4-27-2018

Sex Impacts Leg Stiffness When Increasing Stride Length to Run with Body Borne Load

Nick J. Lobb
Boise State University

AuraLea C. Fain
Boise State University

Kayla D. Seymore
Boise State University

Tyler N. Brown
Boise State University
Sex Impacts Leg Stiffness When Increasing Stride Length to Run With Body Borne Load

Lobb, N.J., Fain, A.C., Seymore, K.D., and Brown, T.N.
Department of Kinesiology, Boise State University, Boise, ID USA

INTRODUCTION

During military activities, personnel often run at a fixed cadence with heavy body borne loads weighing between 20 and 40 kg. These loads can increase injury risk by altering lower limb biomechanics [1].

When running with load, personnel increase leg stiffness to attenuate larger ground reaction forces (vGRF) and prevent collapse of the lower limb, elevating risk of musculoskeletal injury (MSI) [2]. During unloaded running, individuals decrease leg stiffness when using longer strides [3]. Military personnel, however, may not possess the lower limb strength to similarly decrease leg stiffness as they lengthen their stride to run at a fixed cadence with heavy body borne loads.

Female military personnel, who are weaker than males [4], may be especially at risk for injury as they may lack the strength to safely attenuate large GRFs.

METHODS

27 (17 M/10 F) participants (21.2 ± 2.3 years, 1.7 ± 0.1 m, 75.5 ± 11.3 kg) had 3D lower limb biomechanics quantified while running with four body borne loads: 20 kg, 25 kg, 30 kg and 35 kg (Fig. 1).

Figure 1: For each load condition, participants were outfitted with a helmet, weighted vest, and mock weapon. The weight of the vest was adjusted to within 2% of the target load (20 kg, 25 kg, 30 kg, or 35 kg) for that session.

For the run task, participants ran at 4 m/s (± 5%) and used one of three stride lengths: preferred stride length (PSL), 15% shorter (SSL) and 15% longer than PSL (LSL). Participants performed three successful trials at each stride length.

RESULTS

Both body borne load (P<0.001) and stride length (P<0.001) had a significant effect on peak vGRF (Fig. 3).

Figure 3: Stance phase (0%-100%) vGRF exhibited with each body borne load (A) and stride length (B).

The addition of body borne load increased leg stiffness up to 12% (P=0.002). But, males decreased leg stiffness with LSL compared to PSL and SSL (P=0.001; P=0.001), and PSL compared to SSL (P=0.026); whereas, females exhibited no difference in leg stiffness between strides (P=0.05) (Fig. 4).

Figure 4: Mean (±SD) leg stiffness exhibited by participants with each body borne load (A) and by males and females when using each stride length (B).

Females adopted greater PS hip (P=0.013) and knee flexion (P=0.001) compared to males with SSL. But, only male increased PS hip and knee flexion as stride length increased from SSL to PSL (P=0.008; P=0.001) and from PSL to LSL (P=0.041; P<0.001) (Fig. 5).

Figure 5: Mean (±SD) PS hip (A) and knee (B) flexion angle exhibited by males and females when running with each stride length.

Participants increased PS knee flexion angle with LSL compared to PSL when carrying the 20 (P=0.003), 25 (P=0.001), and 30 kg loads (P=0.004), but not 35 kg (P=0.760).

CONCLUSION

Participants increased leg stiffness to prevent lower limb collapse and attenuate the increase in vGRF observed with the addition of load. Males, but not females, reduced leg stiffness by increasing hip and knee flexion when running with longer strides. Further study is warranted to determine of lower limb strength, rather than sex, determines the ability to adjust leg stiffness when altering stride length during loaded running.

ACKNOWLEDGEMENTS

We would like to thank the Battelle and Natick Soldier RD&E Center for providing funding for this work.

REFERENCES