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METHODOLOGY ARTICLE Open Access

Design of a flexible component gathering
algorithm for converting cell-based models to
graph representations for use in evolutionary
search
Marianna Budnikova1, Jeffrey W Habig1*, Daniel Lobo2, Nicolas Cornia1, Michael Levin2 and Tim Andersen1*

Abstract

Background: The ability of science to produce experimental data has outpaced the ability to effectively visualize and
integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and
shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard.
Large amounts of data are available in regenerative biology, but little progress has been made in understanding how
organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in
a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using
a graph formalism.

Results: We are developing a model discovery framework that uses a cell-based modeling platform combined with
evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior
described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the
modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected
component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation
data. These graphs can then be validated and compared with target data from PlanformDB using the well-known
graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit
distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased
models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions
following bisection of the organism, and show that the automated model discovery framework is capable of
searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB.

Conclusion: The work presented here, including our algorithm for converting cell-based models into graphs for
comparison with data stored in an external data repository, has made feasible the automated development, training,
and validation of computational models using morphology-based data. This work is part of an ongoing project to
automate the search process, which will greatly expand our ability to identify, consider, and test biological
mechanisms in the field of regenerative biology.
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Background
High-throughput technologies have led to an accumula-
tion of large amounts of data that can be used to advance
scientific inquiry given the appropriate tools. However,
our inability to effectively visualize or conceptualize these
data, particularly multidimensional data, is one of the
factors preventing its integration into the scientific pro-
cess. One of the promising means of using these data
is to develop, train, and validate computational mod-
els, preferably those with interactive visual interfaces.
Advances in computational modeling platforms are begin-
ning to allow simulation of biological systems from the
single cell biochemical level to more abstract multicellu-
lar environments, such as representative tissues, organs,
or even organisms. These emerging computational tools
are poised to put the power of bioinformatics and data
interpretation back into the wet-bench biologists hands
by automatically incorporating data from the aforemen-
tioned datasets with tools for visualization, experimenta-
tion, and data analysis.

Many high-throughput technologies collect large
amounts of measurement data that are conducive to being
stored in databases. For example, a database can easily
house multi-scale gene expression data obtained from a
single cell to a whole organism while also documenting
the source and experimental methods associated with the
data. Such repositories are well suited for data consist-
ing of lists of gene and protein abundance, for example.
However, new ontologies and formalisms are required for
collecting and describing certain kinds of higher-order
data. For instance, the outcome of experiments involv-
ing shape or morphology can be challenging to describe
accurately, particularly in a way that others can search
for or interpret computationally. This problem has been
particularly challenging in areas of development and
regeneration where a description of the organ, appendage,
or organism is one of the key reported observations.

The planarian worm is a model organism in regenerative
biology that perfectly illustrates the problem of storing
shape-based experimental results in a formal database.
These free-living flatworms have exceptional regenerative
properties that have fascinated biologists for centuries [1].
They are able to regenerate aged, damaged, or lost tis-
sues with the help of a large adult stem cell population
[2]. Despite being complex organisms possessing bilateral
symmetry, musculature, intestine, and a central nervous
system including a true brain [3,4], fragments smaller than
1/200th of the adult size can remodel and regenerate an
intact worm [5]. This astonishing regenerative ability has
stimulated an effort to understand its underlying mecha-
nisms [6], producing an extensive number of experiments
based on amputations [4], drug-induced phenotypes [7,8],
and RNAi gene-knockdowns [9-13]. However, despite
these important efforts, we still lack a comprehensive

model that can explain more than one or two aspects of
planarian regeneration [14].

Recently, the Levin lab has developed a new tool (Plan-
form) to aid in the assimilation of these data using a graph-
based formalism to describe anatomy and morphology
along with a new ontology for describing experimen-
tal manipulations and observations [15,16]. The flexible
and extensible graph notation allows worm regions and
organs to be described as nodes connected by linkages
with associated angles and length parameters. Based on
this approach, the Planform Database (PlanformDB) was
designed and curated to include a complete description
of the many planarian experiments and outcomes that
exist throughout the literature. Such a resource does not
only make it possible for scientists to search and compare
worm morphologies, but it also provides an extractable
resource for bioinformatics applications.

