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Traveltime inversion of vertical radar profiles

William P. Clement' and Michael D. Knoll'

ABSTRACT

Traveltimes of direct arrivals in vertical radar profiles
(VRPs) are tomographically inverted to estimate the earth’s
electromagnetic (EM) velocity between a surface transmit-
ter and a downhole receiver. We determine the 1D interval
velocity model that best fits the first-arrival traveltimes by
using a weighted, damped, least-squares inversion scheme.
We assess the accuracy of the velocity model using syn-
thetic traveltimes from a known velocity-distribution model
simulating an unconfined aquifer. The inverted velocity pro-
file closely matched the velocity profile of the input model
in the synthetic examples. Using vertical radar profile data
from an unconfined aquifer near Boise, Idaho, we inverted
traveltimes to obtain velocity estimates at the well location.
The velocity change at a depth of 2.0 m corresponds well
with the measured depth to the water table of 1.95 m, and at
depths between 2 and 18 m, the velocities ranged between
0.06 and 0.1 m/ns. Our estimates approximately match the
velocity distribution determined from neutron-derived po-
rosity logs at depths greater than about 2 m. An important
function of inverse methods is to assess (quantitatively and
qualitatively) the uncertainty of inverted velocity estimates.
We note that the velocity values in the upper and lower parts
of the inverted model are not as well constrained compared
to those between the depths of 4 and 13 m. From the model
resolution and model covariance matrices of the real-data
inversion, we determine the uncertainty in our velocity mod-
el, leading to more reliable interpretations of the subsurface.

INTRODUCTION

Ground-penetrating radar (GPR) is used widely in near-surface
investigations. Common-offset reflection profiling is used to deter-
mine the structure and stratigraphy in many areas. However, these
data are displayed as time sections because depths are poorly con-

strained. To better convert the time axis to depth, subsurface veloc-
ity is estimated between pairs of subsurface reflections in common-
midpoint (CMP) or wide-angle-reflection and refraction (WARR)
profiles (Davis and Annan, 1989; Tillard and Dubois, 1995). Thus,
surface reflection methods usually do not provide highly detailed
estimates of the subsurface velocity.

Accurate electromagnetic (EM) velocities are needed for pro-
cessing routines such as migration. Furthermore, accurate EM ve-
locities can be converted to estimates of important hydrological
properties such as porosity (Knoll and Knight, 1994) or soil mois-
ture content (Greaves et al., 1996). Recently, crosshole tomogra-
phy and zero-offset profiling have been used to characterize the
subsurface distribution of velocity values (Peterson et al., 1999;
Binley et al., 2001). Tomography provides a detailed 2D velocity
model, but estimating model reliability is difficult because of the
large number of parameters. Alternatively, zero-offset crosshole
profiles (ZOPs) are fast and easy to acquire but may not provide an
accurate velocity-depth profile because of bending ray paths.

Another method for obtaining detailed EM velocity estimates is
vertical radar profiling (VRP) (Knoll and Clement, 1999). The ac-
quisition geometry of a VRP is similar to the better-known vertical
seismic profile (VSP). We extend the VSP concept to VRPs (Knoll
and Clement, 1999; Zhou and Sato, 2000). An important goal of
VRP surveys is to obtain an accurate model of velocity changes
with depth. Unlike Zhou and Sato (2000), who use reflections in
the VRP data to provide a stratigraphic image of the subsurface, we
use VRPs to determine a detailed velocity model of the subsurface.

Other researchers are using VRPs to investigate the subsurface.
Pringle et al. (2003) collected VRP data by conducting surveys
down cliff faces. The VRPs extended the depth of imaging from
constant-offset GPR surveys acquired at the surface. They also
compared velocities from VRPs to velocities from CMPs. Their
analysis showed that velocities from VRPs and CMPs were consis-
tent. Cassini et al. (2004) used VRPs to characterize the deep va-
dose zone. Their inversion technique to determine interval veloci-
ties is similar to ours. They included error bounds on velocity
estimates but did not provide a rigorous assessment of the model
error. Tronicke and Knoll (2005) discussed pitfalls in acquiring
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K68 Clement and Knoll

VRP data. They looked at the influence of critically refracted
waves and the radiation patterns of the transmitter and receiver an-
tennae on VRP traveltimes and amplitudes. Analyzing near-offset
VRP data lessens the influence of critically refracted waves.

This paper describes in more detail the VRP velocity-estimation
method used in Knoll and Clement (1999) and Buursink et al.
(2002) and extends the analysis of VRP traveltime inversion pre-
sented in those papers. To assess the reliability of the algorithm, we
start with a synthetic example. We also explore the model resolu-
tion and uncertainty of the inverse solution through appraisal
analysis. The analysis then is extended to a field example from an
alluvial, unconfined aquifer near Boise, Idaho.

