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Abstract

The electroceramics industry largely relies on various time-consuming and expensive trial-and-error
experiments to address new questions which often could otherwise be interpolated from published data.
Towards this end, predictive models, which can be derived from empirical evidence, can greatly aid the
direction of future development in a meaningful and cost-effective way. This work focuses on deriving
predictive models based on empirical data collected for ceramic compounds with the perovskite crystal
structure. Specifically, models were made for layered type ordering in the [(NayLi1-y)(1-3x)/2La(1+x)/2] TiO3
system and rocksalt ordering in Ba(MgsTazs)03.
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Abstract Results

The electroceramics industry largely relies on various time-consuming and B-site ordering data from Ba(Mg, ;5Ta, 3)O; (BMT) are presented in figures 8-9. A-site ordering data from (Na Li;_, )1 3,413 (1442 T1O03 (NLLT) are presented in figures 10-12.
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Figure 8: Ba(Mg,,Ta;,)O; unit-cell volume (black curve) and Figure 9: Ba(Mg,Ta,,)0, order parameter (red curve) and B-site size adjustment

Empirical models also lend themselves to the exploration of structure/property order parameter (red curve) as a function of annealing time, t. (blue curve) as a function of annealing time, t. The inset shows the order
trends WhICh WOUld otherwise be virtuaIIy impossible to discover via parameter as a function of Ar; and can be thought of as an empirical model for

ordering (0 = disorder, 1 = fully ordered).
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Methods Conclusion

Stoichiometric powders were milled in deionized water (Figs. 2 and 3), dried in the drying oven (Fig. 4), and calcined at 1100-1200°C (Fig. 5). Phase purity was verified via@@88 (Na Li;_,)1.3,/4L3(14x,2T103 and Ba(Mg, 3Ta,3)O; were synthesized using traditional

X-ray diffraction (XRD). Phase-pure powders of [(Na Li;_).3,/2L8(14y,2]TIO3 (NLLT) and Ba(Mg,Ta.,)O; (BMT) were uniaxially pressed into pellets (Fig. 6). NLLT pellets were ceramographic techniques. Empirical models which allow for the prediction of A-

sintered on a bed of sacrificial powder on the lid of an inverted crucible at 1300-1400°C (Fig. 7). BMT pellets and some unpressed powders were subjected to each of six site and B-site order parameters using easily obtainable experimental data were

heat treatments: 5, 10, 15, 20, 30 or 40 hours at 1500°C. Lattice parameters were obtained from Rietveld refinements performed on the XRD scans of sintered powders made for layered type ordering on the A site and rocksalt type ordering on the B

using GSAS II. site. The models also allow for the prediction of the A-site and B-site correction
parameters (Ar, and Arg) using vacancy concentration and sintering time,
respectively. These models could potentially be extended in order to enable the
prediction of ordering parameters in other complex perovskite systems from ionic-
radii data and experimentally-derived pseudocubic lattice constants alone.
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Figure 2 : Mill pot and milling media Figure 3 : Rotary mill with mill pot Figure 4 : Drying pan in drying oven Figure 5 : Crucible in box furnace Figure 6 : Uniaxial pellet press Figure 7 : Inverted crucible with analyzing XRD patterns, TEM specimen preparation, and analyzing electron
chamber sintered pellets diffraction patterns.
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