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Table 6.3

A comparison of the GMRES-MGV and GMRES-MGF methods for solving (3.4) for different
model parameter values and different stages of phase separation. Integer values are the number of
V (1, 1)- or F (1, 1)-cycles required to satisfy (6.1). The stages of separation are similar to those in
Figure 2. All results are for h = 2−10 and an underrelaxation of ω = 0.675.

αn = 10−1 αn = 10−2 αn = 10−3

αs = αs = αs = αs = αs = αs = αs = αs = αs =
Stage 10−2 10−3 10−4 10−3 10−4 10−5 10−4 10−5 10−6

GMRES-MGV, β = 1
1 9 8 8 9 9 9 10 9 10
2 7 7 7 9 8 8 10 9 10
3 7 7 7 8 8 8 9 8 10
4 7 7 7 8 8 8 9 9 10
5 6 5 6 6 6 8 7 8 13

GMRES-MGF, β = 1
1 4 3 3 4 4 4 4 4 4
2 4 3 3 4 4 4 4 4 5
3 4 3 3 4 4 4 4 4 5
4 4 3 3 4 4 4 5 5 5
5 4 3 3 4 3 4 4 4 7

a standalone solver when the gel mixture is still relatively homogeneous, and the
number of channels is not large. For these cases, using it as a preconditioner for
GMRES(20) typically takes one more F-cycle iteration due to the overhead of the
GMRES method (see section 5.2). However, since we want a robust method for
simulation, the remainder of the tests will only include results for the preconditioned
V- and F-cycles, which have yet to fail in our experiments. In actual practice, the
entire simulation could be made efficient and robust by using a hybrid method, where
the V- or F-cycle preconditioners are only used when needed.

6.3. Model parameters. In this next experiment, we test the robustness of
the preconditioned solvers as the parameters of the model are changed. We vary the
network and solvent viscosity, αn and αs, respectively, while holding the frictional
coupling parameter β constant at 1. The solvers are tested over five stages of phase
separation similar to what is shown in Figure 2 (for which β = 1, αn = 0.1, and αs =
0.01). The number of channels is set to three and h = 2−10. Table 6.3 displays the
number of V- and F-cycle iterations for the different parameters. The results indicate
the method is quite robust over a wide range of parameters. The only moderate
increase in the number of iterations occurs in the last column for αn = 10−3 and
αs = 10−6. It is less pronounced in the F-cycle than the V-cycle.

6.4. Underrelaxation parameter. For all previous experiments, the underre-
laxation parameter has been fixed at ω = 0.675. So in this final experiment, we test
how the number of multigrid cycles for the GMRES-MGV and GMRES-MGF de-
pends on ω. The results are displayed in Figure 9 for the example shown in Figure 2.
We see from the figure that for both the GMRES-MGV and GMRES-MGF methods,
the optimal ω is nearly the same for all five stages of phase separation. Furthermore,
the range of acceptable choices for ω is quite large and is similar between the V- and
F-cycles.

7. Extension to two dimensions. In two and higher dimensions the complex-
ity of the gel dynamics model from section 2 increases; however, the extension of
the computational method is relatively straightforward. We present here an overview
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Fig. 9. A comparison of the number of multigrid cycles needed for the GMRES-MGV (black)
and GMRES-MGF (gray) to solve (3.4) as the underrelaxation parameter ω is changed. Symbols
represent the different stages of phase separation shown in Figure 2.

of the two-dimensional model problem, discuss the extension of the computational
procedure, and present some numerical results.

7.1. Model problem. Let un = (un, vn)T and us = (us, vs)T , where un, vn

and us, vs are the respective network and solvent velocity components in the x and
y directions, and let the spatial domain be Ω = {(x, y)|0 ≤ x ≤ a, 0 ≤ y ≤ b}. Then
the momentum equations (2.6)–(2.7) and volume-averaged incompressibility (2.3) are
given in matrix-vector form as

(7.1)

⎡⎣Ln − C C −Gn

C Ls − C −Gs

−DT
n −DT

s 0

⎤⎦⎡⎣un

us

p

⎤⎦ =

⎡⎣∇Ψ(θn)
0
0

⎤⎦ ,

where

Ln,s =

[
αn,s∂x(θn,s∂x) + μn,s∂y(θ

n,s∂y) μn,s∂y(θ
n,s∂x) + λn,s∂x(θn,s∂y)

μn,s∂x(θn,s∂y) + λn,s∂y(θ
n,s∂x) αn,s∂y(θ

n,s∂y) + μn,s∂x(θn,s∂x)

]
,

C =

[
βθnθs 0

0 βθnθs

]
, Gn,s =

[
θn,s∂x
θn,s∂y

]
, Dn,s =

[
∂xθ

n,s

∂yθ
n,s

]
,

and αn,s = (2μn,s + λn,s). Since θs = 1 − θn, we need only an equation for the
transport of θn, which is again given by (2.9). As in 1-D, we use no-slip boundary
conditions for (7.1) and no-flux for (2.9). Finally, the cubic function (2.8) is again
used for modeling the osmotic pressure.

7.2. Discretization. The same computational strategy as outlined at the be-
ginning of section 3 is used for the 2-D model. For the spatial discretization we again
use a MAC grid where the positions of the unknowns are indicated in Figure 10. The
mesh spacing in the x and y direction is set equal and is given by h.

All equations in (7.1) are discretized using second-order, centered finite differ-
ences, which leads to the following approximation of the first row of (7.1) at the
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i − 1 i i + 1
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Fig. 10. The location of the unknowns in the MAC grid for the 2-D gel model:
�=network/solvent horizontal velocity, �=network/solvent vertical velocity, • =pressure, and
© =network/solvent volume fractions.

interior point (xi+ 1
2 ,j

, yi+ 1
2 ,j

)

αn

h2

[
θn
i+1,j(u

n
i+ 3

2 ,j
− un

i+ 1
2 ,j

) − θn
i,j(u

n
i+ 1

2 ,j
− un

i− 1
2 ,j

)
]

+
μn

h2

[
θ
n

i+ 1
2 ,j+

1
2
(un

i+ 1
2 ,j+1 − un

i+ 1
2 ,j

) − θ
n

i+ 1
2 ,j−

1
2
(un

i+ 1
2 ,j

− un
i+ 1

2 ,j−1)
]

+
μn

h2

[
θ
n

i+ 1
2 ,j+

1
2
(vn

i+1,j+ 1
2
− vn

i,j+ 1
2
) − θ

n

i+ 1
2 ,j−

1
2
(vn

i+1,j− 1
2
− vn

i,j− 1
2
)
]

(7.2)

+
λn

h2

[
θn
i+1,j(v

n
i+1,j+ 1

2
− vn

i+1,j− 1
2
) − θn

i,j(v
n
i,j+ 1

2
− vn

i,j− 1
2
)
]

− βθ
n

i+ 1
2 ,j

θ
s

i+ 1
2 ,j

(un
i+ 1

2 ,j
− us

i+ 1
2 ,j

) − θ
n

i+ 1
2 ,j

pi+1,j − pi,j
h

=
Ψ(θn

i+1,j) − Ψ(θn
i,j)

h
,

while the approximation to the second row at the interior point (xi,j+ 1
2
, yi,j+ 1

2
) is

given by

μn

h2

[
θ
n

i+ 1
2 ,j+

1
2
(un

i+ 1
2 ,j+1 − un

i+ 1
2 ,j

) − θ
n

i− 1
2 ,j+

1
2
(un

i− 1
2 ,j+1 − un

i− 1
2 ,j

)
]

+
λn

h2

[
θn
i,j+1(u

n
i+ 1

2 ,j+1 − un
i− 1

2 ,j+1) − θn
i,j(u

n
i+ 1

2 ,j
− un

i− 1
2 ,j

)
]

+
αn

h2

[
θn
i,j+1(v

n
i,j+ 3

2
− vn

i,j+ 1
2
) − θn

i,j(v
n
i,j+ 1

2
− vn

i,j− 1
2
)
]

(7.3)

+
μn

h2

[
θ
n

i+ 1
2 ,j+

1
2
(vn

i+1,j+ 1
2
− vn

i,j+ 1
2
) − θ

n

i− 1
2 ,j+

1
2
(vn

i,j+ 1
2
− vn

i−1,j+ 1
2
)
]

− βθ
n

i,j+ 1
2
θ
s

i,j+ 1
2
(vn

i,j+ 1
2
− vs

i,j+ 1
2
) − θ

n

i,j+ 1
2

pi,j+1 − pi,j
h

=
Ψ(θn

i,j+1) − Ψ(θn
i,j)

h
.

