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ABSTRACT

In this study we address the problem of using effective sample size (ESS) to

approximate the probability distributions of order statistics from correlated data.

We present these approximations and determine their accuracy through simulation

studies. More often than not, correlation exists between data points in a set of data.

When we use the original sample size of the data in a derivation of a model of the

data, we automatically assume that each data point contains one data point’s worth

of information. If the data are correlated, then each data point contains less than

one data point’s worth of information making our assumption false. This is especially

true in the case of data with a very high level of correlation. Effective sample size

represents essentially how many pieces of uncorrelated information the sample would

compare to and this is often much smaller than the original sample size. Here we

calculate effective sample size which we then use in place of the original sample size.

We use a method discussed by Thiebaux and Zwiers [9] for the calculation of effective

sample size and show its usefulness using an application to the approximation of the

probability distributions of order statistics in correlated data, and finally, we compare

our results with simulated data.
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CHAPTER 1

INTRODUCTION

This study focuses on an application of effective sample size to the order statistics for

correlated data. Effective sample size in correlated data provides a method to deter-

mine how many independent observations exist within a sample. Each independent

observation is known to contain a preset amount of information. Determining how

many observations in the sample represents one independent observation is the job

of effective sample size [5].

When data are uncorrelated, it is seen that effective sample size is just the size

of the sample. However, when data are correlated, effective sample size gets smaller

than the sample size. We specifically consider the maximum and minimum order

statistics in correlated data and approximate their distribution through the idea of

effective sample size.

Thiebaux and Zwires have given multiple techniques for calculating effective sam-

ple size but do not show specific applications of these techniques. Work done by

Laurmann and Gates has stressed the importance of effective sample size when work-

ing with correlated data, but do not clearly define how to calculate it. The importance

of effective sample size has also been noted in [6], [7], [8], and [1], but they did not use
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it in their calculations. Effective sample size was used by Ko and Lee [4] to calculate

confidence intervals for long memory regression. Here we use effective sample size to

approximate the distributions of order statistics in time series.

Effective sample size has been recognized as an important issue in atmospheric

circulation models. Experiments involving atmospheric measurements of a process

whose distribution does not depend on time, known as a stationary process, can be

taken successively with the passage of very small amounts of time. Such a stationary

time series is a process that is assumed to have no correlation between observations.

The atmosphere does not have this property because such measurements have some

dependency. Effective sample size can be used to take into account the dependency

in atmospheric measurments [5].

The remainder of this thesis is organized as follows: In Chapter 2 we introduce the

basics: the definition of order statistics and the concept of effective sample size, which

are needed to understand the study. In Chapter 3 we present the autoregressive and

moving average models, the calculations of effective samples sizes in the maximum

and minimum order statistics for the models. We show how to apply effective sample

size to the probability distributions of maximum and minimum order statistics from

AR(1) and MA(1) models. In Chapter 4 simulation studies are given. Concluding

remarks and further studies are given in Chapter 5.
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CHAPTER 2

PRELIMINARIES

2.1 Order Statistics

Suppose that X1, X2, ...Xn are independent and identically distributed with a proba-

bility density function f(x) and a cumulative distribution function F (x). Order statis-

tics are obtained from sorting the data from the least to the greatest, X(1) ≤ X(2) ≤

.... ≤ X(n). The probability distribution of order statistic, X(k) [3] is , Suppose that

X1, X2, ...Xn are independent and identically distributed with a probability density

function f(x) and a cumulative distribution function F (x). Order statistics are ob-

tained from sorting the data from the least to the greatest, X(1) ≤ X(2) ≤ .... ≤ X(n).

The probability distribution of order statistic, X(k) [3] is ,

gk(X(k)) =
n!

(k − 1)!(n− k)!
[F (X(k))]

k−1[1− F (X(k))]
n−kf(X(k)). (2.1)

For the maximum order statistic X(n) its probability distribution is simplified to

gn(X(n)) = n[F (X(n))]
n−1f(X(n)).
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Similarly, we have the following simplification for the probability distribution of the

minimum order statistic X(1):

g1(X(1)) = n[1− F (X(1))]
n−1f(X(1)).