We are currently combining Planform, agent-based
modeling, and an evolutionary search engine to develop
an automated system for searching and validating com-
putational models of regeneration. Agent-based model-
ing holds promise for studying the emergent behavior
and complex interactions between signaling networks
involved in directing regeneration, when multi-scale or
multi-cellular systems are supported. To this end, we are
using a modeling platform (CellSim) where the central
agents are autonomous cells containing many of the bio-
logical primitives necessary for simulating living systems
[17]. The current version of this software contains a num-
ber of useful features to support this endeavor, including
a 3-D interface for visualization and tools for perform-
ing experimental manipulations within the client-server
architecture. The process of developing, testing, and val-
idating a complex model by hand can be a daunting
task, particularly when many individual experimental out-
comes are combined. To simplify this process, we have
incorporated an evolutionary search engine that can auto-
mate this process using a genetic algorithm driven by
appropriate fitness metrics that are informed by the Plan-
form Database (PlanformDB). Our ultimate goal is for this
integrated system to identify computational models that
can account for many, if not all, of the available exper-
imental outcomes related to planarian regeneration. We
believe that this general approach holds the promise to
spur biological discovery, develop novel insights into long-
standing problems and biases, and elucidate previously
unobserved biological behaviors.

This paper presents a novel agent-based planarian
model capable of simulating basic biological behavior. The
model is suitable for automated and varied experimen-
tal manipulations akin to those traditionally performed
by wet-bench biologists and represented in the Plan-
formDB. This model includes a reaction network that
responds to manipulations by initiating appropriate head
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and tail regeneration. Importantly, we describe an algo-
rithm that allows translation of multicellular simulation
output into a formal graph representation equivalent to
that described by Lobo and colleagues [15,16]. This real-
time translation is central to the automation of model
discovery as it enables use of a fitness metric based upon a
graph-edit distance calculation, which quantitatively com-
pares simulation output and target morphologies stored
in the PlanformDB. The combination of the model, trans-
lation algorithm, and fitness metric provide the basis
for future automated model discovery in regeneration
biology.

Results
Modeling a classic planaria regeneration experiment
As shown in the classic regeneration experiment pre-
sented in Figure 1a, when a worm is bisected laterally
the resulting fragments will naturally lack a head or tail
region. Normally, each fragment will regenerate into inde-
pendent, intact worms with the appropriate shape and
architecture over the course of roughly ten days. We
sought to develop an agent-based representation of a
planarian that could simulate these experiments. Such
a model would (1) validate the chosen modeling plat-
form (Cellsim, see Methods and [17]) for this project, (2)
provide a working model for testing our translation algo-
rithm and experimental manipulations, and (3) provide
a starting network description to be used by individu-
als in the population of automated searches. The model
developed was dependent upon competitive inhibition
using a signaling mechanism consisting of long-range
morphogen gradients emanating from existing head and
tail regions. As the morphogen is subject to molecu-
lar decay and/or consumption in chemical reactions, its
long-term presence is dependent upon the existence of
its source (e.g. head or tail) in a given worm fragment.
Thus, a regeneration signal can simultaneously trigger
head and tail regeneration in response to a cut where
the morphogens competitively inhibit their own develop-
mental paths. For instance, the morphogen derived from
head cells represses head regeneration in worm fragments
possessing a head after a manipulation, whereas the lack
of a tail will lead to decay of the tail morphogen and
allow tail regeneration to proceed. A schematic of the net-
work design used in these experiments is presented in
Figure 2(a).

Our representation of this work included a simple archi-
tecture of 420 planar cells arranged as a rectangular
abstraction of an intact worm (Figure 1b). The num-
ber of cells was chosen empirically to provide a robust
system that could be reasonably manipulated by one or
more simultaneous or sequential cuts. The implemen-
tation of our morphogen-based model was represented
in Cellsim using a series of metabolic and transcription

reactions (Figure 2(b)) where every cell was controlled
autonomously by this same network. In response to a sim-
ulated cut, a Regeneration signal activates a Regeneration
pathway, which simultaneously promotes head and tail
development responses. The head and tail development
pathways are constitutively repressed by the presence of a
morphogen (i.e. Head gradient and Tail gradient) emanat-
ing from existing head or tail cells in the simulation and
spread to neighboring cells through gap junctions. The
morphogen gradients will disappear or be diminished fol-
lowing a transverse cut when the source (head or tail) is
physically removed, causing one developmental pathway
to be favored over the other. Furthermore, the head and
tail resources repress each other to ensure a unique cell
state is ultimately achieved.

At the start of a simulation, the head, trunk, and tail
regions were defined by introducing one of three cell-
state resources (head, hCell; trunk, iCell; tail, tCell) into
each cell. Simulations were then run for approximately
200 steps to allow the network to reach homeostasis and
provide sufficient time to develop long-range morphogen
gradients. As shown in panel 1 of Figure 1b, worms con-
sisted of head (blue) and tail (purple) regions separated
by a trunk (orange). Next, a transverse cut was simulated
by injecting a resource, Lysis, into a cross-section of cells
located at or near the mid-line of the worm. The pres-
ence of Lysis results in a localized cell death response that
results in separation of the initial worm into two worm
fragments lacking either a head or tail (panel 2). Nearby
cells respond to the cut by inducing a localized Regen-
eration signal, which in turn activates a cell’s Regenera-
tion pathway. At this point, simulations consisting of two
worm fragments were advanced another 200 steps prior to
evaluating their emergent outcomes. The regulatory net-
work parameters were optimized by hand for the network
(Figure 2(b)), which resulted in proper regeneration of
head and tail regions as shown in panel 2 of Figure 1b. For
simplicity, these simulations did not include cell growth,
division, or rearrangements, but these properties will be
introduced in future studies.

These results showed that we could develop a simple
model of planarian regeneration using a long-range mor-
phogen gradient that could faithfully respond to at least
simple manipulations. However, it was clear that hand-
design and tuning a single model to represent the many
experimental outcomes described in the literature would
be a daunting task without computational automation.
This challenge could be alleviated using an automated
method of model creation and evaluation, such as per-
formed by genetic algorithms [18]. These algorithms are
based upon the principles of evolution where individu-
als in a population are generationally- modified through
random genetic mutations and crossovers during repro-
duction. Individuals chosen to contribute to the offspring
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Figure 1 This figure depicts a classic planaria regeneration experiment involving a transverse cut of an intact worm, followed by the
regeneration products for each fragment. The real experiment is shown in (a) along with the (b) simulation and (c) graph representations. In
each case, the second panel represents the worms immediately following the cut, whereas the third panel depicts the regeneration outcome at a
later time.

of the subsequent generation are selected, in part, based
upon a fitness metric, which quantitatively defines how
well each individual matches the characteristics of the

target. This evolutionary search technique continues in
an automated fashion until an individual matching the
desired target (fitness value of 1.0) is generated.
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Figure 2 General network scheme of the virtual planaria. (a) Depiction of a regulatory model based upon a competitive development pathway
initiated by a regeneration signal and repressed by active long-range morphogen gradients. (b) Representation of the principal components of the
network as described in the Cellsim architecture. (a) Overview of general network scheme. (b) Regulatory network defined in Cellsim modeling
platform.

Graph formalism provides a convenient means of storing
morphologies and comparing worms
The challenge of automating searches to identify possi-
ble planarian regeneration mechanisms was made more
tractable by the database and formalism developed to
describe wet-bench experiments and outcomes [15,16].
Within PlanformDB, worm morphologies are described
using a graph-based formalism as part of a more gen-
eral ontology for describing regeneration experiments.
Briefly, a graph defines anatomic regions and organs as
nodes where their size, spatial orientation, and connec-
tions are defined by parameters and linkages between
adjoined nodes. For example, a simple description of the

regions within a normal planarian consists of three con-
nected nodes (head, trunk, and tail) as shown in Figure 1c.
Although the formalism supports more complex descrip-
tions of worms including organs, those aspects of worm
anatomy were not considered in the current work. A
particular experiment may include a description of the
observed starting, intermediate, and ending morphologies
of worms along with the physical or chemical manipula-
tions performed in the laboratory. The database currently
describes most, if not all, of the published planarian regen-
eration experiments for use by this and other projects.

In this study, we extended and adapted an existing
genetic algorithm (CSGA) to fit our needs to model and



Budnikova et al. BMC Bioinformatics 2014, 15:178 Page 6 of 14
http://www.biomedcentral.com/1471-2105/15/178

evaluate planarian regeneration. One of the key adap-
tations was providing the CSGA access to the Plan-
formDB to facilitate simulation and fitness evaluation.
However, the challenge of comparing our agent-based
simulation output to a graph-based representation pre-
sented a significant challenge. In order to facilitate these
comparisons, we chose to convert simulation results into
a graph representation for a number of reasons, includ-
ing increased flexibility as the CSGA could be extended
to support additional modeling platforms as long as their
output could also be translated into this graph formal-
ism. More importantly, many methods currently exist
for operating on, transforming, and comparing graphs
which can be included as part of the fitness evalua-
tion step of an automated evolutionary search [19-21].
Included in this repertoire are a number of algorithms
suited for measuring similarity between two graphs [22].
Of these, the graph edit distance algorithm is the most
flexible and powerful and was chosen here as it deals with
structural errors and any type of graph node and edge
labels [23,24].

The graph edit distance is defined as the minimum
number of distortions required for transforming one
graph into another. These distortions are referred to as
graph edit operations, where each edit has a defined cost
associated with it [23]. A particular sequence of edit oper-
ations is called an edit path, and the total cost of the edit
path is the graph edit distance. Graphs that are similar
to each other typically have small edit distances, whereas
dissimilar graphs have large edit distances. The cost of
each type of graph edit operation varies and is dependent
upon the perceived severity of the operation. For example,
the deletion of a node from a graph is generally viewed
as having a higher cost than a node parameter change.
Thus, the graph edit distance can be used as a quantita-
tive similarity measure to compare and order individuals
within a population, and thus serve as a metric within
a fitness evaluation to guide the evolutionary search
process.

