Transition from N-Type to P-Type Destroys Ferromagnetism in Semiconducting Sn$_{1-X}$Co$_x$O$_2$ and Sn$_{1-X}$Cr$_x$O$_2$ Nanoparticles

C. Van Komen
Boise State University

A. Punnoose
Boise State University

M. S. Seehra
West Virginia University
Transition from N-Type to P-Type Destroys Ferromagnetism in Semiconducting Sn$_{1-x}$Co$_x$O$_2$ and Sn$_{1-x}$Cr$_x$O$_2$ Nanoparticles

C. Van Komen and A. Punnoose
Boise State University
M. S. Seehra
West Virginia University

Abstract
This work reports strong correlations between the structural, magnetic and electronic properties of room temperature ferromagnets (RTFM) Sn$_{1-x}$Co$_x$O$_2$ and Sn$_{1-x}$Cr$_x$O$_2$ for $x = 0$ to 0.1. The samples prepared by the sol-gel chemical method show RTFM for $x < x_L$ with the limiting concentration $x_L = 0.01$ for Co doping and $x_L = 0.025$ for Cr doping. As doping level x is increased from $x = 0$, the magnetic moment per ion, μ, increases and the lattice volume V_L decreases up to $x = x_L$. For $x > x_L$, μ dramatically decreases toward zero and V_L increases, the latter suggesting interstitial doping. Thermoelectric measurements showed that the samples are n-type for $x < x_L$ and p-type for $x > x_L$, suggesting that the RTFM is intrinsic and it is electron mediated.

1. Introduction

Tin dioxide (SnO$_2$) is a transparent semiconductor with a band gap $E_g \approx 3.6$ eV. In a number of recent studies of transition metal doped SnO$_2$, room temperature ferromagnetism (RTFM) has been reported for dilute dopings of Fe [1,2], Co [3-6] and Cr [7]. Search for an n-type transparent semiconductor with RTFM has been stimulated by the theoretical work as well as by the potential uses of such materials in spintronics and optoelectronic devices [8, 9]. Most popular potential hosts for transition metal doping for RTFM have been TiO$_2$ [10-12] and ZnO [13, 14]. The mechanism for producing RTFM has often been related to carrier-mediated exchange coupling between the transition metal ions [8, 9]. In this paper, we report the observation of a clear correlation between the presence of RTFM, carrier-type and doping concentrations for Cr- and Co-doped SnO$_2$ systems. Details of these results and their discussion are presented below.

2. Materials and Methods

The synthesis of the bulk powder samples of Sn$_{1-x}$Co$_x$O$_2$ and Sn$_{1-x}$Cr$_x$O$_2$ for x up to 0.1 using the sol-gel method has been described in earlier papers [5, 7]. Both sets of samples were characterized by room temperature x-ray diffraction (XRD) after annealing the as-prepared samples at 600°C. Magnetic measurements (magnetization M vs. the applied field H) were carried out using a vibrating sample magnetometer (VSM).

An important contribution in this work is the determination of charge carrier-type in the doped SnO$_2$ samples by the hot-probe method which is known to accurately determine semiconductor carrier-type [17]. For these measurements, the powder samples were pressed into 15 mm diameter pellets using an 8 ton press. Two electrical copper contacts were made across from each other on the pellet face with silver paste for voltage measurements. One side of a contact end on the pellet was heated with a hot probe to about 150°C whereas the other contact end was at room temperature. The direction of the voltage measured determined whether the sample is n-type or p-type.

3. Results and Discussion

In Fig. 1, we show the XRD patterns for both sets of samples for $0 \leq x \leq 1$. In Sn$_{1-x}$Co$_x$O$_2$, the tetragonal form of SnO$_2$ (cassiterite) is the dominant phase with only minor contamination from the orthorhombic form of SnO$_2$. However for Sn$_{1-x}$Cr$_x$O$_2$, the orthorhombic phase is comparatively stronger but the tetragonal phase is still dominant. Recent studies have shown the formation of the orthorhombic phase of SnO$_2$ under a variety of synthesis methods [15,16]. It is important to note that in the samples reported here for $x \leq 0.1$, the presence of Co$_2$O$_4$ and Cr$_2$O$_3$ are not observed in Sn$_{1-x}$Co$_x$O$_2$ and Sn$_{1-x}$Cr$_x$O$_2$ respectively. XRD studies of the pelletized
powders show no change in the crystal structure. The lattice parameters \(a\) and \(c\) of the dominant tetragonal phase were determined using the strong (110) and (220) peaks [7]. The particle sizes determined from the Scherrer XRD line broadening showed a decrease from 70 nm for pure SnO\(_2\) to about 40 ± 10 nm for 5% doped SnO\(_2\) [7], and were further confirmed by TEM.