To provide a rigorous estimate of interval velocities, we use a
least-squares, linear inversion method to compute the velocity
within model layers. We use the inverse of the kernel matrix to as-
sess the reliability and uncertainty of our velocity estimates. In-
cluding uncertainty estimates with our model provides a more reli-
able and useful estimate of the subsurface velocity distribution.

GENERAL INVERSE THEORY

To describe our inversion scheme, we start with a system of
equations in the form

Ax = b, (1)

where x is the vector containing the model parameters, b is the
vector of the observations, and A is the kernel matrix that relates
the model to the data. To solve the matrix equation, we must find
the inverse of the matrix A. For our solution, we choose a model
that minimizes the difference between the observed and calculated
traveltimes, the data residuals, in a least-squares (L,) sense:

E=b - Ax|P. (2)
Minimizing the data misfit equation results in the normal equation
ATAx = A"b. (3)

Solving for the model x yields
x = (ATA)"ATb. (4)

We restrict the number of model parameters to be less than the
number of observations, so the system of linear equations is over-
determined. However, because geophysical problems are typically
ill-conditioned or ill-posed (Parker, 1994; Snieder and Tampert,
1999), solutions using simple matrix inversion are unsatisfactory.
To dampen fluctuations in the solution, we minimize the data re-
siduals and the model norm (Aki and Richards, 1980; Menke,
1989):

E = [Wy(b - Ax)[? + X[Wa(x = x>, (5)

resulting in the weighted, damped, least-squares solution

X = Xg + (ATWIW4A + PWIW ) TATW, (b — Ax,).
(6)

In this equation, X, is the starting model, W, is the data-weight-
ing matrix, W, is the model-weighting matrix, and A? is the regu-
larization parameter that balances the data and model misfit. We
use a reasonable (though crude) guess of the slowness distribution
in the subsurface for the starting model. For the data weighting ma-
trix Wy, we use an estimate of the error in the observations. The
choice of the least-squares solution dictates that Wy is the inverse
of the variance of the Gaussian distribution of the errors in our
data. Constraints on the model are invoked with the choice of W,,.
We can choose the identity matrix I for W,, or we can choose to
regularize the solution with a flatness (first-difference) or smooth-
ness (second-difference) constraint (Menke, 1989). We invoke Oc-
cam’s Razor to choose the simplest solution using minimum struc-
ture (Constable et al., 1987). The goal of interpretation is to glean
as much information from the data as possible without misrepre-
senting the solution detail.

Measures of model reliability

To better understand the reliability of our inverse solution, we
compute the generalized inverse A" (Menke, 1989):

AT = (ATWIWA + A2xWEIW, x)'ATW,.  (7)
From AT, we calculate the model resolution matrix as
R =A"A, (8)

and the model covariance matrix as

Cov,, = PATAT, 9)

where o is the standard deviation of the data (Aki and Richards,
1980; Menke, 1989).

The model resolution matrix provides an estimate of the geo-
metrical resolution of the model (Snieder and Trampert, 1999). In
other words, the model resolution matrix is a measure of how well
each parameter is resolved in the original matrix. If the model reso-
lution matrix is the identity matrix I, then the system is perfectly
resolved. In an overdetermined, noise-free system, the model reso-
lution matrix should be the identity matrix. If the model resolution
matrix contains off-diagonal elements, then these values indicate
that the parameter of interest is an average of the adjacent param-
eters weighted by the nonzero elements.

The model covariance matrix indicates how repeatable the esti-
mator is under random data variations (van Wijk et al., 2002). Al-
ternatively, the model covariance matrix is a measure of how data
error maps into model error. The model covariance matrix contains
the model variances along the diagonal and the model covariances
in the off-diagonal elements. If model covariance elements are
small, small data errors will result in small model errors; if the el-
ements are large, small data errors result in large model errors
(Menke, 1989).

Choosing \?

Chi-squared (x?) is a measure of the goodness-of-fit of the mod-
el to the data (Constable et al., 1987) and has the form
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,_ele
X_0_27 (10)

where e is the data-residuals vector and o is the standard deviation
of the error in the observations. We use x? to determine the optimal
value of A? through a line search. The line-search routine computes
a large number of solutions with different values for A2. We choose
the A2 value that results in a ¥ between N + V2N, where N is the
number of observations.

VRP INVERSION

Inversion for interval velocity is common for VSPs (Lines et al.,
1984; Stewart, 1984; Pujol et al., 1985, 1986; Lizarralde and Swift,
1999); we extend this method to VRPs. The geometry of a VRP ex-
periment is shown in Figure la. The data consist of first-arrival
traveltimes between the transmitting antenna and the receiver loca-
tions (Figure 1b). The inversion procedure consists of determining
the travel paths through the model (matrix A) and inverting for the
model parameters. In the VRP case, the model parameters are
slowness (reciprocal of velocity) values.

The forward-modeling equation used to compute traveltimes is

a)  Source offset b)
-
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Figure 1. (a) Model showing the geometry of VRP acquisition and
(b) data from a VRP in a shallow, alluvial, unconfined aquifer.