Design of a connected component analysis algorithm
to convert cell simulation output into graph
representations
The worms in our simulation are composed of a collection
of discrete cells rather than interconnected regions. Thus,
the initial step in deriving a graph-based representation is
to translate cells within a simulation snapshot into discrete
regions (e.g. head, trunk, or tail), and determine how they
are interconnected. To this end, we designed and imple-
mented an algorithm based upon connected component
analysis similar to methods used in computer vision and
document analysis [25].

A simulation is processed as a series of discrete steps
where each step consists of a complete description of

cellular locations and their individual resources (snap-
shot). The snapshot associated with each step can be
independently analyzed by the algorithm to identify cell
states and identify regions over time, or a single endpoint
can be examined. The algorithm first iterates through all
the cells in a snapshot and assigns each cell a region type
(e.g. head, trunk, or tail). In general, the assignment of
a cell type could be complex as there are many differ-
ent components (e.g. proteins/resources or neighboring
cell interactions) associated with each cell. In our case,
we decided to simply define each cell’s state based upon
the molecular concentrations of three resources, which
we labelled hCell (head), iCell (trunk), and tCell (tail).
Our algorithm assigns a region type to each cell based
upon the highest total concentration of these indicator
resources. For example, a cell is assigned a head state if
its concentration of hCell is greater than iCell and tCell.
In the modeling platform, transcriptional noise and cellu-
lar autonomy result in cells with varying concentrations of
resources, even those located near each other (Figure 3).
Since a resource may be found on the cell surface (S)
or internally (I), the algorithm was designed with the
flexibility to allow the user to define whether to con-
sider the total or localized concentrations of resources.
We used total cellular concentration of each of the three
indicator resources to determine a cell’s state in this
work.

Figure 3 The molecular concentration of resources varies
between and within cells during a simulation. The concentration
of a particular resource is governed by spatial and environmental
cues, such as signals from neighboring cells. Within a given cell the
location of a given resource can be distributed between the internal
compartment (e.g. cytosol) and the surface (e.g. membrane). The
differentiate state of cells are color-coded to enable visual distinction
of cells and the composition of a region: head (blue), trunk (yellow)
and tail (purple). Concentrations of representative resources inside (I)
and on the surface (S) are provided.
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Once each cell’s state has been determined, the algo-
rithm identifies regions based upon spatially cohesive cells
sharing the same state using connected component analy-
sis. All cells located adjacent to cells containing the same
state are considered part of the same region, where the
outermost cells define the region border. The connected
component analysis algorithm (Algorithm 1) initiates with
a call to the ProcessConnectedComponents function pro-
viding a simulation snapshot as a parameter. The Pro-
cessConnectedComponents function cycles through all
cells and calls the GatherConnected function for each
unassigned/marked cell. The GatherConnected function
recursively collects and marks all other cells in the snap-
shot that belong to the same spatially cohesive region as
the starting cell. A cell is defined to be in the same spa-
tially cohesive region as the starting cell if it is of the
same type as the starting cell and is either connected to
the starting cell or to some other cell already determined
to be in the starting cell’s region. Two cells are consid-
ered to be connected if the Euclidean distance between
them is below a user-specified threshold (discussed in
section ‘A cell connectivity distance threshold effects
region determination’). Additionally, if two cells are close
enough to each other to be considered connected, but are
assigned to different regions because they are of differ-
ent types, those cells are identified as border cells. Border
cells are used to determine which regions are linked to
each other.

Once each cell in the snapshot is assigned to a specific
region, the algorithm determines the number of neigh-
boring regions using the border cells found during the
recursive process and establishes links between nodes
where regions are considered linked if their border cells
are adjacent to each other. Other necessary parameters
for a complete graph representation include the distance
between the connected regions’ centers (length of link),
orientation with respect to each other (angle of the link
relative to the x-axis), and the border between the two
regions (location along the link where the two regions
meet). The center of a region is calculated by averaging
the spatial centers of every cell within a particular region.
The Euclidian distance between these points of neighbor-
ing regions is used to define the length and orientation of
each link. Finally, the graph component parameter defin-
ing the borders of regions in each direction is calculated
from the location of the most distantly located cell in a
specific direction. The number of parameters for a region
depends on the number of links it has with other regions.
Figures 1(b to c) show examples of simulation morpholo-
gies that have been converted to a graph formalism using
this algorithm.

