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Effects of Signal Processing and Antenna Frequency on the
Geostatistical Structure of Ground-Penetrating Radar Data

Greg A. Oldenborger1, Michael D. Knoll and Warren Barrash

Center for Geophysical Investigation of the Shallow Subsurface,

Boise State University, Boise, Idaho 83725

ABSTRACT

Recent research has suggested that the geostatistical structure of ground-penetrating radar data

may be representative of the spatial structure of hydraulic properties. However, radar images of the

subsurface can change drastically with application of signal processing or by changing the signal

frequency. We perform geostatistical analyses of surface radar reflection profiles in order to investigate

the effects of data processing and antenna frequency on the semivariogram structure of radar reflection

amplitudes. Surface radar reflection data collected at the Boise Hydrogeophysical Research Site

illustrate the processing- and antenna-dependence of radar semivariograms for a fluvial, cobble-and-

sand aquifer. Compensating for signal attenuation and spreading using a gain function removes a non-

stationary trend from the data and a trace-specific gain function reduces fluctuation of semivariogram

values at large lags. Otherwise, geostatistical structures of surface reflection data are quite robust to the

effects of data gains. Migration is observed to reduce the strength of diffraction features in the

semivariogram fields and to increase the principal exponential range. Principal exponential range

increases only slightly after application of migration with a realistic velocity but over-migration results

in a significant artificial increase of exponential range. The geostatistical structures of radar reflection

data exhibit marked dependence on antenna frequency, thus highlighting the critical importance of the

scale of measurement. Specifically, the exponential ranges of radar reflection amplitudes decrease in

proportion to the increased signal frequency for the 50 MHz, 100 MHz and 200 MHz range of

antennas. Results demonstrate that processing and antenna frequency must be considered before the

application of radar reflection data in a geostatistical context.

Introduction

In a hydrogeophysical context, ground-penetrating

radar (GPR) surveys find application in contaminant charac-

terization studies, subsurface structure mapping and hy-

draulic property estimation (Knight, 2001). With respect to

the latter application, Olhoeft (1994) investigated the spatial

persistence of radar reflections and Knight et al. (1996) and
Rea and Knight (1998) advanced the hypothesis that the

geostatistical structure of radar reflection amplitudes, as

quantified by the semivariogram, could be used to infer the

geostatistical structure of hydraulic properties. This hypoth-

esis was based on the facts that radar reflections in the

subsurface are caused by changes in the dielectric properties

of the geologic materials and that the petrophysical param-

eters that determine the dielectric properties of a sedimentary

unit (grain size, composition and packing) also determine

the hydraulic properties.

While a direct relationship between the geostatistical

structure of radar reflection amplitudes and geologic or

hydraulic properties has yet to be demonstrated (Oldenborger

et al., 2003), geostatistical analysis of radar reflection data

has been applied in the extrapolation of hydrostratigraphy

(Langsholt et al., 1998), in depositional environment com-

parisons (Tercier et al., 2000), and in reservoir characteriza-

tion where the geostatistical structure of radar reflection data

was used to interpolate and extrapolate the permeability field

within an unsaturated sandstone formation (Szerbiak et al.,
2001). Other workers may be considering or applying similar

techniques as a method of obtaining critical information

regarding the geologic or hydraulic property distribution

away from control points. Given an increasing utilization of

the technique, it is important to realize that the reliable

geostatistical use of radar data may be further complicated by

the dependence of the reflection image on data processing

and antenna frequency.

The Boise Hydrogeophysical Research Site (BHRS)

is a specific example of a site where geostatistical analysis of

radar reflection data might allow interpolation and extra-

polation of hydraulic properties away from borehole mea-

surements. The BHRS is ameso-scale research site consisting

of 18 boreholes completed in a shallow, fluvial cobble and

sand aquifer located alongside the Boise River near

Boise, Idaho. Currently, borehole-based measurements are1 Email: greg@cgiss.boisestate.edu
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insufficient for determining the horizontal geostatistical

structure of porosity within the sedimentary units (Barrash

and Clemo, 2002). Surface GPR surveys comprise part of the

geophysical characterization at the BHRS; reflection data have

been interpreted in terms of sedimentary units and bounding

surfaces (Peretti et al., 1999) and have proven useful for iden-
tification of sedimentary architecture between and away from

boreholes. Before the radar data can be further used as a proxy

for the geostatistical structure of porosity, wemust quantify the

effects of signal processing and antenna frequency on the

geostatistical structure of the radar reflection amplitudes.