1
t= fmy Edl, (11)

where ¢ is the traveltime along a given ray, v is the velocity along
that ray, and / is the length along the raypath. The raypaths depend
on the model parameters resulting in a nonlinear system of equa-
tions. We use several steps to linearize the system. First, the inver-
sion solves for slowness instead of velocity, removing velocity
from the denominator. Second, a straight ray approximates the true
raypath between transmitter and receiver, removing dependence on
raypath. If the direction of the raypaths is nearly parallel to the ve-
locity gradient (i.e., approximately vertical), straight rays are a val-
id assumption. We investigate the validity of the straight-ray as-
sumption with a synthetic model. Finally, the inversion uses hori-
zontal layers of constant velocity and thickness to reduce our solu-
tion to layer slownesses instead of both slownesses and thick-
nesses. This linearization simplifies the inversion procedure sig-
nificantly. A ray is traced from the transmitter to each receiver. The
ray length in each layer for each transmitter-receiver pair is an ele-
ment of the matrix A.

Synthetic example

To test our VRP inversion routine, we inverted traveltimes from
a synthetic experiment. Figure 2 shows the input velocity model.
The synthetic model consists of five constant-velocity layers repre-
senting a shallow, unconfined aquifer. The uppermost layer (above
the ground surface) represents the air and has a velocity of 0.3
m/ns. Below this layer is a 2-m-thick layer (surface to 2-m depth)
representing the vadose zone with a velocity of 0.14 m/ns, a 1-m-
thick layer (2 to 3 m) with a velocity of 0.06 m/ns, a 7-m-thick
layer (3 to 10 m) with a velocity of 0.09 m/ns, and a 10-m-thick
layer (10 to 20 m) with a velocity of 0.06 m/ns. These last three
layers represent units in the saturated zone with different porosities
and water contents.
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Figure 2. (a) Synthetic velocity model and computed traveltimes
simulating a VRP. The source point is 0.9 m from the well. The
gray shading corresponds to different EM velocities. (b) The veloc-
ity plotted as a 1D function of depth.
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The EM velocity in porous media is strongly dependent on fluid
content. Air has a dielectric constant of 1 and an EM velocity of
0.3 m/ns, whereas water has a dielectric constant of about 80 and
an EM velocity of about 0.03 m/ns. Thus, sediments with air-filled
pores have a faster EM velocity than similar sediments with water-
filled pores.

The transmitting antenna is offset 0.9 m from the well. There are
201 simulated receiver positions spaced every 0.10 m down the
well, starting at 0-m depth. We generate the synthetic traveltimes
with a finite-difference approximation to the Eikonal equation
(Hole and Zelt, 1995).

Figure 3a shows the results of the inversion. Because we are in-
verting synthetic, noise-free traveltimes, we placed no constraints
on the solution (Wy = I; W, = I; A2 = 0). Using these parameters
is equivalent to solving the least-squares problem

x =xo + (ATA)TAT(b — Ax,). (12)

The inversion routine calculates the velocities for eighty 0.25-
m-thick layers. The layer thickness limits the resolution of subsur-
face layering. We selected 0.25 m for the layer thickness because
this thickness is close to the dominant wavelength of the data in the
slowest unit, but larger than the receiver step size.

Above 2 m, the inverted model is a poor match to the input
model. The velocity starts at 0.08 m/ns, gradually increases to
about 0.17 m/ns at a depth of 1 m, and then decreases to 0.13 m/
ns at a depth of 2 m. The poor fit is because of the straight-ray as-
sumption used to linearize the inversion. At shallow receiver
depths (0 to 1.5 m), the first arrivals are refracted at the air/sur-
face boundary (Tronicke and Knoll, 2005). However, the inverse
routine assumes that the energy has propagated directly from
the source to the receiver along straight raypaths. Thus, the path
lengths and velocity values for layers near the surface are not accu-
rate.
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Figure 3. Velocity inversions for the model in Figure 2. (a) Noise-
free synthetic traveltimes and (b) noisy synthetic traveltimes. The
gray line in both plots is the input velocity model. The source is
0.9 m from the well.

Below 2 m, the inverted model is nearly the same as the input
model. Even at the sharp velocity changes at depths of 2, 3, and
10 m, the inverted velocities closely match the true velocities. The
close match indicates that the straight-ray assumption is valid be-
low depths of about 2 m and that inverted velocities are a good es-
timate of the velocity in the subsurface.

When we add noise to the traveltimes, we obtain a worse fit to
the input model. To simulate realistic, noisy data, we added ran-
dom noise with zero mean and a 0.25 ns standard deviation, as
well as a percentage (0.5%) of the total traveltime of the ray to the
synthetic arrivals. The 0.25 ns standard deviation is about half the
sample interval typically used in acquiring 250-MHz VRP data. In
earlier work, we determined the picking uncertainty to be between
0.1 ns and 1.2 ns, depending on data quality. Adding a small per-
centage of the total traveltime of the ray to the synthetic arrivals
ensures that the noise increases as the traveltime increases. Adding
only the standard deviation to each traveltime causes the earlier,
high signal-to-noise arrivals to have more noise as a percentage of
their traveltime than the later, low signal-to-noise arrivals. Thus,
our synthetic traveltimes have an increase in uncertainty with in-
creasing traveltime, as we have observed with field data.