The maximum and minimum order statistics are important order statistics which

are used in many disciplines. In time series, they represent the distribution of the

highest reading recorded and the lowest reading recorded, respectively. For example,

the amount of water flowing into a reservoir at a given point in time may determine

if the dam will fail. Then one might be interested in the distribution of the maximum

order statistic in this case because it will determine the probability the dam will

withstand yearly river fluctuations into the distant future.

As can be seen, the distributions of order statistics depend on the sample size n.

They are only accurate when the data are independent and identically distributed.

However, the distribution (2.1) cannot be applied to correlated data. Our goal is to

use the distribution (2.1) of the maximum and minimum order statistics for correlated

data by replacing the original sample size n with an effective sample size ne. To the

best of our knowledge, this work has not been done yet in literature.
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2.2 Effective Sample Size

Rarely in the sampling process do we obtain data that are made up of completely

uncorrelated observations. In time series there will always be some sort of correlation

between data points and a sample may not contain as much information as it would

first appear to contain. For example, if we have two temperature readings taken an

hour apart from each other, there is going to be some dependence between the two

readings. This means that knowing information about one of the observations tells

us some of the information about the other observation. The question then arises:

how does this independence issue affect the information obtained in the sample? If

data points are correlated, then we have effectively less information about the total

population than the sample size indicates. That is, the size of the sample is not the

effective size given the amount of information the sample actually contains.

We consider a method to obtain this effective sample size, ne, discussed by Thiebaux

and Zwiers [9], which depends on the variance of the sample mean of the indepen-

dent data, V ar(ȲIID) and the variance of the sample mean of the correlated data,

V ar(ȲCORR). The effective sample size can be calculated by the relation [4]:

V ar(ȲIID)

V ar(ȲCORR)
=

ne
n
, (2.2)

where n is the original sample size. Here ȲIID is the sample mean of assumed uncor-

related data and ȲCORR is the sample mean of assumed correlated data. A part of
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this thesis is dedicated to calculating the variance of the correlated data.

For data that are correlated, the original sample size becomes less informative in

measuring the amount of information and effective sample size may be a better choice

for further statistical analysis. This is best illustrated in an example with 1000 data

points that have a correlation coefficient of one because, in this case, even though

we have 1000 points, one data point has all the information. Sample size can be

replaced by effective sample size in order to create a more accurate model of data

that is correlated.

The information we need in calculating effective sample size ne is the original sam-

ple size and the amount of dependence within the data. A popular way to measure

this dependence is by using the autocovariance function, γ(h), which compares the

variance of the data with a time-shifted version of itself and by using the autocorre-

lation function, ρ(h). The size of the time shift h is called lag which denotes distance

between observations.

The relationship between the autocovariance function and the autocorrelation

function is [2],

ρ(h) =
γ(h)

γ(0)
, h = 0, 1, 2, ..., n− 1. (2.3)

In time series, if a process has autocovariance and autocorrelation functions that

depend only on the time lag h, the process is called stationary. In this study we

assume a stationary time series.
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CHAPTER 3

APPROXIMATION OF PROBABILITY DISTRIBUTION

OF MAXIMUM AND MINIMUM ORDER STATISTICS

Here we focus on the approximate distributions of the maximum and minimum order

statistics in the samples from the first order autogregressive model (AR(1)) and the

first order moving average model (MA(1)). That is, we use these processes as a means

for generating correlated data. Then the probability distributions of the maximum

and minimum order statistics of those data are approximated.

In Section 3.1 autoregressive and moving average models are introduced with

their autocovariance and autocorrelation functions. In Section 3.2 the computational

formulas of effective sample sizes in the maximum and minimum order statistics of

AR(1) and MA(1) models are derived. Also, their applications to the probability

distributions of those order statistics are presented.

3.1 Autoregressive and Moving Average Processes

For the formulas and notations in this section, we follow the presentation of [2]. The

pth order autoregressive model, AR(p) is defined by
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p∑
i=0

φiXt−i = et, t = 1, 2, ..., n,

where the φis are the autoregressive coefficients with φ0 = 1 and et is white noise

with mean zero and innovation variance σ2. We assume the white noise term et has

the normal distibution.

In this study we use a special case of the AR(p) model which is the AR(1) model.

This model is represented by

(1− φB)Xt = et, t = 1, 2, ..., n,

where φ is the autoregressive coefficient and B is the backshift operator, BXt = Xt−1.