In particular, three questions are posed: 1) How is the

geostatistical structure of surface GPR reflection data

effected by different data gains? 2) How is the geostatistical

structure of GPR data effected by migration? 3) How does

the geostatistical structure of GPR data vary with signal

frequency? We address these questions by analyzing the

geostatistics of surface radar reflection data collected at the

BHRS. Observed variation of geostatistical model param-

eters (such as exponential range) is used to quantify the

sensitivity of geostatistics to changes in the processing

scheme or the radar antenna frequency.

Data Acquisition and Processing

Surface radar reflection data were collected at the

BHRS in the summer of 1998 (Peretti et al., 1999). These data
were collected with a PulseEKKO 100 (Sensors and Software

Inc.) bistatic radar system with 50 MHz antennas and a 1,000

V transmitter, with 100 MHz antennas and a 400 V

transmitter, and with 200 MHz antennas and a 400 V trans-

mitter. Survey design and acquisition parameters followed

established protocol for constant-offset GPR (Annan, 1999).

Horizontal and temporal sampling intervals were 0.1 m and

0.8 ns for the 200 MHz and 100 MHz data, and 0.2 m and

1.6 ns for the 50 MHz data.

Traditional seismic processing methods can be

applied to ground-penetrating radar data (for example,

Fisher et al., 1992; Greaves et al., 1996) provided that the

user accounts for the inherent differences in sources and

expressions of noise, and energy loss mechanisms. These

specifications are especially important when attempting to

retain relative radar reflection amplitude information due to

the fundamental differences in the dynamics of seismic and

electromagnetic wave propagation.

With these caveats in mind, the processing flow for this

study is: 1) trace editing to ensure correct mid-point location

and addition of elevation information to trace headers;

2) removal of zero-frequency bias as calculated based on

samples up to the first break; 3) horizontal alignment (in

time) of first breaks; 4) removal of signal saturation noise via

a residual median filter designed according to Gerlitz et al.
(1993); 5) 3-point median filtering of occasional spurious

noise spikes; 6) topographic corrections using a 0.2 ns sample

interval and a velocity equal to that of the unsaturated zone as

determined from cross-borehole transmission and vertical

radar profile data; 7) application of data gain; 8) constant-

velocity phase-shift migration for data below the water table

(Gazdag, 1978); 9) muting of the highly coherent air/ground

waves and the water table reflection.

Application of an appropriate data gain requires some

discussion. Gains such as automatic gain control (AGC) that

attempt to equalize signal strength are considered to be

inappropriate due to their destruction of relative amplitude

information (Yilmaz, 2001). Conversely, programmed gain

control (PGC; Yilmaz, 2001) relies on the assertion that the

amplitude fall-off envelope is a reliable attribute that des-

cribes amplitude decay. Accordingly, the gain function is

the inverse of the fall-off envelope. To preserve relative

amplitude variations in the lateral direction, a single

(average) PGC function is often applied to an entire reflec-

tion profile. However, for profiles with lateral variation in

material properties (and, therefore, attenuation) or lateral

variations in antenna coupling, it may be necessary to apply

PGC gain on a trace-by-trace basis. Similarly, model-based

gains such as spreading exponential compensation (SEC;

Annan, 1999) may be applicable for maintaining relative

amplitude information on either a whole-section or trace-by-

trace basis provided that appropriate estimates of physical

properties are used. In subsequent geostatistical analysis, we

examine observable variations in the radar geostatistics due

to a selection of different data gains.

Geostatistical Estimators

Definition of geostatistical estimators is covered

extensively by Isaaks and Srivastava (1989) and Deutsch

and Journel (1998). The normalized semivariogram for a

random variable g(r) can be defined in terms of the expected

squared difference between variable values separated by a

lag vector h:

cðhÞ ¼ 1

2r2
E ½gðrÞ � gðr� hÞ�2
� �

ð1Þ

where r is the position vector, E is the expectation operator

and r2 is the variance. The normalized semivariogram

(hereafter referred to as the semivariogram) can be un-

derstood as the sample variance described as a function of

spatial separation. Thus, low semivariogram values indicate

a high degree of correlation between variable values

separated by the lag vector. For this and other studies

(Rea and Knight, 1998; Tercier et al., 2000; Szerbiak et al.,
2001; Oldenborger et al., 2003), the variable g of Equation

(1) is radar reflection amplitude.