Using the same inversion parameters as for the noise-free case,
results in an unrealistic, wildly oscillating velocity model. To im-
prove the velocity model, we regularized the solution by adding
smoothness constraints (W, is related to the second difference
operator by [-1,2,—1]"[—1,2,—1]) and using a A> of 0.31. The so-
lution oscillates somewhat around the input model (Figure 3b).
Again, the shallowest 2 m are poorly modeled, as they are in the
noise-free case. The velocity oscillates between 0.079 and 0.10
m/ns between depths of 3 and 10 m, mostly because of the inver-
sion trying to fit the noise. However, the velocity changes at depths
of 2, 3, and 10 m are clearly discerned in the inverted model. By
comparing the results of our inversion routine to synthetically gen-
erated traveltimes, we can better understand the limitations of the
inverse method.

A limitation with smooth regularized inversion is that the meth-
od seeks a smooth solution. The oscillations near the velocity
jumps are artifacts of the smoothness constraint. The input syn-
thetic traveltimes are computed for a model with a distinct velocity
jump, but the inversion tries to smooth the sharp velocity bound-
ary, resulting in the velocity oscillations. Although the oscillations
are artifacts, the sharp velocity changes at depths of 2 and 3 m are
still represented in the inverted velocity model. The change at a
depth of 10 m is more difficult to see. The poor match to the input
model at this depth is the result of the decrease in the signal-to-
noise ratio of the data. The synthetic tests indicate that the inver-
sion scheme can model changes in velocity, but care must be taken
to not overinterpret the model.

Error analysis

An advantage of inverse theory is that various statistical esti-
mates of the uncertainty can be computed, such as data residuals,
in our velocity model. The noise-free synthetic velocity model fits
the data well. To two significant digits after the decimal point, the
residuals range between 0.38 and 0.13 ns, with a mean of 0.00 ns,
a standard deviation of 0.03 ns, and a root mean square (rms) value
of 0.00 ns. The small errors are expected because of the noise-free
synthetic traveltimes.

Also, as expected, the noisy synthetic traveltimes have larger
traveltime residuals than the noise-free traveltimes. These residu-
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als range between —0.53 and 1.04 ns, with an rms value of about
0.02 ns, a mean of 0.07 ns, and a standard deviation of 0.31 ns. Al-
though these statistical values are larger than those for the noise-
free simulation, the traveltime residuals indicate that the model ad-
equately predicts the synthetic traveltimes.

Because we have a small, linearized system, we can compute A*
(equation 7) directly, allowing us to determine the model resolu-
tion (equation 8) and model covariance (equation 9) matrices for
our velocity model. As mentioned, well-resolved features have a
model resolution value of 1, such as the noise-free simulation. Fea-
tures with small variance values are less prone to errors in the data
than large variance values. In the more realistic noisy simulation,
the diagonal elements of the model resolution matrix are 0.41, ex-
cept near the top and bottom of the model. The sum of the model
resolution values for any single layer is 1. If the diagonal model
resolution values are less than 1, nonzero off-diagonal elements oc-
cur in the model resolution matrix. The nonzero off-diagonal ele-
ments indicate that the velocities are a weighted average of the sur-
rounding velocities. In the noisy simulation, the velocity estimates
are primarily dependent on the velocities in the three overlying and
underlying layers. Imposing regularization on the solution will
force the routine to average over several layers. Thus, regularizing
the solution decreases the resolution in the resulting model.

We expect the highest model resolution values to be located near
the top of the model where many rays travel through the model lay-
ers. Conversely, we expected the smallest model resolution values
to be located near the bottom of the model where ray coverage is
relatively low. Interestingly, in the synthetic modeling study using
realistic noisy data, model resolution values were nearly constant
for most of the model parameters. The model resolution value at
the shallowest depth is 0.63. Below this depth, the values are about
0.41 to adepth of 19.0 m. At the bottom 0.5 m of the model, model
resolution values oscillate between slightly higher and lower val-
ues, with the model resolution value at the deepest layer being
about 0.30. The increase in model resolution at the base of the
model may be a boundary effect due to the lack of deeper layers.
The nearly constant model resolution values between depths of
0.5 m and 19.0 m indicate that the velocities are resolved to the
same degree throughout the model.

The variance of the model parameters from the noisy simula-
tions is 0.004 ns?’/m?; the smallest values are at the top, and the
largest values are near the bottom of the model. The variance pro-
vides an indication of the error bounds on the velocity estimate.
The smaller values at the top of the model indicate that these ve-
locities are better constrained. All rays travel through these upper
layers, providing more information about these layers. Only a few
rays sample the lowest layers; they are less tightly constrained. Ex-
cept for the lowermost layers, the model velocities are well con-
strained.