The autocorrelation function ρ(h) and autocovariance function γ(h) of the AR(1)

model are, respectively,

γ(h) =
φhσ2

1− φ2
, h = 0, 1, 2, ..., n− 1

and

ρ(h) =
(φhσ2)/(1− φ2)

σ2/(1− φ2)

= φh, h = 0, 1, 2, ..., n− 1.

On the other hand, the pth order moving-average model for a time series {Xt}nt=1
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is defined by

Xt =

p∑
j=0

θjet−j, t = 1, 2, ..., n,

where θj are the moving-average coefficients with θ0 = 1 and et are the white noise

terms which will be assumed to be normally distributed throughout the study. In

this study we specifically use the MA(1) model which has the form

Xt = et + θet−1, t = 1, 2, ..., n,

where θ is the first order moving average coefficient.

The moving-average model coefficient, θ, is related to the autocovariance γ(h) via

the function,

γ(h) = E(XtXt+h)

so

γ(h) =


∑p−|h|

i=0 θiθi+|h|σ
2, |h| ≤ p

0, otherwise.

The autocovariance at lag zero is

γ(0) = (1 + θ2)σ2,
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and at lag one

γ(1) = θσ2.

Note that the autocovariance at higher lag in MA(1) process is zero. Thus, from

(2.3), the autocorrelation at lag one is

ρ(1) =
θ

1 + θ2
.

Note that the AR and MA coefficients determine the structures of the autocovariance

and autocorrelation functions in time series, and in turn, the autocovariances and

autocorrelations are essential in calculateing effective sample size, which will be seen

in the next section.

3.2 Effective Sample Size in AR(1) and MA(1)

A rearrangement of (2.2) yields

ne = n
V ar(ȲIID)

V ar(ȲCORR)
.

Thiebaux and Zwiers [9] show that the variance of the sample means from the corre-

lated data, V ar(ȲCORR), which is needed for the calculation of effective sample size

can be expressed in terms of the variance and autocorrelation function ρ(h), where

h is the lag between observations. The autocorrelations of all possible lags are used
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in the calculation of the effective sample size for AR models, and only the autocorre-

lation at lag one is used for the MA model. The variance of the sample means from

the correlated data is expressed as

V ar(ȲCORR) = E[(Ȳ − µ)2]

= E[(
n∑
i=1

(Yi − µ)/n)2]

=
n∑

i,j=1

E[((Yi − µ)(Yj − µ))]/n2

=
n∑

i,j=1

γ(i− j)/n2

=

(n−1)∑
h=−(n−1)

(n− |h|)γ(h)/n2

= σ2

(n−1)∑
h=−(n−1)

(1− |h|
n

)ρ(h)/n. (3.1)

Here γ(h) is the autocovariance between observations with lag h, n is the original

sample size, ρ(h) is the autocorrelation, and σ2 is the innovation variance of the

stationary time series process. The innovation variance is actually not needed, as you

will see due to cancellation, so ρ(h) is the last piece of the puzzle needed in order to

calculate ne.

In summary the effective sample size for the AR(1) process is

ne =
n∑n−1

h=−(n−1) (1− |h|
n

)φ|h|
,
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while for the MA(1) process it is

ne =
n

1 + (1− 1
n
) 2θ

1+θ2

.

Here it is seen that the innovation variance cancels leaving ne only as a function of

the AR(1) and MA(1) coefficients.

We conclude that upon fitting the AR(1) or MA(1) models to time series, we are

able to calculate ne. This brings us back to the approximation of the probability

distributions of the minimum and maximum order statistics in correlated data from

AR(1) and MA(1) models. These can now be approximated as

gn(X(n)) ≈ ne[F (X(n))]
ne−1f(X(n)) (3.2)

for the maximum order statistic X(n) and

g1(X(1)) ≈ ne[1− F (X(1))]
ne−1f(X(1)) (3.3)

for the minimum order statstic X(1). We use the approximate probability distribu-

tions, (3.2) and (3.3), for the maximum and minimum order statistics from AR(1)

and MA(1) models in the simulation study in Chapter 4.
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CHAPTER 4

SIMULATION

4.1 Simulation Scheme

In this section, we test the ideas previously discussed and simulate the distribu-

tions of the maximum and minimum order statistics X(n) and X(1) from AR(1) and

MA(1) models. Since there is no exact distribution of the order statistic in corre-

lated data, we will generate data sets of size 1000 and pull out the maximum and

minimum order statistics. The number of datasets of size 1000 will be adjusted to

25, 50, 100, 500, 1000, 5000 generating the respective number of data points. We will

then find the 90th, 95th, and 99th percentile values of the distributions of the maxi-

mum and minimum order statistics. We will do this for AR and MA coefficient values

of: 0, .2, .4, .6, .8 assuming et in AR(1) and MA(1) processes has a normal distribution

with mean zero and variance one.