Often, the semivariogram is calculated using a direc-

tional, pair-wise comparison algorithm (Deutsch and Journel,
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1998). While such an algorithm is necessary for irregularly

sampled data, regularly sampled data (such asGPR data) allow

for spectral calculation of two-dimensional (2-D) semivario-

gram fields at a much lower computational cost. Spectral

methods are employed in this study; details of frequency-

domain transforms are provided by Bracewell (1986). Briefly,

the spectral method of semivariogram calculation produces the

2-D autocorrelation (autocovariance) field

rðhx; hzÞ ¼ IFT2D Gðkx; kzÞG�ðkx; kzÞf g ð2Þ

where G(kx, kz) is the 2-D Fourier transform of the variable

g(x, z), G* is the complex conjugate of G, kx and kz are the

horizontal and vertical wavenumbers respectively, and

IFT2Dfg represents the inverse 2-D Fourier transform.

Normalization of the real part of the autocorrelation by the

variance yields the 2-D correlogram field, and subtraction of

the correlogram from unity yields the normalized 2-D semi-

variogram field. The 2-D semivariogram field can be thought

of as a composite surface resulting from the interference of

multiple spatial correlation functions and since the correlo-

gram may fall below zero, the semivariogram may rise above

unity. The topography of the 2-D semivariogram surface is

easily examined by slicing in any direction to yield a one-

dimensional (1-D) semivariogram and attempts can be made

to isolate the 1-D correlation trends.

Experimental semivariograms of radar data exhibit

both transitional and periodic features (Rea and Knight,

1998; Oldenborger et al., 2003). In this study, transitional

features are described using an exponential model as is

commonly done for fluvial sedimentary environments

(Woodbury and Sudicky, 1991), whereas the periodic

features require application of a dampened hole effect

model (Deutsch and Journel, 1998). Linear combination of

the aforementioned models with a linear drift and nugget

effect results in a general composite model of the form

cðhÞ ¼ nþ w 1� exp � 3h

a

� �� �

þ wH 1� exp � 3h

dH

� �
cos

2ph
kH

� �� �
þ mh ð3Þ

where h is the lag vector magnitude in a specified direction, n
is the nugget,w is the exponential weight, a is the exponential
range, wH is the hole weight, kH is the hole wavelength (i.e.,
twice the length of the periodic feature), dH is the damping

distance and m is the linear drift. Deutsch and Journel (1998)

further discuss properties and parameters of the various

models and their linear combination or nesting. Form¼0, the

semivariogram model will plateau at some sill equal to the

sum of the nugget and the weights. For normalized semi-

variograms of this type, the sill will be close to unity.Weights

describe the portion of the sample variance attributed to each

component of the nested model. Normalizing the semivario-

gram allows for comparison of relative weights, nuggets and

linear drift for different data sets that may have different

sample variances such as gained and non-gained radar data.

Model parameters are fit to the experimental geo-

statistics based on minimization of the sum of the squares of

the residuals between the experimental and model semi-

variograms for lags greater than zero and less than one-half

the maximum extent of the data.

Geostatistical Analysis of Radar Data

To isolate the effects of data processing and an-

tenna frequency on geostatistical structure, we discuss the

Figure 1. 200 MHz, small-offset, BHRS reflection
profile with application of (a) SEC, (b) PGC, and
(c) trace-by-trace PGC gain functions. Apparent depth
conversion velocity is 0.091 m/ns.
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geostatistics for a single 30 m reflection line running

through the center of the BHRS. The reflection line is

approximately perpendicular to the paleo-flow direction of

the fluvial deposits. While hierarchical behavior has been

identified for the porosity field of these fluvial deposits

(Barrash and Clemo, 2002), available ground truth is

insufficient for conclusive hierarchical geostatistical char-

acterization of the radar reflection data. Instead, we focus on

changes of the radar geostatistics for a constant portion of

the reflection image as processing parameters and antenna

frequency are varied. If two separate data sets contain

equivalent spatial information, the equivalency should be

observed in the geostatistical model parameters regardless

of direction or hierarchical structures. Vertical geostatistics

of reflection data are dominated by the strong periodicity of

each reflection that is due to the wavelet nature of the radar

pulse (Rea and Knight, 1998) and are not discussed herein.