Field example

To demonstrate the traveltime inversion method, we analyzed a
VRP data set (profile 18 from July 11, 2000) collected in well A1 at
the Boise Hydrogeophysical Research Site (BHRS). The BHRS is
a research well field located on a gravel bar of the Boise River
where much is known about the subsurface distribution of hydro-
logic and geophysical properties (Barrash and Knoll, 1998; Knoll
and Clement, 1999; Peterson et al., 1999; Tronicke et al., 2004;
Tronicke and Knoll, 2005). Wells at the BHRS penetrate about

20 m of coarse, alluvial deposits that have been subdivided into
five units with varying amounts of cobble and sand and different
porosity geostatistics (Barrash and Clemo, 2002). A red clay, 3 m
thick, underlies the aquifer. The water table during the experiment
was located at 1.95 m below land surface.

Figure 4 shows the VRP data collected with a Mala RAMAC/
GPR system using 250-MHz borehole antennae. Each trace con-
sists of 800 samples that were vertically stacked 256 times in the
field. The sample interval is 0.397 ns, and the signal bandwidth is
20 to 200 MHz. The surface transmitting antenna was oriented ra-
dially from the wellhead, with the center point of the antenna
0.9 m from the well. The receiving antenna was lowered in well
Al, acquiring data at fixed locations every 0.10 m from a depth of
0.05 m to a depth of 18.05 m below land surface. Processing in-
cluded time zero correction, dc bias removal, and bandpass filter-
ing. We also divided each trace by its rms amplitude to balance the
traces for plotting. The data have high signal-to-noise ratios, espe-
cially above 12 m.

The most obvious feature in the VRP data is the slope change of
the first arrivals at a depth of about 2.0 m. This slope break indi-
cates a change in velocity that corresponds well with the measured
level of the water table (1.95 m below land surface) in this well.
The decrease in slope also indicates that the apparent velocity de-
creases in the saturated zone. First arrivals at depths less than about
1.8 m involve energy that has been refracted at the air/ground in-
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Figure 4. VRP data from well A1 at the BHRS. The source point
(feedpoint of the transmitting antenna) was located 0.9 m from the
axis of the well. The receiver depths are with respect to the land
surface. The solid white line marks the observed first arrival picks
used in the inversion. The arrows point to reflections.
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terface (Tronicke and Knoll, 2005). Below a depth of about 2.0 m,
first arrivals are direct arrivals. The small changes in slope indicate
small velocity changes with depth.

Also apparent in the data is upgoing reflection energy. The re-
flections in Figure 4 are difficult to see because we processed the
data to highlight the first arriving energy. Processing to enhance
upgoing reflection energy shows many reflections. These reflec-
tions, although ringy in character as the first arrivals, suggest that
several large impedance contrasts exist at the site. The shallowest
reflection identified in Figure 4 is at a depth of about 1.0 m. A
stronger reflection is observed at a depth of about 2.0 m, corre-
sponding to the water table. Other strong reflections occur at
depths of 4.0, 5.0, and 15.0 m. The presence of upgoing reflections
in the VRP indicates changes in electromagnetic impedance at
these depths.

We picked 181 first-arrival transmitter-to-receiver traveltimes,
corresponding to depths between 0.05 and 18.05 m. To estimate
the picking uncertainty in our observations, five other people used
the same method to pick similar data from another well. From
analysis of their picks, we determined that the standard deviation
of the time picks was 0.1 ns. This procedure provides a crude esti-
mate of the error resulting from mispicking the direct arrivals.
Other sources of error are present in the data, but we cannot mea-
sure their contribution to the data error at this point.

Results

The results of the weighted, damped, least-square inversion
(equation 6) are presented in Figures 5-10. We parameterized the
model with 0.25-m-thick layers and used a starting model with a
slowness equivalent to 0.08 m/ns. The inversion regularized the
solution using a smoothing (second difference) matrix. The line
search to find A% resulted in a value of 0.143; x? (equation 10) was
about 181, the number of observations.

Figure 5 shows the velocity estimates from the 1D inversion.
The velocities decrease from an average of around 0.18 m/ns for
depths above 2 m to about 0.09 m/ns for layers below this depth.
Above a depth of 2 m, velocities fluctuate from about 0.27 m/ns at
the surface to 0.12 m/ns at a depth of around 1 m, then increase to
0.27 m/ns at a depth of 1.9 m. The water table causes a sharp ve-
locity decrease at a depth of about 2 m.

