Boise State University ScholarWorks

2019 Graduate Student Showcase

Graduate Student Showcases

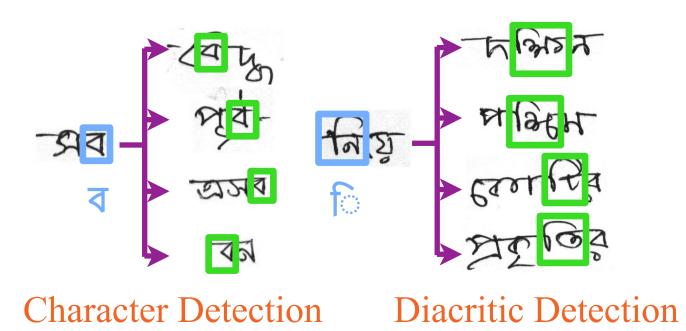
April 2019

Offline Bangla Handwriting Recognition with Sequential Detection of Characters/Diacritics

Nishatul Majid Boise State University

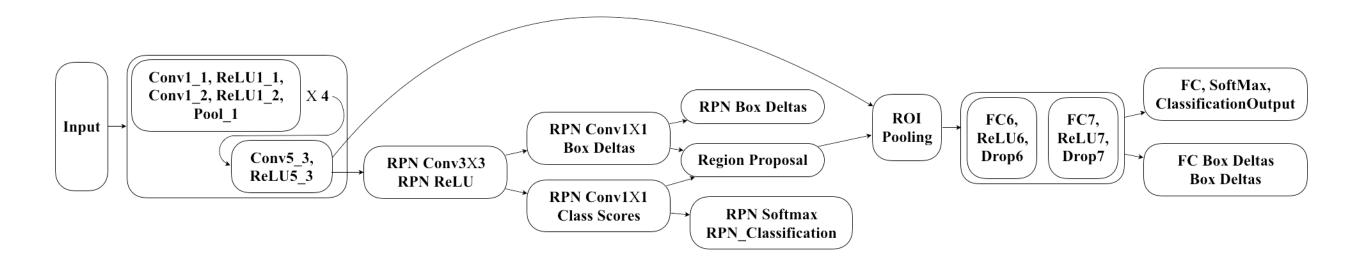
Offline Bangla Handwriting Recognition with Sequential Detection of Characters/ Diacritics

Abstract


This presents an offline handwriting recognizer for Bangla script. In spite of being a major script, very little progress has been made in this field for Bangla. Here, we present a handwriting recognition unit with sequential detection of characters/diacritics. A faster R-CNN was used to spot the graphemes from word images and the results were merged to form a transcription. Transfer learning and data augmentation techniques were applied to increase the speed and accuracy of the process. We achieved a WER and CER of 21.5% and 8.9% respectively, which is the first reported transcription result for Bangla script.

OFFLINE BANGLA HANDWRITING RECOGNITION WITH SEQUENTIAL DETECTION OF CHARACTERS/DIACRITICS

NISHATUL MAJID, ADVISOR - DR. ELISA H. BARNEY SMITH ELECTRICAL AND COMPUTER ENGINEERING, BOISE STATE UNIVERSITY


- The objective is to **recognize offline Bangla** handwritten text from images.
- We are using samples of characters/diacritics from a labeled word image to train two networks to find them in a new text sample.
- This is done using deep learning with a Faster R-CNN.
- The pre-trained VGG-16 net was used with transfer learning to accelerate training.
- Individual networks were prepared for character and diacritics detection.

- A word recognition unit combined the detection results into transcription.
- This method could be applied to **other Indic scripts**.

FASTER R-CNN WITH VGG-16

- A Faster R-CNN network was prepared for the character/diacritic detection.
- The network weights from the **pre-trained VGG-16** net was transferred into to a DAG (Direct Acyclic Graph) architecture.

- Two separate networks were prepared for characters and diacritics, named **C-Net** and **D-Net** respectively.
- Faster R-CNN works almost **close to real-time**, but it is slow to train.