Simulation snapshots are converted to well-ordered graphs
using our conversion and graph-edit distance algorithms
During an evolutionary search, large numbers of unique
individuals are generated and must be evaluated against

Algorithm 1 Recursive pseudocode for connected component analysis algorithm to separate a list of cells taken from
the simulation snapshots into discrete morphology regions.

ProcessConnectedComponents ( s n a p s h o t ) :
l i s t = new l i s t o f connected components
f o r each unprocessed c e l l c i n snapshot :

comp = new connected component
comp . a d d C e l l ( c )
c . s e t P r o c e s s e d ( )

GatherConnected ( c , comp , s n a p s h o t )
l i s t . add ( comp )
f o r comp i n components :
comp . c a l c u l a t e P a r a m e t e r s ( )

GatherConnected ( c1 , comp , s n a p s h o t ) :
f o r each unprocessed c e l l c2 i n s napshot :

i f connected ( c1 , c2 ) :
i f c1 . t y p e i s not c2 . t y p e :

mark c1 and c2 a s border c e l l s
e l s e :

comp . a d d C e l l ( c2 )
c2 . s e t P r o c e s s e d ( )
GatherConnected ( c2 , comp , s n a p s h o t )
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the target individual encoded in the database. Thus, we
sought to evaluate our conversion algorithm manually to
ensure the graph representations were intuitive and to
evaluate the use of the graph edit distance metric for
ordering individuals in the population. To this end, we
generated a number of worms with distinct morpholo-
gies by hand using the modeling platform and converted
their snapshots into graph representations using our algo-
rithm. The simplest individuals that can be represented
by the simulation platform include worms with discrete
regions, whereas more complicated morphologies con-
sisting of regions contained within other regions could
also exist. Just considering the basic morphologies, the
number of individuals that can be formed and the search
space for the genetic algorithm are infinite, and therefore
our algorithm was tested using simple individuals before
considering more complicated morphologies.

As shown in Figure 4, we generated a series of distinct
worms (ID 1-13) for comparison with a desired target (ID

0). In each case, the worm representations included two
fragments to simulate the state of worms following a sin-
gle transverse cut. Each worm was generated by injection
of the appropriate cell-state resource (i.e. hCell, tCell and
iCell) to generate the desired regions within the worm
fragments, resulting in different permutations of head, tail
and trunk regions. Every test morphology was converted
to a graph (Figure 4, Morphology Graph) using our con-
version algorithm. We did not find discordance between
the graphs generated by the conversion algorithm and
those expected upon visual inspection of the simulation
output. Thus, the algorithm was working as expected on
these simple morphologies.

During an evolutionary search, the genetic algorithm
needs to compare individuals to the target and reward
those individuals with morphologies most similar to the
target individual as their offspring are more likely to
possess the a reaction network capable of proper regen-
eration. The genetic algorithm thus assigns fitness values

Figure 4 Single cut morphology experiment results for simulation snapshot to graph conversion and graph edit distance comparison.
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based upon how similar the individual is to the target, with
more similar individuals getting higher fitness values. A
fitness value of 1.0 is awarded to an individual with a per-
fect match to the target and is the ultimate goal of a search.
Thus, we calculated the graph edit distance between each
test individual and the target and converted those values
into a fitness value (Figure 4).

The graph edit distance penalties used in our algorithm
and this manuscript are described in Table 1, but can be
modified by the user. The penalties are most severe when
differences exist between region numbers and connectiv-
ity than for region size and linkage parameters. While
the optimization of the graph edit costs is beyond the
scope of this paper, we will explore methods for automated
optimization of the graph edit costs in future work.

The target individual, when compared to itself, yielded
a value of 0.0, because when two individuals are identi-
cal, the distance between them measured by the graph
edit distance algorithm is 0. Using Equation 1, the dis-
tance of 0.0 translates to a fitness value of 1.0, which in a
genetic algorithm search would indicate the target mor-
phology has been found. Morphology 13 in Figure 4 is a
slight variation of the target morphology, where its heads
are several cell layers thinner than the heads of the target,
and as expected, has the next best fitness value (0.998).
In general, high fitness values for morphologies such as
number 13 are expected as their regions are connected
and oriented the same as the target. When compared to
the target, morphologies that consist of three regions in
each worm fragment received higher fitness values than
morphologies having one or two regions. For example,
morphology 6 was rated higher than morphology 4. Again,
this is because the graph edit distance costs included a
much larger penalty for the deletion of a region than with
a change to the type of region.