Bars over θn and θs represent the arithmetic averages of the values of these variables
at nearest neighbor cells with two-point averages when there is a mix of integer and
half-integer indices, and four-point averages when there are two half-integer indices.
The discretizations of the third and fourth row of (7.1) are the same, but with variables
for the network replaced accordingly by the variables for the solvent. Finally, the last
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Fig. 11. The structure of the Ah matrix in (7.5) for the case of a square domain with N =
M = 23 grid cells; solid dots mark nonzero entries in the matrix, while solid horizontal and vertical
lines highlight the structure shown in (7.5).

row of (7.1) is approximated at (xi,j , yi,j) by

−θ
n

i+ 1
2 ,j

un
i+ 1

2 ,j
+ θ

n

i− 1
2 ,j

un
i− 1

2 ,j

h
+

−θ
n

i,j+ 1
2
vn
i,j+ 1

2

+ θ
n

i,j− 1
2
vn
i,j− 1

2

h

+
−θ

s

i+ 1
2 ,j

us
i+ 1

2 ,j
+ θ

s

i− 1
2 ,j

us
i− 1

2 ,j

h
+

−θ
s

i,j+ 1
2
vs
i,j+ 1

2

+ θ
s

i,j− 1
2
vs
i,j− 1

2

h
= 0.(7.4)

Where necessary, we use second-order extrapolation to account for the no-slip bound-
ary conditions.

For a grid with N cell-centers in the x direction and M cell-centers in the y direc-
tion, the above approximations can be collected in a (5NM −2(N +M))-by-(5NM −
2(N + M)) linear system, which we denote by

(7.5)

⎡⎣Lh
n − Ch Ch −Gh

n

Ch Lh
s − Ch −Gh

s

Gh
n
T Gh

s
T

0

⎤⎦
︸ ︷︷ ︸

Ah

⎡⎣un

us

p

⎤⎦ =

⎡⎣∇hΨ(θn)
0
0

⎤⎦ .

This forms the discrete approximation to (7.1). The properties that hold for the 1-D
system (3.4) mentioned at the end of section 3.1 also hold for the 2-D system. The
structure of (7.5) is illustrated in Figure 11 for the case of a square domain.

For the temporal discretization of (2.9), we again use explicit, first-order upwind-
ing for the flux ∇·(θnun) (with LeVeque’s transverse propagation correction [22]) and
treat the diffusion implicitly with backward Euler. We use the same adaptive time
stepping strategy as discussed in section 4.

7.3. Solving the coupled momentum and continuity equations. To solve
the discrete system (7.5), we extend the multigrid box relaxation scheme introduced
in section 5 to the 2-D system and use it as a right-preconditioner for GMRES(m).
We briefly discuss the extension of the multigrid components for the 2-D system.

Transfer operators. As mentioned above, the mesh spacing in both the x and
y directions is given by h, with 1/h a power of 2. We define a sequence of coarser
grids, where each grid is a factor of two coarser than the previous in both the x
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and y direction. For restriction and prolongation operators between the grids, we
use standard full-weighting and bilinear interpolation defined on a MAC grid [35,
p. 69–70].

Coarse grid discretization. The simple DCGA strategy for discretizing the gel
system of equations on the coarser grids is again employed.

Smoother. We extend the box relaxation method described in section 5.1. For
the 2-D system, this involves solving the discrete equations (7.5) locally in each com-
putational cell (or box). For each interior box, this requires solving a 9-by-9 linear
system (4 equations for the network velocity, 4 equations for the solvent velocity, and
1 equation for the pressure) for corrections to the unknowns un, us, and p. Boxes
in the corners of the domain require solving 5-by-5 linear systems, while boxes on
the edges require solving 7-by-7 systems. The exact form of all these systems can
be worked out from (7.2)–(7.4). We update corrections to the unknowns in a Gauss–
Seidel-type manner and combine this with underrelaxation similar to (5.2). The boxes
are processed using red-black ordering.

Multigrid cycles We again compare the V- and F-cycle techniques illustrated in
Figure 6 for cycling through the coarse grids. In all of our numerical results, we coarsen
the grid until there are two cell-centers on the smaller side of the rectangular domain.
At this point we solve the system (3.4) directly using Matlab’s sparse solver library.
For a square domain in 2-D with N = 2k cell-centers in either direction (N2 total
points), the computational complexity of one V-cycle is WV = 8

3C(N2 − 4), while for
the F-cycle it is WF = 32

9 C(N2 − (3 log2(N)+ 1)), for some C independent of N . For
general rectangular domains with equal mesh spacing in both directions and standard
coarsening, the constants in front of these work units will change; however, the ratio
will remain the same with the F-cycle being 4/3 the cost of a V-cycle. Compare this
to 1-D, where the F-cycle is twice the cost of a V-cycle.