We will calculate the effective sample size using (3.1). We will then use the inverse

CDF method [3], as applied to the standard normal distribution, to find the X(n)

value that defines the 90th, 95th, and 99th percentiles of the distribution according

to effective sample size. For example the approximate cumulative distribution of X(n)
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is

Gn(X(n)) ≈ F (X(n))
ne.

The 90th percentile is

X(n) ≈ F−1(.9
1

ne ),

where ne is an effective sample size. F is the cumulative density function of the

normal distribution. Upon finding this value, we will add in the case of the maximum

order statistic, or subtract in the case of the minimum order statistic, the adjustment

factor,

ρ(1)

1− ρ(1)2
. (4.1)

This adjustment factor came from examination of the simulated data. The calcu-

lated quantile values were compared to the quantiles of the simulated data, and the

difference between these two values was plotted as the AR and MA coefficeints in-

creased. Upon inspection, the difference curve that resulted, we chose (4.1) because it

closely modeled the difference between these quantile values. An adjustment function

is needed because the standard normal distribution has a variance of one but, as the

autocorrelation is increased, the inverse CDF method using the normal distribution
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does not achieve the correct quantile value.

In summary, the calculation of the quantile for the maximum order statistic at

the 90th percentile is

X(n) ≈ F−1(.9
1

ne ) +
ρ(1)

1− ρ(1)2
(4.2)

while for the minimum order statistic it is

X(n) ≈ F−1(.9
1

ne )− ρ(1)

1− ρ(1)2
. (4.3)

This adjustment factor will make the quantile values using ne close to the ones of the

simulated data.

4.2 Simulation Results

Tables 4.1 through 4.4 compare the quantiles that were calculated using effective

sample size (ESS) with the quantiles from the simulated data (SIM). As you move

down a column the percentile and the AR/MA coefficient increases. As you move

across a row the sample size increases. It is important to state that when either the

AR or MA coefficient is zero, we are observing a case where ne = n. This means that

if we did not take into account autocorrelation in the data, the quantile values would

always be the same as (ESS) in these zero correlation tables.

Tables 4.1 and 4.2 show the simulation results for probability distributions of the



16

maximum order statistic X(n) from AR(1) and MA(1) models, respectively.

TABLE 4.1 Percentile of X(n) in AR(1) Process
n 25 50 100 500 1000 5000

φ Percentile ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM

0
0.9 2.63 2.65 2.86 2.87 3.06 3.00 3.53 3.55 3.69 3.68 4.09 4.08
0.95 2.86 2.93 3.01 3.07 3.29 3.22 3.71 3.75 3.89 3.87 4.25 4.25
0.99 3.35 3.33 3.54 3.47 3.71 3.57 4.11 4.17 4.26 4.24 4.61 4.69

0.2
0.9 2.72 2.72 2.96 2.83 3.16 3.09 3.64 3.58 3.81 3.72 4.22 4.15
0.95 2.96 2.99 3.18 3.06 3.37 3.28 3.83 3.72 3.99 3.94 4.38 4.32
0.99 3.45 3.44 3.64 3.58 3.93 3.74 4.22 4.20 4.41 4.28 4.74 4.87

0.4
0.9 2.81 2.85 3.06 3.12 3.22 3.39 3.77 3.86 4.02 4.03 4.37 4.50
0.95 3.06 3.11 3.35 3.35 3.57 3.65 4.02 4.03 4.20 4.22 4.59 4.66
0.99 3.57 3.70 3.77 3.82 4.02 4.06 4.37 4.49 4.49 4.63 4.90 5.12