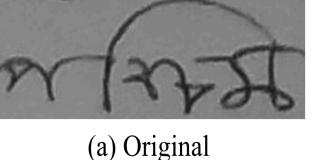
TRAINING PARAMETERS

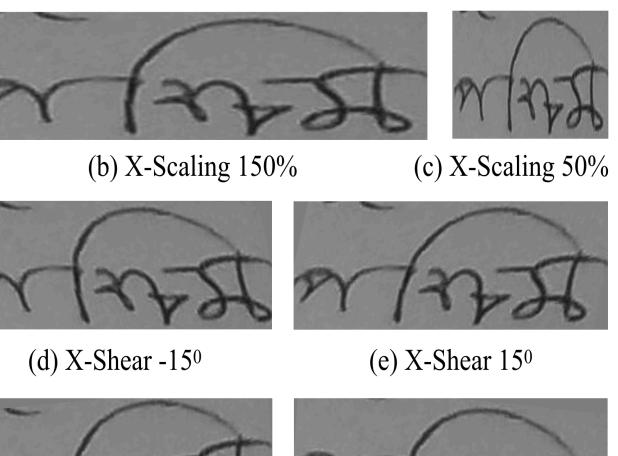
- Image were **resized** to **600 pixels** at their smallest dimension during training.
- Stochastic Gradient Descent with Momentum (SGDM) was used for training.
- Learning rate was set to 0.001 with number of maximum epochs to 10.
- Overlap ratios up-to 0.6 were used for negative training.
- Number of region proposals to randomly sample from was set to 64.
- Increasing the number of epochs, regions or decreasing the learning rate usually makes the training process better but slower.

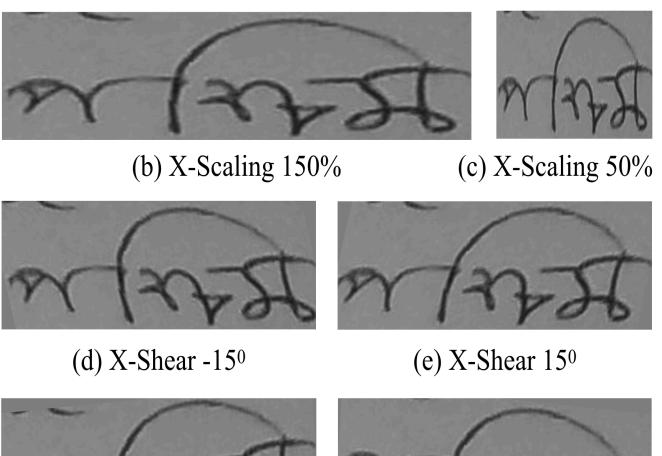
GRADUATE STUDENT SHOWCASE, 2019

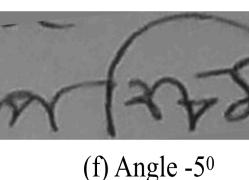
THE BSU BANGLA DATASET

The **BSU Bangla Dataset** is the only publicly available dataset that can be used for this approach. This dataset contains -


- Handwriting essay samples from more than **150 participants**.
- This essay contains almost all basic characters, vowel diacritics and several high frequency conjuncts.
- All the pages were **tagged with associated ground truth** for characters, words and lines.
- Of the 15,656 word images from the dataset, 80% were used for training, **10%** for validation and **10%** for testing.

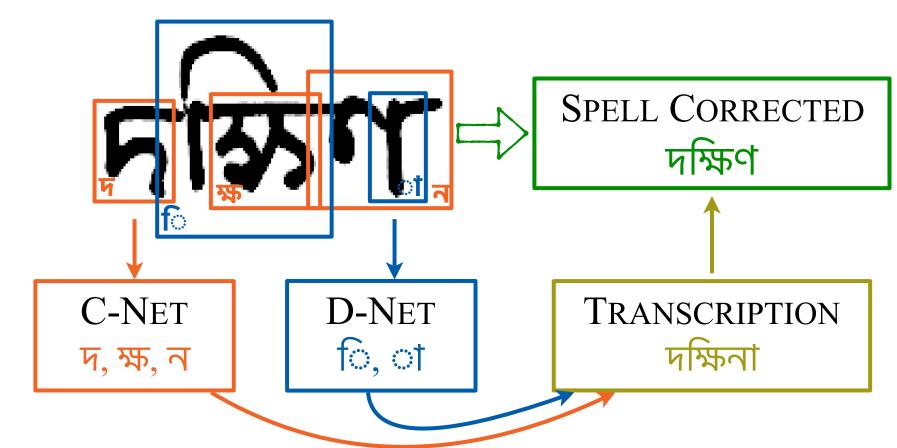



DATA AUGMENTATION


Data augmentation is a widely known trick to mitigate the problem of training with smaller datasets. Here we applied a combination of three basic yet very effective techniques -

- 1. Shearing along the X-axis (between -5° to 5°),
- 2. **Rotation** (between -5^{0} to 5^{0}) and
- 3. Scaling along the X-axis (between 50 150% of the original image width)

The amounts were drawn randomly. For each word, we generated three additional images with a combination of these three techniques, thus quadrupling the whole training set.