Gain Variation

The 200 MHz BHRS reflection profile is shown in

Fig. 1 with the application of three different gain functions:

SEC, PGC, and trace-by-trace PGC. To accommodate the

2-D nature of the geostatistical estimator, two-way travel-

time must be converted to depth. A depth conversion

velocity of 0.091 m/ns is obtained from cross-borehole

level-run data from the water table to 8 m depth (160 ns) at

which point the 200 MHz reflection data become too atten-

uated for analysis. Geostatistical analysis (for these and all

subsequent data) is performed on data within the time

window of 45–160 ns as defined by the water table

reflection and the 200 MHz attenuation limit. For migrated

data, this time window ensures that the same physical

reflectors will be included in all analyses although the

migrated depths to the reflectors may be different.

Horizontal semivariograms of the 200 MHz gained

reflection data are displayed in Fig. 2. Geostatistical param-

eters of the differently-gained 200 MHz profiles are

remarkably similar given the large visual differences apparent

in Fig. 1. This is because even though the gains are non-linear

and variable, there is no spatial redistribution of amplitude

Figure 2. Horizontal semivariograms for 200 MHz
reflection amplitudes over the 45–160 ns time window
with application of the following gain functions: (a)
none, (b) SEC, (c) PGC, and (d) trace-by-trace PGC.
Points indicate experimental geostatistics; solid lines
indicate least-squares models corresponding to the listed
model parameters. All models have zero nugget.

Figure 3. Migrated 200 MHz reflection data. Migra-
tion velocity is 0.095 m/ns. The time axis is the original
sample time and is displayed to indicate the geo-
statistical window of 45–160 ns.
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information; local maxima remain local maxima and zero

crossings remain zero crossings. Furthermore, because gains

are primarily vertically-varying functions, pre- and post-gain

squared differences in amplitude (normalized to the pre- and

post-gain variance) will be similar in the horizontal direction.

Figure 4. Semivariogram fields for (a) depth-converted
and (b) migrated 200 MHz reflection amplitudes of Figs.
1c and 3 respectively. The inset in (a) shows the surface
topography at 28 (circles) and 158 (triangles) for which
the exponential ranges are 1.1 m and 0.9 m respectively.
The inset in (b) shows the surface topography at 28
(circles) and 168 (triangles) for which the exponential
ranges are 1.2 m and 0.8 m respectively. Depth is defined
as positive downwards such that a negative vertical lag
is upwards. Note that the horizontal-to-vertical aspect
ratio is greater than unity such that angles are
compressed in the vertical direction.

Figure 5. Effects of migration velocity on (a) horizon-
tal exponential range, (b) horizontal wavelength,
(c) principal angle, and (d) principal exponential
range. Circle, square and triangle symbols indicate 200,
100 and 50 MHz data respectively. Open symbols at
zero velocity indicate geostatistical parameters for the
depth-converted rather than migrated data.
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All of the gained profiles are best modeled with nested

exponential and hole effect models with similar ranges and

wavelengths (Fig. 2). Hole effects occur as small (less than

10%) periodic oscillations about the exponential functions

and are attributable to dipping reflectors that are cross-cut by

the horizontal lag vector. The horizontal hole wavelengths

are nearly twice the expected wavelength of the vertical radar

signal in the saturated zone; this observation is consistent

with reflector dips of 10–208. The depth-converted reflection

profiles suggest geological dips up to approximately 138 and

diffraction tail dips up to approximately 178 (Fig. 1).

Despite the similarity of model semivariograms, there

are effects of gain on the experimental geostatistics that are

manifest in the semivariogram models. It is observed that

the non-gained data require a small linear drift component of

the semivariogram model which suggests that the reflection

amplitudes are non-stationary (Fig. 2a). All of the gain

functions are effective at removing the linear drift. Further-

more, at lags approaching half of the maximum separation

(not shown), the SEC- and PGC-gained data exhibit more

erratic semivariograms when compared to that of the trace-

by-trace PGC-gained data. This is a result of application of a

single gain function to an entire profile over which material

properties and antenna coupling are variable. Trace-by-trace

PGC gain (used exclusively hereafter) accounts for horizon-

tal variations of attenuation and coupling and, therefore,

results in a more stationary reflection image (Fig. 1c) and a

more stable semivariogram at large lags.

Migration Effects

Practically, the process of migration acts to collapse

diffraction features and rotate dipping reflectors into true

subsurface locations. Thus, contrary to simple gain func-

tions and time-depth conversion, migration involves a re-

distribution of reflected amplitudes within the image plane

and potential rotation of the principal correlation directions

(defined as the direction of maximum range). For this

reason, it is informative to compare entire 2-D semivario-

gram fields. Figure 3 illustrates the result of application of

constant-velocity Gazdag migration to the 200 MHz trace-

by-trace PGC-gained reflection data below the water table.