0.6
0.9 3.11 3.20 3.35 3.54 3.58 3.77 4.10 4.36 4.29 4.64 4.71 5.08
0.95 3.38 3.45 3.59 3.80 3.82 4.07 4.29 4.58 4.48 4.84 4.88 5.28
0.99 3.93 3.89 4.1 4.31 4.29 4.52 4.31 5.14 4.88 5.37 5.25 5.64

0.8
0.9 4.03 3.99 4.34 4.53 4.59 4.84 5.09 5.74 5.34 6.09 5.76 6.73
0.95 4.34 4.41 4.58 5.06 4.87 5.25 5.34 6.07 5.51 6.37 5.97 7.05
0.99 4.93 5.27 5.10 5.94 5.38 5.89 3.54 6.76 5.76 7.01 6.33 7.79

TABLE 4.2 Percentile of X(n) in MA(1) Process
n 25 50 100 500 1000 5000

θ Percentile ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM

0
0.9 2.64 2.56 2.86 2.86 3.07 3.06 3.53 3.57 3.71 3.70 4.10 4.12
0.95 2.87 2.88 3.08 3.12 3.28 3.29 3.71 3.74 3.88 3.90 4.26 4.29
0.99 3.35 3.31 3.54 3.54 3.72 3.62 4.11 4.06 4.26 4.26 4.61 4.54

0.2
0.9 2.78 2.73 2.95 2.90 3.18 3.08 3.64 3.60 3.82 3.77 4.22 4.18
0.95 3.01 2.95 3.18 3.10 3.39 3.30 3.83 3.77 4.00 3.96 4.39 4.33
0.99 3.50 3.37 3.65 3.55 3.83 3.72 4.23 4.10 4.39 4.34 4.74 4.71

0.4
0.9 2.84 2.80 3.07 3.12 3.29 3.30 3.77 3.78 3.95 4.04 4.35 4.39
0.95 3.09 3.08 3.31 3.33 3.51 3.54 3.96 3.98 4.14 4.23 4.52 4.58
0.99 3.58 3.58 3.78 3.99 3.96 3.96 4.36 4.37 4.53 4.54 4.88 4.87

0.6
0.9 2.98 2.99 3.21 3.40 3.43 3.57 3.90 4.07 4.09 4.32 4.49 4.81
0.95 3.23 3.28 3.44 3.63 3.65 3.87 4.10 4.26 4.28 4.52 4.67 4.94
0.99 3.74 3.87 3.92 4.16 4.10 4.19 4.51 4.74 4.67 4.88 5.03 5.26

0.8
0.9 3.05 3.30 3.28 3.63 3.51 3.91 3.98 4.53 4.17 4.75 4.57 5.25
0.95 3.30 3.56 3.52 3.93 3.73 4.22 4.18 4.77 4.35 4.94 4.74 5.48
0.99 3.81 4.07 4.00 4.42 4.18 4.74 4.59 4.41 4.75 5.50 5.11 5.95

In both tables we see that the values given by the quantiles determined by effective

sample size are much closer to the quantiles of the simulated data than if autocorre-

lation had not been considered. This can be seen when comparing the (ESS) values

from Tables 4.1 and 4.2 where the AR(1) and MA(1) coefficients are zero to the (SIM)
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values where these coefficeints are not zero. For example in Table 4.1 we see that the

quantile value of the 90th percentile for a sample size of 100 is 3.06 with φ = 0. This

would be the quantile value always if correlation was not considered. However, if we

increase to φ = 0.6 we see that ESS gives us a quantile value of 3.58 and an SIM of

3.77. 3.58 is much better than 3.06 according to SIM.

As correlation increases, the differences between the quantiles become more er-

ratic, especially for large sample sizes. For example when φ = 0.8 and n = 5000 in

Table 4.1 we see for the 90th percentile ESS gives 5.76 and SIM gives 6.73. Normally,

as sample size increases, you would expect better results. However, the problem is

that as sample size increases the distribution of the order statistic, in the case of

the maximum order statistic, shifts to the right. A better adjustment factor could

potentially remedy this problem.

We repeat the same procedure as above only for the minimum order statistic.

Tables 4.3 and 4.4 demonstrate quantile values from the simulated data and the

calculated quantiles using effective sample size for the minimum order statistic X(1)

in the AR(1) and MA(1) processes. In this case, the same adjustment factor is

subtracted out.



