




partial models is shown in the last column and is generally
larger than that of the full model. This indicates that the
false alarm rate when using all five partial models is more
than when using the full model. In a number of cases, this
false alarm rate is unacceptably high. Since Rfam uses a
threshold of about 48.5, a P-value of less than about 1E-7 is
reasonable (AF326336 has a score of 47.28 and P-value of
1.3E-7, and AF204671 has a score of 50.86 and a P-value of
4.6E-8). Sequences 2, 3, 4, 7, and 8 do not meet the Rfam
threshold, so P-values of more than 1E-7 using partial
models are not a great problem, but other sequences such as
numbers 5, 6, 9, and 23 have P-values using all five partial
models that are too high. If not all partial models are to be
run, there are other sequences that will cause unacceptably
high P-values if thresholds are set low enough to find them.
Clearly, it is necessary to run the full model on the accepted
portion of the database using the partial models in order to
get acceptable false alarm rates.

Decision trees have been found for each of the seven RNA
families and are shown in Table 4 along with average
normalized execution time and fraction of all known
sequences passed to the full model for scoring. Each node
of the decision tree is represented by three items surrounded
by parentheses. The first item is a partial model number with
threshold, the second item is the left child node (child node
for case where the partial model score does not exceed
threshold), and the third item is the right child node (child
node for case where the partial model score exceeds
threshold). R and A refer to Reject and Accept nodes,
respectively, in this notation. The entry for U4 in Table 4
may be compared to Fig. 5, which graphically shows the
same tree. The average normalized execution times range
from 0.066 to 0.268 of the execution time required for full-
model search. For U4, the estimated time to run the full CM
on an eight gigabase database using a single 2.8 GHz

Pentium 4 is 1,258 days [8], so a normalized runtime of 0.249
implies a runtime of 313 days instead. In all cases, the
fraction of known RNA family members found is 95 percent
or better.

One notices from the decisions trees in Table 4 that the
trees for the four non-U4 cases are considerably simpler.
This is a result of not having subfamily diversity within the
overall RNA family. In U4 (and some other Rfam families),
the overall family could have been divided up into separate
families. The choice of what constitutes a family involves a
trade-off between better parameter estimation from having
more training sequences and loss of detail by averaging
across groups of sequences with features that are similar
within group but heterogeneous between groups. In Table 5,
one sees that the four non-U4 families have considerably less
variation in scores for each partial model. If one examines
the sequences of these families, there are no apparent
subfamily groups that might potentially be considered
families of their own.

Decision trees for these simpler families without sub-
family diversity are easier to generate without the use of
computational intelligence tools. If the least computationally
expensive partial model combined with a threshold equal to
the score of the lowest scoring seed sequence has P-value
less than the ratio of its execution time to the next smallest
execution time, then this partial model and threshold
combination makes a very good root node in the decision
tree. The left child of the root in such case should be a Reject
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TABLE 4
Decision Trees and Statistics for All Five RNA Families

The notation (Part:Thesh, No, Yes) indicates that partial model Part is
run with threshold Thresh with left child node No and right child node
Yes. R and A refer to Reject and Accept nodes, respectively. Fig. 5
shows a graphical expansion for U4.

TABLE 5
Mean, Minimum, and Maximum Partial Scores for Five Families
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node. This rule can be iterated on the right child of the root
and subsequent right children. This is exactly the situation in
the MicC, DsrA, and HgcF trees shown. In P1, the root node
also follows this rule. Recognizing these cases can reduce the
need to apply computational intelligence tools where they
are not really necessary. However, U4 is not the only family
with a long consensus sequence and a large number of
known family members that might potentially have a
complex decision tree.

Table 5 also illustrates a problem with making partial
models too small. In general, the variability in partial model
scores relative to the mean score is greater than that of the
full model. As the full model gets divided up into increasing
smaller partial models, this tendency would become even
more noticeable since smaller multiple alignment column
ranges are more likely to be completely covered by a region
of nonconservation in one or more of the member sequences.
So, very small partial models will have good execution
times, but are unlikely to have a P-value on the lowest
scoring seed sequence such that a Reject node left child is
desirable. With many highly erratic small models to choose
from, the potential to overfit the decision tree to the seed
sequences also increases. A very short segment of the
multiple alignment which just happens to be nearly identical
for all the seed sequences might not be so well conserved in
yet undiscovered family members. As a result, division of a
full model into three to five partial models appears to be a
useful approach, but the usefulness of dividing into 10 or
more partial models is questionable (unless the consensus
sequence is extremely long).

6 CONCLUSION

It has been shown that the technique of reducing computa-
tion time for covariance-model-based database search for
RNA family members using partial covariance models is
potentially useful. In some cases, the choice of partial model
application order and threshold values can be quite complex
(as with the U4 RNA family) and may require some form of
automated search to obtain a good choice. Binary decision
trees allow a reasonable way to describe the partial model
order and threshold choices. Computational intelligence
methods can be applied to find good decision trees without
too much difficulty. For some cases, these computational
intelligence methods are unnecessary since the decision tree
is relatively obvious. These simple cases are generally
associated with RNA families that do not have subfamilies
that might reasonably be families in their own right.

Execution times in the range 0.066-0.268 of the full model
have been shown for seven RNA families with no more
than 5 percent loss in family sequences found (and no loss
at all in five out of seven families). Execution time
reductions could potentially be even larger since the
number of partial models and their boundaries were chosen
in an ad hoc fashion and there is no guarantee that the
decision trees used are optimal. Future work on this topic
would include investigation of the best method to select
partial models, including the possibility of overlapping
partial models or a partial model set that does not cover
every multiple alignment column. The possibility that base
pairs that were ignored in the original full model to avoid

having pseudoknots [22] might be included in overlapping

partial models is also open to investigation.
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