Migration velocity analysis results in an estimated velocity

of 0.095 m/ns which is very similar to the average cross-

borehole transmission velocity of 0.091 m/ns.

Table 1. Effect of migration velocity on the geostatistical parameters for the 200 MHz trace-by-trace PGC-gained
reflection data set; v denotes the migration velocity; / denotes principal correlation angle; the subscript 0 denotes the
horizontal direction. Geostatistical model parameters are defined in the text; n = 0 for all models except n/ = 0.08 for
v = 0.3 m/ns. The increase of principal angle with migration velocity results from increased time stretching.

v (m/ns) a0 (m) w0 kH0 (m) wH0 dH0 (m) / (8) a/ (m) w/ kH/ (m) wH/ dH/ (m)

0.091a 1.0 0.93 1.8 0.02 40 2 1.1 0.93 2.2 0.04 ‘

0.06 1.2 0.93 1.2 0.05 5.8 1 1.3 0.95 1.2 0.04 12

0.095 1.2 0.95 1.8 0.02 48 2 1.2 0.95 2.1 0.02 ‘

0.14 1.3 0.96 1.8 0.03 30 2 1.4 0.94 2.1 0.03 13

0.3 3.1 0.99 NA 0 NA 3 3.7 0.95 NA 0 NA

a Depth conversion only.

Figure 6. Migrated 100 and 50 MHz reflection data.
Migration velocity is 0.095 m/ns. The time axis is the
original sample time and is displayed to indicate the
geostatistical window of 45–160 ns.
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Figure 4 shows the semivariogram fields for the depth-

converted and migrated 200 MHz data. Figure 2d represents

the slice of the 2-D semivariogram field in Fig. 4a along the

line of zero vertical lag and 0–8 m horizontal lag (a hori-

zontal slice); both exponential and hole-effect trends are

isolated. Similarly, several distinct trends are evident in the

migrated semivariogram field of Fig. 4b. The principal trends

can be modeled with a transitional (exponential) structure

inclined a few degrees from the horizontal with a comple-

mentary periodic structure a few degrees off the vertical.

These trends are representative of the near-horizontal reflec-

tions and the periodic nature of the GPR wavelet respect-

ively. A secondary pattern is evident as the opposing ‘V’

formations. The ‘V’s are not located at the origin due to

strong interference by the principal transitional structure.

However, less obvious exponential trends, parallel to the

lobes of the ‘V’, emanate from the origin with orientations of

approximately 10–208 from the horizontal. At positive

horizontal and negative vertical lags, the ‘V’ features repre-

sent a combination of dipping reflectors and diffraction hy-

perbola tails; at positive horizontal and positive vertical lags,

they mainly represent diffraction hyperbola tails and thus,

exhibit less persistence. When the depth-converted and

migrated semivariogram fields are compared, a diminished

diffraction contribution is evident as reduced strength of the

‘V’ features, shrinking of the diffraction lobe, and reduced

spatial persistence of the reflection/diffraction lobe as

quantified by the exponential range parallel to the lobe

(Fig. 4b). The reflection portion of the ‘V’ remains intact and

steepens slightly consistent with migration.

The reflection data can be migrated at a variety of

velocities and the semivariogram fields can be compared by

Figure 7. Semivariogram fields for migrated (a) 100
MHz and (b) 50 MHz reflection amplitudes of Fig. 6.
Depth is defined as positive downwards such that
a negative vertical lag is upwards. Note that the
horizontal-to-vertical aspect ratio is greater than unity
such that angles are compressed in the vertical
direction.

Figure 8. Horizontal semivariograms for migrated
(a) 100 MHz and (b) 50 MHz reflection amplitudes.
Points indicate experimental geostatistics for the depth-
converted data; solid lines indicate least-squares models
corresponding to the listed model parameters.
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slicing and modeling along common directions or along their

respective principal angles. Results of this exercise illustrate

the effects of migration and are summarized in Fig. 5 and

Table 1. One of the main objectives of migration is the

collapse of diffractions. Indeed, we see that any amount of

migration results in an increase in modeled exponential

range that is consistent with reduction of uncorrelated

diffraction noise. This is true in both the horizontal and

principal directions. In the vicinity of reasonable migration

velocities, variation of the semivariogram parameters is

within modeling uncertainty but the increase in exponential

range is systematic and, as the data are over-migrated, the

trend of increasing range becomes apparent even out to

speed in air. This observation is perhaps counterintuitive as

one might expect an image to move from uncorrelated, to

correlated, to uncorrelated as the data are under-migrated,

correctly migrated, and over-migrated respectively.