Conversion of a simulation snapshot into the graph is
an O(N2) algorithm where N is the number of cells in an
individual. The wild type morphology had 420 cells, but
since the transverse cut removed four rows of cells, the
morphologies used in this experiment consisted of 364

Table 1 This table presents the graph edit costs used for
graph edit distance calculations in this manuscript

Operation Cost

Insert/delete region 1500

Change region type 1000

Change region parameter 0.1 per unit changed

Insert/delete link 1000

Change link distance 0.1 per unit moved

Change link angle 0–100

Change link angle > 90 penalty 750

cells. The conversion algorithm ran in less than 1.3 sec-
onds for every morphology in Figure 5. It is well-known
that the run time of the graph edit distance calculation
grows exponentially with the size of the graphs (number of
nodes, or in our case to the number of regions in the two
morphologies) [23]. However, since the number of regions
in each morphology tested was at most 6, the graph dis-
tance algorithm finished in less than 1 millisecond for all
morphologies.

A cell connectivity distance threshold effects region
determination
A comparison of more complicated morphologies high-
lighted the need for a flexible distance threshold in the
component gathering algorithm. Since the cells in our
simulation have radii of 0.5 units, the Euclidian distance
between two adjacent cells can be as low as one. However,
using a very rigid measure for identifying neighboring
cells and determining the borders of regions can have dra-
matic effects on the graph conversion. For example, con-
sider the morphology of the second individual shown in
Figure 5. In this individual thin lines of trunk cells dissect
the head and tail regions into a number of potentially dis-
tinct heads and tails if the borders are considered rigidly.
Comparison of this individual with the target results in a
very high graph edit distance due to the cost associated
with having multiple heads. However, in the context of a
evolutionary search, this individual may be very close to
producing the target morphology.

A flexible threshold parameter was introduced to reduce
the rigidity of region definitions, which allowed neighbor-
ing regions separated by thin regions to be merged in the
final graph representation. Increasing the threshold value
reduces the stringency by increasing the search distance
between cells for neighbors with the same state. Thus, in
the example just discussed, increasing the threshold value
allowed the multiple head regions to be lumped into a sin-
gle head region. The graph edit distance of this worm is
much lower resulting in a fitness value close to one.

A second example highlighting the importance of this
parameter to component gathering is presented at the
bottom of Figure 5. This worm represents a classic exper-
iment that involves bifurcating the head region into
two fully-developed heads. These two heads are sepa-
rated physically and should be classified as two-headed.
A threshold parameter of less than three results in the
desired graph conversion in our algorithm, whereas the
larger value results in a worm with a single head.

These two examples show the necessity of a flexible
parameter for determining local regions during a GA run.
In the first case, a low threshold was shown to penalize a
morphology that was very similar to the target, whereas a
high threshold inappropriately favored a morphology con-
taining a physical gap between head regions. An optimal
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Figure 5 Threshold value influence on snapshot to graph conversion algorithm.

threshold will depend upon the modeling platform and
project, but in this work and from an evolutionary per-
spective a threshold of two was optimal.

Validation of component gathering and graph edit
distance during evolutionary search
As our ultimate goal is the generation of an automated
model discovery tool, we tested the utility of our conver-
sion algorithm and the graph edit distance as a fitness
metric as part of an evolutionary search for a target
described in the PlanformDB. As shown in Figure 6a, we
selected an experiment from the database where either the
anterior or posterior end of an intact worm was removed.
Functionality was added to the GA to interact directly
with the PlanformDB so that it could extract the tar-
get individual as a graph representation for comparison.
The target individual for this experiment was a single
normal worm consisting of head, trunk, and tail regions
connected in that order (see graph in Figure 6a).

The starting population of individuals in the GA search
contained a version of the hand-designed model descrip-
tion shown in Figure 2 after it was purposely modified to
become non-functional. The Regeneration, Head develop-
ment, and Tail development resources were removed from
the regulatory network, thus preventing proper regener-
ation (data not shown). We were interested in whether
the GA could find solutions that properly regenerated the
tail region using our conversion algorithm and a fitness
metric based solely on the graph edit distance calcula-
tion. Since the GA is designed to evaluate fitness values
in the range of 0.0 to 1.0, we converted the graph edit
value as shown in Equation 1. Initially, we used the sim-
ple inverse function of 1/(graph edit distance) to obtain
the GA fitness values. However, the fitness function values
in such cases tended to be very small even for relatively
similar graphs due to sensitivity caused by the large edit
penalties in Table 1. To reduce the sensitivity to the large
edit distance penalties, we introduced a constant (5000)
to our equation after empirically testing values between

1000 and 10000. Constants below 1000 were excluded
as they yielded very small fitness values, while constants
above 10000 were excluded on the basis of generating high
fitness values for individuals with morphologies very dis-
similar to the target. Although other numbers in this range
could have sufficed, the 5000 value maximized the differ-
ences between fitness values and thus was used in this
work.

