Boise State University ScholarWorks

2018 Graduate Student Showcase

Graduate Student Showcases

April 2018

Empirical Modeling of Cation Ordering in Perovskite Ceramics

Evan Smith *Boise State University*

Kevin Tolman *Boise State University*

Rick Ubic Boise State University

Empirical Modeling of Cation Ordering in Perovskite Ceramics

Abstract

The electroceramics industry largely relies on various time-consuming and expensive trial-and-error experiments to address new questions which often could otherwise be interpolated from published data. Towards this end, predictive models, which can be derived from empirical evidence, can greatly aid the direction of future development in a meaningful and cost-effective way. This work focuses on deriving predictive models based on empirical data collected for ceramic compounds with the perovskite crystal structure. Specifically, models were made for layered type ordering in the $[(Na_yLi_{1-y})(1-3x)/2La(1+x)/2]TiO_3$ system and rocksalt ordering in Ba(Mg1/3Ta2/3)O_3.

BOISE STATE UNIVERISTY

COLLEGE OF ENGINEERING

MICRON SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

Abstract

The electroceramics industry largely relies on various time-consuming and expensive trial-and-error experiments to address new questions which often could otherwise be interpolated from published data. Towards this end, predictive models, which can be derived from empirical evidence, can greatly aid the direction of future development in a meaningful and cost-effective way. This work focuses on deriving predictive models based on empirical data collected for ceramic compounds with the perovskite crystal structure. Theory suggests that intrinsic properties on the scale of a unit cell may be estimated from the sizes and charges of the chemical constituents alone. Ultimately, researchers could be provided a compositional recipe for some desired structure/property; or the resulting structure/property could be readily calculated based on composition. Empirical models also lend themselves to the exploration of structure/property trends which would otherwise be virtually impossible to discover via computationally expensive first-principles methods. In this work, models were made for layered ordering in the $[(Na_vLi_{1-v})_{(1-3x)/2}La_{(1+x)/2}]TiO_3$ (NLLT) system and rocksalt ordering in $Ba(Mg_{\frac{1}{3}}Ta_{\frac{2}{3}})O_3$ (BMT).

Perovskites

The term "perovskite" defines a particular crystal structure shown in figure 1. The A and B cations and X anions are located at the corners, body center, and face centers, respectively; and anion octahedra are corner-Even when deformed and noncubic, a shared. *pseudo*cubic lattice constant can be derived in several ways:

$$L_{pc} = \left(\frac{V}{Z}\right)^{1/3}$$

$$\Rightarrow a'_{pc} = \sqrt{2}(r_A + r_X)$$

$$\Rightarrow a''_{pc} = 2(r_B + r_X)$$

Figure 1: Perovskite crystal structure with arrows indicating the derivation of a' (black) and a'' (orange)

where V = unit-cell volume; Z is the number of ABX₃ formula units per unit cell; and r_A , r_B , and r_X are the effective radii of A, B, and X species, respectively.

11 R. Ubic, K. Tolman, K. Talley, B. Joshi, J. Schmidt, E. Faulkner, J. Owens, M. Papac, A. Garland, C. Rumrill, K. Chan, N. Lundy, H. Kungl, Lattice-con

Stoichiometric powders were milled in deionized water (Figs. 2 and 3), dried in the drying oven (Fig. 4), and calcined at 1100-1200°C (Fig. 5). Phase purity was verified via X-ray diffraction (XRD). Phase-pure powders of [(Na_vLi_{1-v})(1-3x)/2</sub>La(1+x)/2]TiO₃ (NLLT) and Ba(Mg_{1/3}Ta_{2/3})O₃ (BMT) were uniaxially pressed into pellets (Fig. 6). NLLT pellets were sintered on a bed of sacrificial powder on the lid of an inverted crucible at 1300-1400°C (Fig. 7). BMT pellets and some unpressed powders were subjected to each of six heat treatments: 5, 10, 15, 20, 30 or 40 hours at 1500°C. Lattice parameters were obtained from Rietveld refinements performed on the XRD scans of sintered powders using GSAS II.

Figure 2 : Mill pot and milling media

Figure 3 : Rotary mill with mill pot

Empirical Modeling of Cation Ordering in Perovskite Ceramics Evan Smith, Kevin Tolman,* Rick Ubic

Methods

Figure 4 : Drying pan in drying oven

Figure 5 : Crucible in box furnace chambe

Figure 6 : Uniaxial pellet press

Micron School of Materials Science and Engineering, Boise State University

Results

Figure 7 : Inverted crucible with sintered pellets

 $(Na_yLi_{1-y})_{(1-3x)/4}La_{(1+x)/2}TiO_3$ and $Ba(Mg_{1/3}Ta_{2/3})O_3$ were synthesized using traditional ceramographic techniques. Empirical models which allow for the prediction of Asite and B-site order parameters using easily obtainable experimental data were made for layered type ordering on the A site and rocksalt type ordering on the B site. The models also allow for the prediction of the A-site and B-site correction parameters ($\Delta r_{\rm A}$ and $\Delta r_{\rm B}$) using vacancy concentration and sintering time, respectively. These models could potentially be extended in order to enable the prediction of ordering parameters in other complex perovskite systems from ionicradii data and experimentally-derived pseudocubic lattice constants alone.

diffraction patterns.

* Current address: Idaho National Laboratory

Conclusion

[3] E. Smith, K. Tolman, R. Ubic, An empirical model for B-site cation ordering in Ba(Mg_{1/3}Ta_{2/3})O₃, J. Alloys Compd. 735 (2018) 2356-2362.

Acknowledgements

The authors are grateful to Dr. Karthik Chinnathambi of the BSCMC for help with analyzing XRD patterns, TEM specimen preparation, and analyzing electron