We use one iteration of the above multigrid procedure with an initial guess of zero
as a right-preconditioner for GMRES(20). Since the GMRES method is black-box, it
requires no special modifications for the 2-D system.

7.4. Numerical results. To test the method in 2-D, we let the domain be the
unit square and start with an initial distribution of network θn that is perturbed
about the unstable region of the osmotic pressure Ψ (cf. Figure 1):

θn = 0.08 + 2.5 · 10−4(cos(6πx) + cos(4πy)).

The model parameters are set to μn = 0.1, λn = 0.3, μs = 0.025, λs = 0, β = 1, and
κ = 10−7. The first four of these values make αn = 0.5 and αs = 0.05. As in 1-D, we
define five stages of phase separation for the gel as illustrated in Figure 12, and we
test the performance of the standalone MGV and MGF methods and preconditioned
GMRES-MGV and GMRES-MGF methods at these stages.

Table 7.1 displays the scaling results for these solvers as the grid is refined from
h = 2−7 to h = 2−9. Integer values listed in the table are the number of multigrid
cycles (V(1,1) or F(1,1)) required to satisfy (6.1) using values from the previous time
step as the initial guess (nonbracket) and using all zeros as the initial guess (bracket).
Decimal values in parenthesis are the corresponding wall-clock times (in seconds) for
the former method of generating initial guesses. The results are similar to those in
1-D. The MGV solver does not scale well and cannot solve the system for all stages.
The MGF method scales linearly for all but Stage 5, for which the method actually
diverges for h = 2−9. The GMRES-MGV method performs very well for all stages of
phase separation and shows a near linear scaling as h is refined. Finally, as with the
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Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Fig. 12. The network volume fraction (left column) and the magnitude of the network velocity
(right column) from a numerical simulation of the 2-D model problem at various stages of gel phase
separation. Note the fixed scale on the volume fraction plots and the variable scale on the velocity
plots.
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Table 7.1

A comparison of the four techniques for solving the 2-D system (7.5) at the various stages
of phase separation shown in Figure 12. Integer values are the number of V (1, 1)- or F (1, 1)-
cycles required to satisfy (6.1) when using values from the previous time step as the initial guess
(nonbracket) and using all zeros as the initial guess (bracket). Decimal values in parenthesis are
the wall-clock times (in seconds) for the methods using the former of the initial guess methods. DIV
means that the method diverged. The underrelaxation was set to ω = 0.675 for all results.

Stage h = 2−7 h = 2−8 h = 2−9

MGV
1 11 [11] (18.5) 17 [17] (123) 27 [27] (798)
2 11 [11] (18.5) 14 [17] (101) 21 [26] (614)
3 10 [12] (16.9) 14 [16] (101) 22 [26] (648)
4 11 [13] (18.5) 27 [33] (197) DIV
5 DIV DIV DIV

MGF
1 5 [5] (15.2) 5 [5] (65.1) 5 [5] (266)
2 5 [5] (15.2) 4 [5] (52.2) 3 [5] (161)
3 5 [5] (15.2) 4 [5] (52.2) 3 [5] (161)
4 5 [5] (15.2) 4 [5] (52.2) 5 [5] (266)
5 5 [7] (15.2) 4 [6] (52.2) DIV

GMRES-MGV
1 10 [10] (17.4) 11 [11] (87.5) 12 [12] (389)
2 10 [10] (17.4) 10 [11] (79.5) 10 [12] (336)
3 10 [10] (17.4) 10 [11] (79.5) 10 [12] (336)
4 10 [11] (17.4) 10 [12] (79.5) 11 [14] (370)
5 9 [12] (15.9) 9 [15] (71.4) 10 [17] (336)

GMRES-MGF
1 6 [6] (18.9) 6 [6] (79.3) 6 [6] (359)
2 6 [6] (18.9) 5 [6] (66.4) 4 [6] (223)
3 5 [6] (15.7) 5 [6] (66.4) 4 [6] (223)
4 5 [6] (15.7) 5 [6] (66.4) 5 [6] (288)
5 5 [7] (15.7) 5 [7] (66.4) 10 [13] (542)

MGF method, the GMRES-MGF method scales linearly for all but Stage 5, where we
see a jump in the number of iterations at h = 2−9. However, unlike the MGF method,
the GMRES-MGF method does not diverge but converges in a reasonable number of
iterations. Basing the initial guesses on the previous time steps typically reduces the
number of iterations for all the methods compared with using all zeros. This decrease
is more pronounced in the MGV and GMRES-MGV methods. Comparing the wall-
clock times, we see that the MGF method as a standalone solver or preconditioner
is almost always more efficient than the MGV methods; this was not the case in 1-D
(cf. Table 7.1).