fitness = 5000
(distance + 5000)

(1)

Our searches included populations of only 30 individu-
als, but much larger populations are feasible. In order to
generate variability in the individuals, a set of mutation
and crossover parameters were introduced and applied
to each new generation of offspring. These operators
and parameters were hand designed for this experiment,
but parameter definition will eventually become auto-
mated. Searches were performed for individuals with
proper regeneration of head or tail following removal of
the anterior or posterior regions, respectively. During the
evolutionary search, the GA pauses each simulation at a
predefined step (e.g. 200 in this experiment) and requests
a simulated experiment be performed (e.g. cutting off the
head or tail). Each individual simulation is resumed and
continues until the GA requests a snapshot to evaluate
(e.g. step 400). At this point, the simulation snapshot is
used to create a graph representation using our compo-
nent gathering algorithm, which is then compared to the
target individual from the PlanformDB to determine the
individual’s fitness value. High scoring individuals were
chosen for reproduction to generate the next generation of
individuals which were independently mutated to increase
variability in the population.

The GA was successful in identifying individuals with
fitness values very close to the target value of 1.0. Two
such regulatory networks are shown in Figure 6. The net-
work shown in Figure 6(b) is a representative evolved
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Figure 6 An evolutionary search experiment where simulated individuals are evaluated against a target morphology extracted from the
PlanformDB. The simulation output is converted to a graph using our component gathering analysis algorithm followed by a comparison using
the graph edit distance fitness function. The process is repeated with new individuals following selection, reproduction, and mutation operations
until a suitable solution is identified. Solutions from simple searches are presented following removal of the anterior (b) or posterior (c), respectively.
(a) Genetic Algorithm (GA) experimental flow. (b) Representative GA head regeneration solution network. (c) Representative GA tail regeneration
solution network.
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solution when selecting for a worm that properly regen-
erates head after removal of the anterior region of an
intact worm. Similarly, the network in Figure 6(c) comes
from a representative worm that was evolved to regener-
ate a tail following removal of the posterior end. There are
noticeable similarities between the two solutions. In both
solutions, a direct connection was made between the cut
response to regeneration of the missing region, head or
tail, respectively. Although each search found a solution to
the experiment at hand, the solutions were limited in their
flexibility to respond to other permutations. As expected,
neither network was capable of solving the reverse prob-
lem as their was no selective pressure in the evolutionary
search. Nonetheless, these results show that our evolu-
tionary search process is capable of finding solutions using
our connected component analysis to convert cell-based
individuals into graphs, which are compared with the
appropriate target extracted from the PlanformDB using
the graph edit difference evaluation metric.

The inflexible network solutions emphasize the impor-
tance of searching for solutions using rigorous fitness cri-
teria and why an automated approach is necessary. Future
experiments will target networks that are capable of han-
dling both anterior and posterior ablations. Simulation
snapshots contain a detailed description of the current
state of the simulation, including a list of all cells, their
location, shape, genomes, metabolic equations, environ-
mental conditions, and the concentration of all resources.
Thus, snapshots provide much richer information about
the cells and individuals than the graph formalism and
will provide opportunities to develop additional fitness
metrics to complement graph edit distance in the future.

Discussion and conclusion
One of the challenges in the biological sciences is the
development of new methods for data visualization and
integration to provide informative and predictive insight
into the scientific process. Computer models hold great
promise in this area, but often involve significant human
interaction and time. In this study, we laid the foun-
dation for a system of automated model discovery and
development that incorporates shape-based experimen-
tal data from a repository of documented experiments.
Graphs are a powerful and convenient means of describ-
ing morphological data. Using comparison methods, such
as the graph difference evaluation, one can easily search
such a database for results that are similar or identi-
cal. We showed that the utility of the graph difference
evaluation could be further extended as a fitness evalua-
tion metric during evolutionary search. This method was
combined with a cell-based modeling platform to model
basic regeneration of the planarian flatworm. Agent-based
models are particularly amenable to this approach as they
are tractable to simulated experimental manipulations

combined with fully emergent outcomes. The ability to
automate these behaviors fits nicely into an automated
discovery system that can be driven by a genetic algo-
rithm search engine. Furthermore, simulators that include
robust visualization capabilities make it very convenient
for the scientist to evaluate or experiment on a set of
search results.

Planarian worms provide an excellent model system for
developing such an automated search process due to the
plethora of experimental data in the literature, and now
available in a curated database (PlanformDB). However,
the principles inherent in this design are extensible to
any system where shape is an integral component of the
observable outcomes. That said, developing model discov-
ery systems that automatically incorporate experimental
data is a general and attainable goal that is not limited to
systems dependent upon morphological data.