Above a depth of 2 m, the high velocities are faster than ex-
pected for unsaturated sediments. However, the first arrivals are
probably refracted at the air/ground interface (Tronicke and Knoll,
2005), not direct arrivals as assumed in the inversion routine. From
the synthetic modeling, velocities above a depth of 2 m were inac-
curate because the straight-ray approximation poorly models the
true raypath. These factors indicate that the high velocities are not
the velocities of the undisturbed, unsaturated sediments, but more
likely have been influenced by airwave energy and other interfer-
ence effects and should be ignored.

Below a depth of 2 m, the velocities fluctuate around 0.09 m/ns.
These slower velocities are because of the high water content of
the sediments. Small velocity changes, ranging between 0.065 and
0.11 m/ns, occur throughout the saturated zone. Again, these ve-
locities are consistent with the composition and porosity variations
of the water-saturated sediments at the site.

A slower velocity of 0.065 m/ns occurs near a depth of 2.5 m. A
high-porosity sand lens, determined from well cores, may cause
the slow velocity. Alternatively, the inversion may try to overcom-
pensate for the discontinuity at the water table. A small error in

traveltime picking may cause the high-velocity layer at a depth of
12 m. The error bars on the velocities indicate that this layer is
more poorly constrained than most of the model.

The strong reflections indicated by the arrows in Figure 4 coin-
cide with velocity changes in the model. The reflection at a depth
of about 2.0 m coincides with the water table. The reflections at
depths of 4.0 and 5.0 m approximately coincide with the top and
bottom, respectively, of the thin, high-velocity layer at that depth
in the velocity model. The strong reflection at a depth of about
15 m roughly coincides with the transition from low to high veloc-
ity in the derived velocity model at that depth. Other reflections are
in the VRP, but linking them to specific velocity changes is difficult
because of their ringy character and the gradational velocity
changes in the model.

These reflections could be used to constrain the traveltime inver-
sion (Moret et al., 2004). We would allow the velocity change
across the reflecting boundary to be large instead of varying
smoothly. This process imposes an assumed structure on the model
parameters. The ringy character of the VRP reflections makes ac-
curate depth determination difficult. We prefer to let the inversion
algorithm choose the depths of the velocity changes and use the re-
flections to corroborate the inverted velocity model.

The VRP velocity model can also be compared to EM velocity
estimates derived from a neutron porosity log collected in well A1l
(Barrash and Clemo, 2002). We converted the porosity values to

Velocity (m/ns)
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Figure 5. Velocity model from the inversion of A1 VRP traveltime
picks. The black line is the velocity model. The thin blue lines are
twice the standard deviation computed from the multiple realiza-
tions of the slowness model. The thin red lines are twice the stan-
dard deviation as determined from the diagonal elements of the co-
variance matrix. The thick orange line is the velocity derived from
the neutron log in well Al.
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EM velocities based on the time-propagation model, a volume-
weighted average of the refractive indices (square root of the di-
electric constant) of water and the matrix material (Wharton et al.,
1980; Knoll, 1996). The sediments at the BHRS are cobble-dom-
inated sands and gravels. For the velocity conversion, we used 80
for the dielectric constant of water (k,,) and 4.6 for the dielectric
constant of the siliclastic rock matrix (k). The velocity formula is:

Vair

= = , (13)
' Vo, + (1 - o)k,

where ¢ is the porosity derived from the neutron log. Figure 5
shows the velocity calculated from the neutron-derived porosity.
Porosity-derived velocities are not available above a depth of
2.0 m because the neutron log was not analyzed for porosity values
in the vadose zone. For much of the model, the porosity-derived
velocities are within the 95% confidence limits of the inverted
model. In the shallowest 10 m, the inversion velocities and the de-
rived velocities follow similar trends and are about the same mag-
nitude. Near a depth of 12 m, the porosity-derived velocity de-
creases, whereas the VRP-derived velocity increases. The oscil-
latory nature of the inverted model may cause the dissimilar veloc-
ity at a depth of 12 m. Overall, the strong correlation between
VRP-derived velocity estimates and porosity-derived velocity esti-
mates suggests that (1) our inversion method is capable of accu-
rately determining EM velocity values, and (2) VRP velocity esti-
mates may be used to estimate porosity or water content values in
coarse alluvial sediments.

In general, the porosity-derived velocity estimates are a little
slower than the VRP-derived velocity estimates. This discrepancy
may be due to two factors. First, the neutron count-porosity con-
version is based upon the empirical relation (Hearst and Nelson,
1985; Barrash and Clemo, 2002):

25 e b b e b b L b b b 25
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Figure 6. Histogram of traveltime residuals. The mean traveltime
residual is 0.00 ns with a standard deviation of 0.30. The residuals
range from —1.00 to 0.85 ns.

¢ = 1088, (14)

where N is the neutron tool reading (counts/second), A and B are
the tool readings for two different known or estimated porosity val-
ues in the aquifer, and ¢ is the porosity. In Figure 5, the porosity-
derived EM velocity estimates are based on assumed values for A
and B, not the results of a physical calibration experiment using
sediments of known porosity from the BHRS.