However, while the outcome of migration is dependent

on many factors, such as the signal-to-noise ratio and the

relative power in coherent reflectors versus scatterers, there

are two inescapable results of migration that are consistent

with the above observation. First, as migration velocity is

increased, more energy is partitioned into the evanescent

wave rather than the propagating wave (Claerbout, 1985),

which results in less image energy, less image variability and

increased correlation. Second, migration invariably results

in a reduction of frequency content proportional to the square

of the velocity (Yilmaz, 2001), which results in less image

variability and increased correlation.

Frequency Variation

As apparent from Fig. 5, geostatistical model param-

eters are highly dependent upon GPR frequency. Migrated

reflection data for antenna frequencies of 100 and 50MHz are

shown in Fig. 6. Visually, as with all radar profiles, decreased

antenna frequency results in lower resolution images that are

less sensitive to small scale features such as thin bedding or

scattering. Reduced resolution of the lower frequency

reflection profiles is manifest as greater spatial ranges in the

semivariogram fields shown in Fig. 7; horizontal slices and

geostatistical models are shown in Fig. 8. Semivariogram

fields for the lower frequency data are smoother and more

continuous than those for the high frequency data and the ‘V’

patterns are reduced in strength. In fact, for the 50 MHz data,

diffraction events are not recorded by the data (Fig. 6b) and

accordingly, diffraction lobes are not evident in the 50 MHz

semivariogram field (Fig. 7b).

Quantitatively, the horizontal exponential range, hori-

zontal hole wavelength, principal angle and principal expo-

nential range all increase with a decrease in signal frequency

as summarized in Table 2 and in Fig. 9. Specifically, the

exponential range seems to scale almost linearly with the

dominant received signal frequency for both migrated and

non-migrated data (Fig. 9d).

A simple interpretation of the direct relationship

between range and signal frequency is that the horizontal

geostatistics are yielding information regarding the radar

signal and not material properties. However, we are confi-

dent in the identification of reflection features such as dip-

ping reflectors and diffractions in the semivariograms.

An alternative interpretation is that we are on some

portion of the apparent correlation length versus measure-

ment scale curve in the scale-triplet paradigm presented by

Western and Blöschl (1999). The scale-triplet concept,

illustrated in Fig. 10, suggests that finite measurement scales

and data spacings independently lead to estimated correla-

tion lengths greater than the true correlation length and that

decreased data extent independently leads to estimated

correlation lengths that are less than the true correlation

length (where the correlation length is equal to one-third of

the exponential range).

For radar reflection data, the measurement scale can

be characterized by the Fresnel zone radius which defines

the lateral radar reflection resolution (Annan and Davis,

1977). The Fresnel radius scales with the square root of the

depth-wavelength product but is collapsed via migration to a

theoretical minimum of one-half wavelength over the entire

migrated domain (Yilmaz, 2001). Figure 11 illustrates the

range-wavelength relationship. Since we observe a decrease

in the estimated range with decreased signal wavelength

(measurement scale), we can argue that the true range is no

greater than the estimated range for the 200 MHz data and

Table 2. Frequency dependence of geostatistical parameters for the surface reflection data migrated at 0.095 m/ns; fa
denotes antenna frequency; fc denotes dominant received frequency; kc denotes approximate signal wavelength in the
saturated zone; / denotes principal correlation direction; the subscript 0 denotes the horizontal direction.
Geostatistical model parameters are defined in the text; n = 0 for all models.

fa
(MHz)

fc
(MHz) kc (m) a0 (m) w0 kH0 (m) wH0 dH0 (m) / (8) a/ (m) w/ kH/ (m) wH/ dH/ (m)

200 85 1.1 1.2 0.95 1.8 0.02 48 2 1.2 0.95 2.1 0.02 ‘

100 68 1.3 2.1 0.91 1.9 0.07 16 3 2.2 0.91 2.1 0.07 15

50 37 2.4 3.9 0.79 8.7 0.11 41 7 5.1 1.05 NA 0 NA
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that the apparent decrease in range with decreased signal

wavelength is a result of decreased measurement scale.