The challenge of describing phenotypic outcomes based
upon morphological characteristics is challenging for
biological systems and cell-based computational models
alike. We showed that converting cell-based simulation
output into graphs can be achieved using a component
gathering algorithm that identifies regions and their jux-
taposition to each other and converts them into nodes
joined by linkages. The resulting graphs can be stored to a
database and easily reconstructed later and/or compared
with other graphs using algorithms such as the graph
edit distance. These comparisons and the resulting metric
were incorporated into an evolutionary search where the
genetic algorithm retrieved its target morphology from a
data repository of experimental outcomes and used the
graph edit distance as a fitness metric to drive develop-
ment. Using a small population size of 30 individuals,
our mutation and crossover frequencies were sufficient to
generate a solution state in as few as 19 generations for the
experiments shown in Figure 6(a).

The method for converting a simulation snapshot to a
graph formulation works well, and the converted mor-
phologies reflected shape and positions of body regions
relative to each other in space. The graph-based fitness
function thus accurately distinguishes the shapes of dif-
ferent morphologies, but does have difficulty predicting
which morphology will more likely regenerate into the
target morphology. To improve the effectiveness of our
graph-based fitness function, future work will seek to
automate the optimization of the graph edit costs to not
only reflect the shapes of individuals, but also to favor
morphologies that are more likely to regenerate into the
target individual. The optimization of graph edit costs
needs to be automated since tweaking graph edit costs
allows one to achieve a more accurate graph comparison
for some cases, but there is no perfect parameter assign-
ment that covers all cases, and so it should be chosen
depending on the needs and design of the experiment.
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Future work will also develop additional morphological
based fitness functions to act side by side with the graph
edit distance fitness function. This will allow researchers
to choose from among multiple morphological fitness
operators, possibly combining the output of several eval-
uators instead of assigning a fitness value based on one
fitness function evaluation.

Methods
Cell-based modeling platform
Cellsim is an agent-based modeling platform whose prin-
ciple agents are cellular in nature. These cells and their
behaviors are rooted in biology as the environment, inter-
actions, metabolism, and signaling networks are designed
based upon biological primitives. Cells are capable of
proliferating, growing, dividing, dying, and regulating
metabolic and genetic networks in response to changes
in their local environment, including cell interactions and
signaling. As a result, cells have emergent properties as
they are autonomous, evolvable, exhibit inheritance, and
are contingent upon their neighbors. Another important
feature of this system is its ability to be automated and
manipulated using a genetic algorithm search engine [17].

The versatile genetic algorithm associated with Cell-
sim was expanded as part of this work and includes
many parameters to customize the common elements of
a genetic algorithm, such as number of crossovers, muta-
tion rates, selection criteria, and population size.

Graph edit distance algorithm
Formally, to transform the morphology graph g1 into
graph g2, a sequence of operations (the edit path) must be
performed [23,24]. The edit distance between two graphs
is defined as the minimum cost edit path that transforms
graph g1 into graph g2 as represented in Equation 2.

d(g1, g2) = min(e1,..ek)∈P(g1,g2)

k∑

i=1
c(ei), (2)

where P(g1, g2) is the set of edit paths that transform graph
g1 into g2, c is the edit cost function and ei denotes an edit
operation. Generally speaking, determining the graph edit
distance requires that we examine the set of paths that
transform g1 to g2 and calculate the path costs for each.
This is non-trivial but can be achieved in an optimally
efficient manner using the A* best-first search algorithm
[26].

The graph edit distance calculation has been adapted
for comparing planaria graph representations. A list of
edit operations and an example of the corresponding costs
used in this paper are given in Table 1.

For simplicity, we are working with worms whose graph
representations are devoid of organs for this analysis, but
will include them in later experiments.

The minimal path cost between two graphs g1 and g2
is found using the A* search algorithm. The possible edit
paths can be viewed as forming a tree, where the edges
of the tree are individual edit operations and the nodes
are graphs. The inner nodes of the tree correspond to
partially edited graphs, and the leaf nodes represent com-
plete edit paths, all of which terminate at the target graph.
The search for the minimal edit path starts with one of
the graphs, say g1, as the root of the tree, and defines the
possible branches from this node to be all possible single
edit operations that could be applied to the original graph
g1. At each step of the A* search, the algorithm expands
(explores) the branch of the tree that leads to a node on the
search frontier that has the minimum estimated total path
cost. The minimum estimated total path cost is derived
from the sum of the cost of the edits required to reach the
node being expanded from the root, plus an estimate of
the total cost of the edits required to reach the goal state
(graph g2) from the node being expanded. The algorithm
terminates the first time it expands the goal state, as the
path that it finds at this point is guaranteed to be optimal.
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