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Abstract

The representation of soil moisture in Earth System Models, like the Community Earth System Model
(CESM), is an essential facet in modeling the response of the Earth System to climate change. Since their
inception, land models have grown to represent critical processes like carbon cycling, ecosystem
dynamics, terrestrial hydrology, and agriculture. They serve as a lower boundary condition for
atmospheric general circulation models. With increasing process representation, they are computationally
expensive. Hydrologists and modelers use several parameterization schemes to describe the water and
energy balance. However, this is regarded as computationally expensive. Alternative tools called
emulators (e.g., machine learning and artificial intelligence) incorporated with the empirical orthogonal
function analysis can represent soil moisture.
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Fig.b. comparing the constructed soil moisture with the actual soil moisture dataset
from the Climate Land Model. The constructed soil moisture is used in the output
layer of the neural network to be predicted using the US.
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compute the EOF for climate dataset A. This avoids having to
Fig.” shows the Neural Network's Performance in predicting soil moisture in green color

Fig.3. Schematic worktlow of the machine learning model to predict soil moisture.

compute the covariance matrix directly and is optimal for data
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Fig.1. Shows a sample of the schematic diagram of the EOF and PC Fig.4. Results for the first three EOF modes for the 30-year soil moisture gridded data.

representation after the decomposition of the climate data using the (SVD). The modes show the variation in soil moisture signals across the US.
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