However, in the unlikely event that the true range was on the

order of the radar profile dimension, then our limited data

extent would imply a gross underestimation of the true range

according to Fig. 10. The effects of measurement scale and

data extent can not be isolated without knowledge of the

true range (Western and Blöschl, 1999).

Similar scaling behavior is observed for the variation

of horizontal hole wavelength with frequency shown in

Fig. 9b which exhibits threshold scaling behavior reminis-

cent of graphical representation of the representative

elementary volume concept (Bear, 1972). The 50 MHz

hole wavelength is too large to be attributed to the

periodicity of the individual dipping reflections and is thus

an indicator of horizontal structural variation: information

that is not obtained from the higher frequency data.

A final observation is that principal angle increases as

frequency decreases (Fig. 9c) possibly due to an increase in

relative strength and persistence of the dominant dipping

reflector as frequency decreases. The increased strength of

the dominant dipping reflector is observed by comparing the

data shown in Figs. 3 and 6. Again, this is a result of

a change in radar resolution.

Discussion

Due to the complex heterogenous nature of fluvial

sand and gravel deposits, we observe directional complexity

and interference patterns in the geostatistical analysis of

GPR reflection data collected over such materials. Di-

rectional complexity results from the fact that significant

reflection features are not necessarily horizontal or parallel

and interference patterns arise in the case of multiple

significant spatial correlation functions. Geostatistical struc-

ture will, of course, be site-specific; for the BHRS we are

able to identify trends for near-horizontal reflectors, dipping

reflectors and diffraction hyperbolas using the 2-D semi-

variogram fields.

However, it is not only the sedimentary materials and

structures that dictate the geostatistics of the radar data;

geostatistical trends of radar reflection amplitudes are a

function of data processing, signal frequency. Raw or

unprocessed reflection images may be strongly influenced

by survey noise. Some data processing steps, such as gain

and migration, increase image coherency and/or reduce noise

in an attempt to produce a more accurate map of subsurface

reflectivity. Other processing steps, such as dip filtering or

horizontal low-pass filters, may also artificially increase or

decrease image continuity. Such processing artifacts are

manifest in the geostatistical structure of radar data and may

be transferred to estimated hydraulic property fields.

The geostatistical structures of GPR data are also

dependent upon the antenna frequency since the antenna

frequency (along with material velocity) determines the radar

signal wavelength which defines the measurement resolution.

This behavior is well recognized in terms of qualitative GPR

resolution, but, to our knowledge, has yet to be demonstrated

geostatistically. Modeling the scale-dependence of GPR

geostatistical parameters will require a complicated combi-

nation of both the scale-dependent properties of the natural

Figure 9. Effects of antenna frequency on (a) horizon-
tal exponential range, (b) horizontal wavelength,
(c) principal angle, and (d) principal exponential range
for depth-converted (triangles) and migrated (circles)
reflection amplitudes.
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system and the frequency-dependent support volume of the

measurement method (Beckie, 1996). Analysis using a scale-

triplet paradigm (Western and Blöschl, 1999) helps isolate the

scale-dependent effects of the signal and the material

properties but requires appreciable knowledge about the

spatial averaging functions and the true length scales of the

variable in question.

Thus, the geostatistical structure of GPR data may be

representative of the material or hydraulic properties, but

only at a particular scale and only if processing artifacts can

be neglected or accounted for. Variations with processing

can be attributed solely to the modification of the data.

However, variations with signal frequency involve signal

properties, measurement support scale and the site-specific

material properties.

Furthermore, in the event that effects of processing

and frequency can be accounted for, the 2-D semivariogram

fields contain an abundance of patterns that are not all

accounted for since it is not always clear what every

observed semivariogram pattern represents. That is, what

physical subsurface features control specific reflections and

how do those reflections show up in the geostatistics? While

variations in processing help to identify and/or reduce the

effects of some reflection features, synthetic reflection

profiles might provide more insight into the translation of

radar reflection features to the semivariogram field for a

wider range of frequencies.

Given the variation of geostatistical structure with

radar signal frequency and the uncertainty surrounding the

information content of radar semivariograms, geostatistical

treatment of radar reflection amplitudes seems unlikely to

yield accurate estimates of material property distributions.

Radar reflection surveys may be more appropriate for the

estimation of sedimentary architecture (rather than material

properties) possibly in a structural indicator fashion as

presented by Langsholt et al. (1998), a cokriging scheme

that employs reflector traveltime topography (Xu et al.,
1992; Szerbiak et al., 2001), or in a more qualitative

comparative database (Tercier et al., 2000).