বা <mark>ং</mark> লা	দ্বেশ	মূল	তদ	ক্ষিণ	
বা <u></u> ণুন্দু	(Lat-	<u>শু ন</u>	তি দ ^{র ত} দ	<u>त्रि</u> क्ष	Г <mark>9</mark>
দুম ৩		्र ए		स्त ्रि	nc 3
(ଜମାକ୍ୟ	রাপুর			之行	सित

(g) Angle 5°

The C-Net and D-Net recognition results are combined into a word transcription unit.

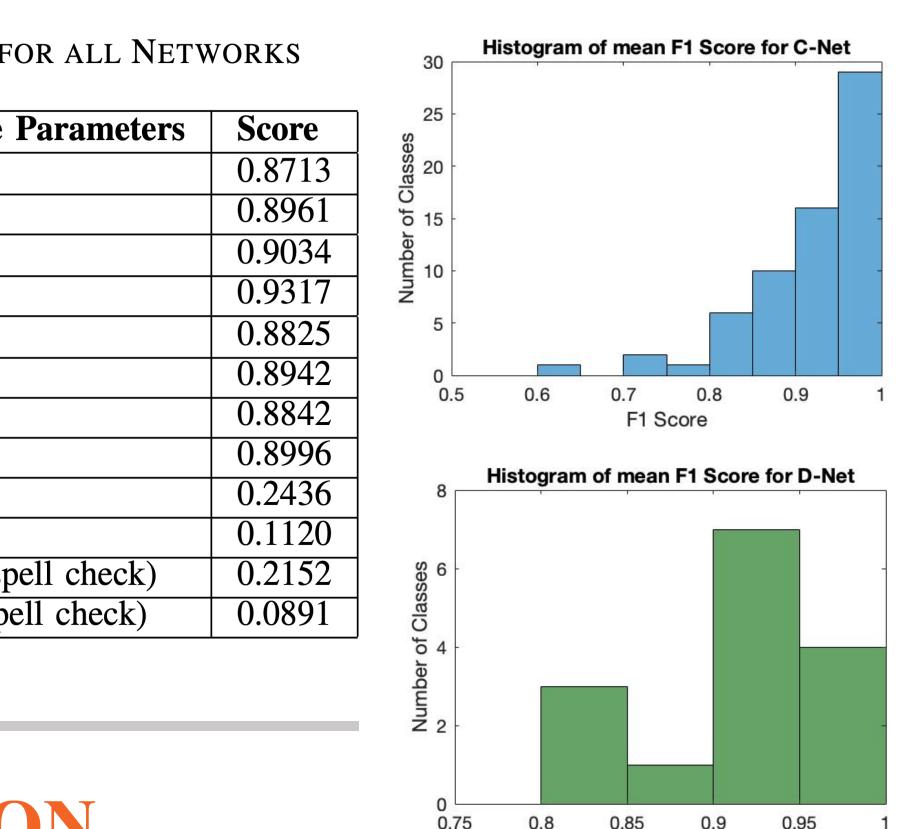
- was kept.

RESULTS

PERFORMANCE SCORES FOR ALL NETWORKS

Network	Performance		
C-Net	mAP		
C-INCL	F1 Score		
D-Net	mAP		
D-NCl	F1 Score		
	Precision		
	Recall		
	mAP		
Word	F1 Score		
Recognizer	WER		
	CER		
	WER (after sp		
	CER (after spe		

CONCLUSION


- improve the performance.
- **Computing Department** for this research.

WORD TRANSCRIPTION UNIT

• When detections overlap, the largest bounding box exceeding the threshold

• Basic script rules were implied to eliminate false detections. • A basic spell checker was used to further improve the accuracy.

• This is the very **first transcription level work for Bangla** script.

• This approach of sequential detection of characters/diacritics can be **extended** to other Abugida scripts like Assamese, Devanagari, Gurmukhi, Gujarati etc. • Using more data and increasing/improving the augmentation can further

F1 Score

• We are grateful for the high-performance computing support of the **R2 Compute Cluster** provided by **Boise State University's Research**