Second, systematic errors in the traveltime data may arise from
errors in the time zero correction or the sampling frequency. These
errors will also effect the relationship between radar velocity (or
slowness) and porosity. However, testing shows that large travel-
time delays have little effect on the inverted velocities below about
2-m depth.

Error analysis

A significant (although underutilized) advantage of an inversion
method is that estimates of the reliability of the model parameters
are provided. To further test the validity of our model, the inversion
computed some statistical measures of the uncertainty in the re-
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Figure 7. Traveltime residuals plotted versus depth. The magnitude
of the residuals increases dramatically below 9.5-m depth.
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sults. Figure 6 shows a histogram of the traveltime residuals. The
residuals range from —1.00 to 0.85 ns, with a mean value of 0.00
ns, a standard deviation of 0.30 ns, and an rms value of 0.02 ns.
The small value of the standard deviation indicates that the model
predicts the data well.

The distribution of the residuals with depth can also help assess
the uncertainty in the model (Figure 7). The large magnitude re-
siduals at depths of about 1 and 2 m occur where reflections are
observed in the VRP. The reflections imply large velocity contrasts.
As mentioned, the inversion seeks a smooth velocity distribution.
The coincidence of the large residuals with the reflections indicates
that the velocity estimates are artifacts of the inversion algorithm.
The large residuals at these depths emphasize the importance of
understanding the assumptions in the inversion method.

At depths greater than 9.5 m, the magnitude of traveltime re-
siduals increases significantly (Figure 7). The large residuals at
depths greater than 9.5 m also correlate with the deeper, more un-
certain traveltime picks. A careful examination of the picks plotted
in Figure 4 show that at depths greater than 9.5 m, the picks do not
form as smooth a line as they do at shallower depths. Also, at
depths greater than 13 m, the noise in the data becomes more
prominent. In our inversion, we assigned a single uncertainty to the
observations. Figure 7 suggests that the uncertainty changes with
depth. Clearly, knowledge of data uncertainty is critical for obtain-
ing an accurate uncertainty analysis for the model.
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Figure 8. The complete model resolution and model covariance
matrices showing the influence of the off-diagonal elements. (a)
The model resolution matrix. (b) The model covariance matrix. In
the covariance matrix plot, the scale is limited to emphasize the di-
agonal elements of the matrix. Values greater than 0.25 are black;
values less than —0.25 are white.

Analysis of the model resolution (equation 8) and model covari-
ance (equation 9) matrices provide further insight into the validity
of the model. By computing the model resolution and model covar-
iance matrices, we can note where the model parameters are well
or poorly constrained. Figure 8 shows the model resolution and
model covariance matrices for the velocity model. In our VRP in-
version, the narrow strip along the diagonal of the model resolution
matrix to a depth of about 13 m indicates that the velocity deter-
mined for each layer is based on the velocities from a few adjacent
layers. Similarly, the narrow strip along the diagonal of the covar-
iance matrix above depths of 13 m indicates that the uncertain-
ty in velocity estimates depends only on a few adjacent layers. At
depths greater than 13 m, model resolution values decrease and the
width of the diagonal increases slightly. For the covariances, the
magnitudes of the values increase as does the width of the diago-
nal. These trends indicate that the model is less certain at deeper
depths, as expected.

To provide more detail, Figure 9 shows the diagonal elements
from the model resolution and model covariance matrices. The ve-
locities are best resolved near the surface, then the model resolu-
tion gradually decreases to about 0.43 near a depth of 3 m. Model
resolution values of 0.43 indicate that the velocities are weighted
only slightly by adjacent layer velocities. The diagonal elements of
the covariance matrix (the variances) are low near the surface and
increase to 0.10 ns?/m? at a depth of about 3 m. In our model, the
variance is nearly constant at depths between 3 m and about 13 m,
indicating that the uncertainty in the velocities is about the same at
these depths. At depths greater than 13 m, the model resolution de-
creases to 0.34, and the variance increases to 0.25 ns?/m?. From
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Figure 9. The diagonal of the model resolution (black circles) and
the model covariance (gray squares) matrix of the inverted model
shown in Figure 5. Each diagonal element of the covariance matrix
is equal to the slowness variance of that parameter of the model.
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computing the model resolution and model covariance matrices,
we see that the model parameters at depths greater than 13 m are
less certain than the shallower model parameters.

Our analysis of the model resolution and model covariance ma-
trices relies on linear inverse theory. As mentioned earlier, the VRP
problem is nonlinear. We have assumed that the radar energy prop-
agates between the transmitter and the receiver in a straight path. In
reality, the energy refracts at velocity changes according to Snell’s
law. Our appraisal analysis does not account for the error intro-
duced by curved raypaths. The analysis also assumes the inversion
has found the global minimum. At the minimum, the method uses
linear theory to find the model resolution and model covariance
matrices. However, if the solution is not at the global minimum,
the velocity model is incorrect even though the model resolution
and model covariance matrices indicate small errors in model pa-
rameters.

Another, more visual, method for analyzing reliability is shown
in Figure 10. We used the information contained in the model co-
variance matrix to generate realizations of our model. Following
Gouveia and Scales (1998), we take several steps to compute mod-
els that fit the data to within the model uncertainty. The first step is
to compute the LU (lower and upper triangular) decomposition of
the model covariance matrix. Next, we compute a normally distrib-
uted, pseudorandom number sequence with zero mean and unit
variance. Finally, we take the inner product of the lower triangular
(L) part of the LU decomposition and the pseudorandom numbers
to get a single model realization. This realization has the same co-
variance as our model, and thus represents another possible model
that fits within the uncertainty of our data. Figure 10a shows 80
such realizations. We have high confidence in those features that
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Figure 10. Plot of simulations with the same model covariance val-
ues as the inverted model. (a) Plot of 80 realizations of the statisti-
cally equivalent models. Horizontal lines in the plot indicate layer
velocities that are well resolved by the inversion. (b) Plots the 80
models (gray lines) from the simulation along with the color-coded
inverted velocity model. Our inverted model is superimposed as
the black line. The 95% confidence bounds are also plotted as blue
lines.

are laterally continuous. Figure 10b shows overlays of the velocity
models from these 80 simulations, including the 95% confidence
intervals based on twice the standard deviation of the model pa-
rameters. We computed the error bars based on the standard devia-
tions derived from the 80 slowness model simulations:

211 (m; — M)
N-1)

(15)

where my; is a particular slowness model parameter vector and m is
the average of the N = 80 realizations. The velocity-model param-
eters with error bounds then become

_; =V = _; (16)
m+ 20 m- 20

Figure 10 shows that the model is more reliable at depths greater
than 2 m. Gouveia and Scales (1998) point out that error estimates
based on the standard deviation ignore the contribution from the
off-diagonal elements of the model covariance matrix. In many pa-
pers, the standard deviations are incorrectly computed as the
square root of the diagonal elements of the covariance matrix.
These standard deviations result in the error bounds marked with
the red lines in Figure 5. This method does not account for the non-
linear relationship between slowness and velocity. Although these
standard deviations tightly constrain the velocity model compared
to the correct error bars, they falsely overconstrain the model. Fig-
ures 5 and 10 demonstrate the importance of incorporating the off-
diagonal elements of the covariance matrix and recognizing the
nonlinear aspect of the error estimation.

CONCLUSION

We used a linear, weighted, damped least-squares inversion al-
gorithm to invert VRP traveltimes for a layered velocity model.
This inversion algorithm computed the generalized inverse to esti-
mate the model resolution and model covariance matrices. Using
these matrices, we examine the uncertainty of our model. Thus, we
can provide estimates about the reliability of our results, an impor-
tant consideration in decision making.

The synthetic study indicates that the straight-ray approximation
is valid for depths greater than about 2 m in our experiment. The
inversion procedure worked well for the noise-free traveltimes; the
inverted model parameters matched the input model for depths
greater than 2.0 m. We added noise to the traveltimes to investigate
the inversion method’s capability with more realistic data. To rea-
sonably match the input model, we had to regularize the inversion.
The smoothness constraint and the noise caused small fluctuations
in the model parameters, but the large-scale velocity changes are
still apparent in the inverted model.

We inverted VRP data acquired at a sand-and-gravel, unconfined
aquifer. Our model consists of velocities ranging between 0.12
and 0.27 m/ns for the shallowest 2 m, and between 0.06 m/ns
to 0.1 m/ns for depths greater than 2 m. The high velocities prob-
ably indicate that the first arrivals near the surface consist of
refracted waves. Otherwise, the velocities correspond well with
changes in porosity and changes in the geology beneath the site.
The modeled velocity magnitudes are in approximate agreement
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with velocities derived from neutron logs, providing an indepen-
dent corroboration of our model.

The model is best constrained at depths between 2 and 10 m,
based on the size of the traveltime residuals, the model resolution
and model covariance analysis, and our model realization method.
The shallowest 2 m of the model are the most uncertain; the
straight-raypath assumption is clearly violated by refracted air
waves along the surface. However, the straight-ray assumption is
necessary to linearize the inverse problem. The large uncertainty
for depths greater than 13 m may be because of a decreased signal
to noise ratio. Interestingly, the formal model resolution and model
covariance analyses indicate the model is best constrained near the
surface. Between depths of 3 and 13 m, the model resolution and
model covariance values are constant. The difference in uncertain-
ty between the formal analysis and the model-realization method
underscores the importance of the off-diagonal elements of the co-
variance matrix.

VRP velocity models provide insight into the distribution of
physical properties, such as porosity, in the subsurface. These ve-
locities can be used as starting models for tomography studies or as
velocity information for surface reflection processing steps, such
as migration and time-to-depth conversion at the same site. The ve-
locity information gained from VRPs provide valuable information
for characterizing the shallow subsurface.
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