(PLACE FIGURE 1 APPROX. HERE)

Fig. 2 summarizes the results of the variations in lattice volume \(V_L\), the saturation magnetization \(M_s\) and the carrier-type with respect to concentrations of the two dopants, Cr and Co, varied between zero and 10%. \(M_s\) is the measured magnetization at \(H = 10\) kOe after subtracting out the linear component from the \(M\) vs. \(H\) plots. In Fig. 3, \(M\) vs. \(H\) plots obtained from samples with dopant concentrations of \(x_L\), and one representative plot for the \(x < x_L\) and \(x > x_L\) ranges are shown for both Co and Cr doped SnO\(_2\). Seebeck coefficients estimated from the hot-probe experiment are shown in Fig. 4. For Cr doped SnO\(_2\) samples, the Seebeck coefficient ranges from 23mV to -20mV whereas for the Co doped SnO\(_2\) samples, it varies in the 126mV to -100mV range. Here, a positive coefficient represents n-type conductivity and a negative coefficient indicates p-type. In Fig. 2, it is evident that for \(x = 0\) (pure SnO\(_2\)), the material is n-type (see Fig. 4) and \(M_s = 0\). As doping level is increased, the lattice contracts for both Co and Cr, and \(M_s\) increases. For Co doping, both the contraction and \(M_s\) increase rapidly, reaching maximum values at \(x_L = 0.01\). Our next data point at \(x = 0.03\) yields \(M_s = 0\) and the lattice expands to nearly the original value. For larger Co dopings of 5 and 8%, the material switches to p-type (shown in Fig. 4) with \(M_s = 0\). So, for Sn\(_{1-x}\)Co\(_x\)O\(_2\), RTFM is lost for \(x > x_L = 0.01\) and material becomes p-type. For Sn\(_{1-x}\)Cr\(_x\)O\(_2\), the behavior is qualitatively similar except that \(x_L = 0.025\) is higher. The important point is that RTFM is observed only for the range \(0 < x \leq x_L\) with slightly different values of \(x_L\) for Co and Cr doping and that n-type conductivity is essential for RTFM.

(PLACE FIGURE 2 APPROX. HERE, after Figure 1)

Considering that the charge on the dopant ions is lower than that of the Sn\(^{4+}\) they substitute for, the charge balance requirements dictate that substitution should lead to oxygen vacancies at neighboring sites. These oxygen vacancies can trap electrons and form F-centers. This explains the observed n-type conductivity for \(x < x_L\). For \(x > x_L\), we suggest that doping occurs interstitially producing p-type conductivity and observed lattice expansion. This argument also suggests that RTFM likely results from exchange coupling between the dopants mediated somehow by electrons trapped by oxygen vacancies. Recent paper by Fitzgerald et al [18] on the magnetism in doped SnO\(_2\) discusses various possible explanations for the observed RTFM including the bound magnetic polarons formed by overlapping Bohr-like F-center orbitals. However, none of the models considered can explain the high Curie temperatures observed in these systems. Non-uniform magnetism as the source of high \(T_c\) in doped SnO\(_2\) (also TiO\(_2\) and ZnO) has also been suggested [19]. Overall, it can be stated that a satisfactory theoretical explanation for the various observations of RTFM in so lightly doped SnO\(_2\) and other semiconductors is not yet available. It is hoped that strong correlations reported here between the structural, magnetic and electronic properties of Cr and Co doped SnO\(_2\) would provide an impetus for further theoretical investigations of the mechanism for the observed RTFM.

4. Conclusion

In the results presented here, it has been shown that in Sn\(_{1-x}\)M\(_x\)O\(_2\) (M=Co, Cr), n-type conductivity and room temperature ferromagnetism coexist for lighter dopings for \(x < x_L\). However, for \(x > x_L\), the materials become p-type and room temperature ferromagnetism is lost. This association of n-type conductivity with room temperature ferromagnetism provides a strong motivation for developing a suitable theoretical mechanism for these observations.

Acknowledgment: This research at Boise State University was supported by NSF-CAREER program (DMR-0449639), DoE-EPSCoR program (DE-FG02-04ER46142), ARO Grant (W911NF-09-1-0051) and NSF-RUI grant (DMR-0840227).
References: