOX in this 
study, Lama2, Postn, and Fbln1, are also important 
factors in cardiovascular ECM remodeling [45–47]. 

Clinical observation and previous experimental stud-
ies indicate that DOX treatment impairs wound healing 
[24–27], reduces collagen production, and inhibits skin 
fibroblast proliferation [28]. DOX was also found to 
increase matrix metalloprotease 9 (MMP9) expression 
[29] and cause chronic fibrosis in the myocardium [30].

Quantitative proteomics analysis in this study revealed 
that DOX induced certain global changes in the cardiac 
fibroblast proteome. Three of the differentially expressed 
proteins, syndecan-4, thrombospondins, and cellular 
communication network factor (CCN2), are known to 
play import roles in ECM regulation [48–50]. Additional 
studies in our lab confirmed via Western blot that DOX 
induced a dose-dependent decrease in  TGFβ-stimulated 
CCN2 expression in primary cardiac fibroblasts isolated 
from BALB/c mice (unpublished data).

Taken together, this study revealed evidence that DOX 
can modulate the expression of ECM genes in cardiac 
fibroblasts, which may affect the structure and func-
tions of heart ECM. These results provided new insights 
to understand the mechanisms of DOX cardiotoxic-
ity, which may lead to novel intervention measures to 
improve the therapeutic options for cancer treatment.

Table 1 Differentially expressed proteins in primary cardiac fibroblasts isolated from BALB/c mice

Cells were treated with 1 µM DOX for 24 h (n = 5; p < 0.05)

Relative protein quantification was determined using a LC–MS based quantitative proteomics approach

Uniprot Accession # Protein
Description

Fold of
Change

Up regulated

Q64695 Endothelial protein C receptor 3.3

P13597-2 Isoform 2 of Intercellular adhesion molecule 1 2.5

Q9JHW9 Aldehyde dehydrogenase family 1 member A3 2.4

P48999 Arachidonate 5-lipoxygenase 2.0

P16125 L-lactate dehydrogenase B chain 2.0

Q9CRC6 BLOC-1-related complex subunit 7 1.9

Q62433 Protein NDRG1 1.8

Q5I2A0 Serine protease inhibitor A3G 1.8

O35484 Antizyme inhibitor 1 1.8

Down regulated

O35988 Syndecan-4 2.5

Q3TLR7 Denticleless protein homolog 2.4

Q9DAD6 Profilin-3 2.0

Q7TPV4 Myb-binding protein 1A 2.0

Q9WTW3 Potassium voltage-gated channel subfamily E member 4 1.9

P35441 Thrombospondin-1 1.9

Q9DAM7 Transmembrane protein 263 1.8

Q8BVY0 Ribosomal L1 domain-containing protein 1 1.8

Q03350 Thrombospondin-2 1.8

P29268 Connective tissue growth factor 1.8
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Limitations
The expression of ECM related genes was analyzed using 
a pre-made Mouse Extracellular Matrix and Adhesion 
Molecules RT2 Profiler PCR Array (PAMM-013ZA, Qia-
gen, Germantown, MD, USA). Although this array covers 
84 important genes (see the complete gene list in Addi-
tional file  1: Table  S2) that are known to associate with 
ECM and cell adhesion, many more genes are involved in 
ECM production, regulation, and remodeling. The effects 
of DOX on genes that are not on this array need to be 
considered in future studies. This study was designed 
to induce an acute response and examine early events 
in cardiac fibroblasts. Multiple doses and time-points 
are needed to assess mRNA and protein changes to fur-
ther elucidate changes in ECM remodeling. In addition, 
confirmation of protein level changes found in LC–MS 
experiment will need to be confirmed with Western blot-
ting or similar methodologies.
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ADAMTS  A disintegrin and metalloproteinase with thrombospondin motifs
Col4a  Collagen, type IV
CCN2  Cellular communication network factor 2
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ECM  Extracellular matrix
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