To better understand the convergence behavior of the four methods for the finer
h = 2−9 mesh, we plot in Figure 13 their convergence history at the five stages of
phase separation. The results for Stages 1–3 are similar for the four methods, with the
GMRES-MGF method having the steepest slope and the MGV method the flattest.
The individual slopes do not change significantly over these stages. At Stage 4, all
but the MGV methods converged, and we see that the slopes of the remaining three
methods are similar to those in Stages 1–3. The big difference comes with Stage 5.
The MGF method diverges, while the decrease in the residual for the GMRES-MGV
and GMRES-MGF methods is not very consistent until about ten iterations, at which
the slopes of the lines again appear to resemble those from the previous stages. As
discussed at the end of section 5.2 and observed in the 1-D experiments, this is most
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Fig. 13. The convergence history of the MGV and MGF standalone solvers and the precondi-
tioned GMRES-MGV and GMRES-MGF solvers for (7.5) at the various stages of phase separation
shown in Figure 12. Missing results for MGV and MGF are because these methods diverged for
that particular stage. The mesh-spacing is given by h = 2−9, and the underrelaxation was set to
ω = 0.675 for all results.

likely due to the GMRES method eliminating the problem eigenvalues of the MGF
or MGV iteration matrices. Once these have been eliminated, the rapid convergence
of these methods is again observed.

8. Concluding remarks. We have presented a computational methodology for
simulating models of two-phase gel dynamics. The main computational challenge of
these models is in solving the momentum and incompressibility equations which in-
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volve variable-coefficient differential terms and terms coupling the two fluids. When
discretized, these equations lead to a large, sparse linear system of saddle point type.
Our method of solving this system by using multigrid with a box-type relaxation pro-
cedure as a preconditioner for GMRES(m) appears to be very effective. Numerical
results from model problems in one and two dimensions indicate the method is both ro-
bust and efficient, with a near linear scaling in the computational cost. Furthermore,
the method is straightforward to implement, since it uses standard transfer opera-
tors and direct coarse-grid discretization. For 2-D, using an F-cycle in the multigrid
preconditioner appears to be more efficient than the classical V-cycle.

In our numerical experiments, storage was not an issue, since the size of the Krylov
subspaces was not required to grow excessively large in order to solve the systems. If
this happens to be the case and the number of preconditioned GMRES iterations is
much larger than the restart value, one might consider using the BiCGSTAB method
of van der Vorst [37]. This Krylov method only requires storing six intermediate
vectors per iteration. However, BiCGSTAB would require two applications of the box-
type multigrid preconditioner per iteration, whereas GMRES(m) only requires one.

The obvious way to improve the efficiency of the momentum and incompressibility
equations solver is through parallelization. This will be especially important for 3-D
applications. Parallel implementations of GMRES(m) are relatively straightforward
and readily available [29, Ch. 11]. For Stokes and Navier–Stokes, an efficient parallel
implementation of multigrid box relaxation is presented in [10]. The extension of this
parallel scheme to the gel system will be pursued in a future study.

For geometrically complicated domains, one could consider combining our method
with the embedded boundary method of Johansen and Colella [19] (see also [30, 31]).
This too will be pursued in a future study.

The overall accuracy and efficiency of our computational methodology may be
further improved through the use of high-resolution or implicit time-stepping schemes
for numerically solving (2.1) [22]. Additionally, in parameter regimes where it may
be necessary to simultaneously solve the momentum and incompressibility equations
together with (2.1), our method would also be applicable. In this case, one could use
a Newton-type iteration on the full nonlinear system in which the 1-D system (2.15)
or 2-D system (7.1) would need to be solved at each iteration.

While the model we have considered in this paper treats the two fluids of the
gel as Newtonian, it is common to use a non-Newtonian fluid model for the network
phase where viscoelastic stresses on the gel are included [9, 13, 33]. The computa-
tional methodology we have introduced in this paper serves as a starting point for
numerically addressing these more complicated models.

Acknowledgment. The authors wish to thank Dr. Oren E. Livne for discussing
with them various multigrid methods for problems arising in fluid mechanics.
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