Conclusions

Systematic geostatistical analysis of a single GPR

reflection profile at several stages of data processing and

three antenna frequencies reveals how spatial correlation

structures depend on data processing and signal frequency.

Generally, the radar reflection data appear quite robust

to the effects of reasonable data processing including gain

functions and migration. For data collected at the BHRS,

gain functions have the effect of removing a non-stationary

trend from the non-gained data and a trace-specific gain

Figure 10. Independent effects of (a) measurement support, (b) data spacing and (c) data extent on the experimental
correlation length L (after Western and Blöschl, 1999). The correlation length is equal to one-third of the exponential
range.

Figure 11. Effects of signal wavelength on (a) hori-
zontal exponential range and (b) principal exponential
range for depth-converted (triangles) and migrated
(circles) reflection amplitudes.
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function increases semivariogram stability at large lags.

Migration reduces the strength of diffraction features in the

semivariogram fields and migration velocity exerts some

control on the principal correlation angle. Principal expo-

nential range increases only slightly after application of

migration with a realistic velocity but over-migration results

in a significant artificial increase of exponential range.

Signal frequency exhibits a more drastic influence on

geostatistical structure. Geostatistical analyses of data col-

lected with antennas of different frequency reveal consistent

increases in both principal angle and spatial persistence as

signal frequency decreases. Over the 50 MHz, 100 MHZ

and 200 MHz range of antennas, estimated exponential

range is directly proportional to the dominant received

wavelength which is directly proportional to the measure-

ment resolution as quantified by the Fresnel zone limit of

one-half wavelength.

The fundamental physical properties responsible for

the observed geostatistics of radar reflection data and

variation of those geostatistics with processing and

frequency remain interesting research topics. However,

regardless of physical explanations for observed geostat-

istical structures, the observed effects of processing and the

difference between semivariogram fields for a single re-

flection profile at several frequencies have been demon-

strated and must be considered before any application of

surface reflection GPR in a geostatistical context.
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Velocity variations and water content estimated from multi-

offset, ground-penetrating radar: Geophysics, 61, No. 3,

683–695.

Isaaks, E.H., and Srivastava, R.M., 1989, An Introduction to

applied geostatistics: Oxford University Press, New York.

Knight, R., 2001, Ground penetrating radar for environmental

applications: Annu. Rev. Earth Planet. Sci., 29, 229–255.
Knight, R., Rea, J., and Tercier, P., 1996, Geostatistical analysis of

ground penetrating radar data, a means of characterizing the

correlation structure of sedimentary units: in EOS Trans.

AGU, 77, No. 46, Fall Meet. Suppl., F237.

Langsholt, E., Kitterød, N., and Gottschalk, L., 1998, Development

of three-dimensional hydrostratigraphical architecture of the

unsaturated zone based on soft and hard data: Ground

Water, 36, No. 1, 104–111.
Oldenborger, G.A., Schincariol, R.A., and Mansinha, L., 2003,

Radar determination of the spatial structure of hydraulic

conductivity: Ground Water, 41, No. 1, 24–32.
Olhoeft, G.R., 1994, Quantitative statistical description of sub-

surface heterogeneities with ground penetrating radar at

Bemidji, Minnesota: U.S. Geol. Surv. Water Invest. Rep.

91-4034, 650–653.

Peretti, W.R., Knoll, M.D., Clement, W.P., and Barrash, W., 1999,

3-D GPR imaging of complex fluvial stratigraphy at the

Boise Hydrogeophysical Research Site: in Proc. Symposium

on the Application of Geophysics to Engineering and

Environmental Problems, 555–564.

Rea, J., and Knight, R., 1998, Geostatistical analysis of ground-

penetrating radar data, a means of describing spatial

variation in the subsurface: Water Resour. Res., 34, No. 3,

329–339.

Szerbiak, R.B., McMechan, G.A., Corbeanu, R., Forster, C., and

Snelgrove, S.H., 2001, 3-D characterization of a clastic

reservoir analog, from 3-D GPR data to a 3-D fluid

permeability model: Geophysics, 66, No. 4, 1026–1037.
Tercier, P., Knight, R., and Jol, H., 2000, A comparison of

the correlation structure in GPR images of deltaic and

211

Oldenborger et al.: Geostastistical Structure of Ground-Penetrating Radar Data



barrier-spit depositional environments: Geophysics, 65,
No. 4, 1142–1153.
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