18

TABLE 4.3 Percentile of X(1) in AR(1) Process
n 25 50 100 500 1000 5000

φ Percentile ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM

0
0.9 -1.35 -1.33 -1.69 -1.68 -1.99 -2.01 -2.60 -2.60 -2.83 -2.85 -3.31 -3.31
0.95 -1.21 -1.19 -1.57 -1.57 -1.89 -1.92 -2.51 -2.52 -2.74 -2.76 -3.24 -3.24
0.99 -0.96 -0.90 -1.35 -1.38 -1.69 -1.72 -2.36 -2.39 -2.60 -2.64 -3.11 -3.12

0.2
0.9 -1.35 -1.33 -1.72 -1.71 -2.04 -2.02 -2.67 -2.61 -2.91 -2.91 -3.40 -3.39
0.95 -1.20 -1.18 -1.59 -1.58 -1.92 -1.88 -2.58 -2.55 -2.82 -2.83 -3.33 -3.32
0.99 -0.93 -0.94 -1.35 -1.38 -1.71 -1.65 -2.42 -2.41 -2.67 -2.71 -3.20 -3.18

0.4
0.9 -1.36 -1.31 -1.74 -1.76 -2.10 -2.10 -2.78 -2.79 -3.03 -3.07 -3.55 -3.61
0.95 -1.19 -1.11 -1.59 -1.59 -1.97 -1.95 -2.68 -2.67 -2.94 -2.98 -3.47 -3.53
0.99 -0.89 -0.81 -1.33 -1.30 -1.75 -1.73 -2.51 -2.51 -2.78 -2.86 -3.34 -3.39

0.6
0.9 -1.52 -1.32 -1.96 -1.87 -2.35 -2.29 -3.08 -3.19 -3.34 -3.48 -3.88 -4.11
0.95 -1.33 -1.08 -1.81 -1.69 -2.21 -2.13 -2.97 -3.04 -3.24 -3.34 -3.80 -4.01
0.99 -0.94 -0.65 -1.52 -1.32 -1.97 -1.91 -2.79 -2.82 -3.08 -3.19 -3.66 -3.88

0.8
0.9 -2.13 -1.14 -2.69 -1.87 -3.16 -2.63 -3.97 -3.95 -4.27 -4.45 -4.86 -5.34
0.95 -1.88 -0.78 -2.49 -1.52 -2.99 -2.34 -3.84 -3.78 -4.16 -4.32 -4.77 -5.20
0.99 -1.43 -0.04 -2.13 -0.90 -2.69 -1.97 -3.63 -3.43 -3.97 -4.07 -4.62 -5.01

TABLE 4.4 Percentile of X(1) in MA(1) Process
n 25 50 100 500 1000 5000

θ Percentile ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM ESS SIM

0
0.9 -1.35 -1.34 -1.69 -1.72 -2.00 -1.99 -2.60 -2.59 -2.83 -2.81 -3.31 -3.31
0.95 -1.21 -1.16 -1.57 -1.59 -1.89 -1.89 -2.51 -2.51 -2.75 -2.74 -3.24 -3.25
0.99 -0.96 -0.89 -1.35 -1.36 -1.69 -1.64 -2.36 -2.34 -2.60 -2.58 -3.11 -3.14

0.2
0.9 -1.37 -1.32 -1.74 -1.72 -2.06 -2.01 -2.69 -2.66 -2.93 -2.86 -3.42 -3.36
0.95 -1.22 -1.13 -1.61 -1.58 -1.94 -1.89 -2.59 -2.55 -2.84 -2.79 -3.34 -3.28
0.99 -0.95 -0.89 -1.37 -1.31 -1.74 -1.76 -2.43 -2.43 -2.69 -2.63 -3.22 -3.17

0.4
0.9 -1.45 -1.36 -1.83 -1.77 -2.15 -2.12 -2.80 -2.77 -2.98 -3.05 -3.54 -3.57
0.95 -1.29 -1.20 -1.69 -1.66 -2.03 -1.99 -2.70 -2.67 -2.95 -2.96 -3.46 -3.45
0.99 -1.01 -0.82 -1.45 -1.39 -1.82 -1.78 -2.54 -2.52 -2.80 -2.79 -3.34 -3.34

0.6
0.9 -1.58 -1.46 -1.94 -1.88 -2.27 -2.31 -2.93 -3.01 -3.17 -3.31 -3.68 -3.85
0.95 -1.42 -1.31 -1.80 -1.72 -2.15 -2.15 -2.83 -2.90 -3.08 -3.21 -3.60 -3.76
0.99 -1.13 -1.00 -1.56 -1.49 -1.93 -1.96 -2.67 -2.71 -2.93 -3.04 -3.47 -3.64

0.8
0.9 -1.62 -1.49 -2.01 -2.08 -2.34 -2.50 -3.00 -3.32 -3.25 -3.65 -3.76 -4.24
0.95 -1.46 -1.27 -1.87 -1.91 -2.22 -2.31 -2.90 -3.21 -3.16 -3.52 -3.68 -4.14
0.99 -1.17 -0.87 -1.62 -1.60 -2.00 -2.08 -2.73 -2.99 -3.00 -3.31 -3.55 -4.02

The same patterns appear in these tables as appear in the tables for the maximum

order statisic. As the sample size becomes large at the same time the correlation

increases, we see that a gap develops between effective sample size quantile(ESS) and

simulated quantile(SIM). In this case, as sample size increases, the distribution of the

minimum order statistic shifts to the left. For the most part it should be noticed that
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the values given by ESS are far superior to the values you would get if you did not

take into account the correlation. For example in Table 4.3, if we do not take into

account correlation, the quantile value for the 90th percentile of a sample of size 100

would be −1.99. However if we do have correlation, say φ = 0.6, ESS gives us a value

of −2.35 while SIM gives us a value of −2.29. As you can see −2.35 is much closer

to −2.29 than −1.99.
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CHAPTER 5

DISCUSSION OF SIMULATION RESULTS

It is possible to use order statistics of correlated data as an application of effective

sample size. This application makes it possible to approximate the distributions

of the order statistics from correlated data. The ESS approximation is accurate in

low correlation settings but not quite accurate for strong correlation settings. The

fact that the fit of the results is quite accurate for low correlation suggests that

effective sample size, coupled with the proposed autocorrelation function adjustment,

produces an accurate approximation. We can also see that correlation cannot be

ignored because it makes a large difference in the distributions of the minimum and

maximum order statistics.

It would be of great interest to try to develope this study further by obtaining a

method that works for negative autocorrelation. Theoretically, this should be quite

possible. Also, it would be interesting to look at other order statistics besides the

minimum and the maximum and see if the adjustment factor can be applied in a

linear combination in order to make a better adjustment. It would also be of interest

to improve on the adjustment factor and make it a matter of multiplication instead of

addition. Other adjustment factors might work better than the one presented here.
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Appendix A

PROGRAMMING

Sample code to generate the data set with AR coefficient 0.9 and a sample size of
5000. The for loop generates 1000 X(n) values.

ordermax<-numeric()

for (i in 1:1000){

error.model=function(n){rnorm(n,mean=0, sd=1)}

data<-arima.sim(model=list(order = c(1, 0, 0), ar=c(0.9)), n=5000,

n.start=2,

rand.gen=error.model )

ordermax[i]<-max(data)}

ordermax

quantile(ordermax, prob=c(.9,.95,.99))
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A short program to calculate effective sample size with an AR coefficient of 0.9
and a sample size of 5000.

part<-numeric()

for (i in 1:4999){

part[i]<-(1-(i/5000))*(((.9)^i))

}

ne<-5000/(1+2*(sum(part)))

ne

The program used for calculating the percentiles for the effective sample size
method is very simple. To calculate the 90th percentile value of a dataset with
effective sample size 225:

qnorm(.9^(1/225))
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Here is the code that simulates data using an MA coefficient of 0.8 and draws the
highest statistic from a sample of five thousand, repeating this one thousand times.

ordermax<-numeric()

for (i in 1:1000){

error.model=function(n){rnorm(n,mean=0, sd=1)}

data<-arima.sim(model=list(order = c(0, 0, 1), ma=c(0.8)), n=5000,

n.start=2,

rand.gen=error.model )

ordermax[i]<-max(data)}

ordermax

quantile(ordermax, prob=c(.9,.95,.99))
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Here is the code to calculate effective sample size.

k<-0

for (i in 1:10){

part<-(1-(1/500))

ne[i]<-500/(1+(2*(part)*(k/(1+k^2))))

k<-k+.1}

ne




