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ABSTRACT

The Beowulf Cluster Shell (beosh) has been created to provide cluster users

with a Single System Image (SSI) by distributing individual commands or pipelined

jobs over available nodes without requiring the user to be aware of where or how

jobs are distributed. Job control of distributed jobs enables management of multiple

concurrent remote jobs from a single shell session. In addition to SSI features, beosh

supports parallel job execution through pdsh, a commonly used parallel-only cluster

shell. In either distributed or parallel mode, beosh can limit nodes to those reserved

through a system like the Portable Batch System (PBS).

This shell seeks to address the lack of a full-featured, portable cluster shell that

remains despite increasing availability and use of dedicated, high-performance com-

puter clusters. Many cluster “shells”, for example, are actually scripts for local shells

executing a sequence of remote commands for user convenience. At the other ex-

treme are specialized cluster operating systems requiring commitment of the cluster

to a particular operating system and its included utilities. Between these extremes,

there are no choices for a general-purpose cluster shell comparable to even a basic

single-system shell.

Though opportunities for improvement remain, beosh is already a usable shell

providing a foundation for development of a full-featured, general-purpose shell for

Beowulf clusters.
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Chapter 1

INTRODUCTION

1.1 Rationale and Significance

The Beowulf Cluster Shell (beosh) seeks to address the current lack of a general-

purpose cluster shell. Despite increasing availability and use of dedicated, high-

performance computer clusters, basic software utilities including shells are not as

readily available for clustered systems as for individual systems.

The command shell is, perhaps, the most familiar and often-used application by

single-system users. The command shell takes user commands and executes pro-

grams on the user’s behalf, shielding the user from underlying system details. Often,

command shells also have convenient, built-in functionality to help users manage the

processes they have requested. Numerous command shells exist for single systems,

differentiated by their syntax and feature set.

In a cluster environment, however, there are fewer options. Most often, users log

in to a single node of the cluster and interact with a single-system shell. When the

user wishes to issue commands to other nodes, he or she must explicitly execute those

remote commands using protocols like rsh, ssh, or telnet. While this is sufficient for
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some purposes, it is severely limiting and forces the user to be intimately involved in

the distribution of jobs to specific cluster nodes. In addition, assigning multiprocess,

pipelined jobs to a single remote node fails to take advantage of the system’s potential

by distributing multiple processes across available nodes in the cluster.

A more appealing ideal is the Single System Image (SSI) where the user is not

required to be aware of the nodes in the cluster. From the user’s perspective he or she

is simply connected to a single, powerful, multiprocessor system. Commands given

to an SSI shell could execute anywhere in the cluster and, to the user, they appear

to have executed locally. An SSI shell should shield the user from cluster details just

as a single-system shell shields the user from underlying system details.

In addition to distribution of commands across a cluster, it is also sometimes de-

sireable to execute the same command on multiple nodes in parallel. While there are

shells in common use that support parallel execution of commands, there are none I

am aware of that provide distribution of commands or job control as a user would ex-

pect from a single-system shell without requiring commitment to a specialized cluster

operating system and its accompanying set of utilities.

The primary goal of the Beowulf Cluster Shell (beosh) project is to create a high-

quality, production-ready shell for use in an unspecialized Beowulf cluster environ-

ment that provides a user with a Single System Image and the same basic job control

and process pipelining capabilities a user would expect from a familiar single-system

shell like Linux-GNU bash. When needed, the shell should also allow concurrent
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execution of the same job across multiple nodes.

1.2 Prior Work

Several approaches are represented in existing cluster shells. The most basic approach

is to use a shell script to automate the distribution of commands to nodes using the

same remote protocol commands the user would otherwise have to enter repeatedly.

Examples of this approach are dsh [7] and dish [9]. While they do provide the capa-

bility to enter commands once and have them executed on multiple nodes, they cannot

easily offer valuable features like job control or distribution of pipelined processes.

A far more complicated approach has been to create a specialized cluster operating

system and accompanying utilities. Such systems are purposely created to present the

user with a Single System Image and can provide not only for the parallel execution

of commands but for transparent distribution of processes and full job control. While

several examples of this approach have been developed [1], such as MOSIX [6] or

GLUnix [4], these solutions require commitment of all clustered computers to that

specialized operating system.

A third approach is through a distributed user-level shell. Such shells do not

dictate a specific operating system but can provide many of the same features as shells

in specialized cluster operating systems. Unfortunately, few such shells exist. The

most widely used distributed shell of this type today is pdsh, the Parallel Distributed

Shell [3]. Although it is a more powerful and refined application than any script, pdsh
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is still limited to parallel execution of commands like the script shells and offers no job

control features other than killing the current job. Two more ambitious projects to

explore user-level distributed shells were Shell over a Cluster (SHOC) [8] and distsh

[2]. Although these shells added more sophisticated process distribution and job

control, neither project resulted in a production-ready shell for general use.

The SHOC project made modifications to the Linux-GNU bash shell to allow it to

run unmodified existing programs on a cluster and, most notably, provided dynamic

cluster-wide load distribution and balancing including process migration. In addi-

tion, SHOC allowed semaphore control from the user’s login host, distributed shared

memory control, and added a forall construct for scripting with distributed nodes.

Several desirable shell features missing from SHOC were job control, signal handling,

and support for processes using pipes and sockets due to the difficulty of handling

such connections in the presence of process migration. Although the professor who

oversaw the project indicated willingness to share the SHOC code, he was unable to

locate a copy when contacted.

Distsh was designed to allow users to explicitly execute commands on the cluster

node of their choice to make use of resources that may be specific to that node, without

having to explicitly invoke lower level protocols like ssh. Signal handling and basic

job control were included and standard I/O for the foreground process was routed to

the user’s terminal. In addition, distsh allowed process pipelines between remote

processes. The design, however, routed all communications through the login host
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creating a potential bottleneck. Significantly, at the time of publication, “remote”

processes had only been created on the local host and not actually on a remote hosts.

My attempts to contact the distsh authors have been unsuccessful.

Though full-featured Single System Image shells exist for specialized cluster oper-

ating systems and parallel commands can be executed through pdsh or scripts, there

are no portable, general-purpose cluster shells providing SSI. Previous projects ad-

dressing this problem have not resulted in a production-ready shell and source code

for those projects is unavailable.
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Chapter 2

A GENERAL-PURPOSE SHELL FOR BEOWULF

CLUSTERS

2.1 An Ideal Cluster Shell

Prior to design or coding, a number of desirable traits for a general-purpose cluster

shell were identified and these traits represent an ideal against which beosh will be

measured.

In support of a Single System Image (SSI), a cluster shell should transparently

manage distribution of individual and pipelined commands and job control as if all

processes are executing locally. A user should not need to know where in the cluster

any particular process was executed. In addition to allowing command distribution

across cluster nodes, it is also sometimes desirable to send the same command to

multiple nodes for parallel execution, so a cluster shell should provide an option to

broadcast a command to selected nodes. Any commands given by a user in a cluster

shell should be executed with the same permissions the user would have if working

through a local shell.

For SSI, a user should not be required to specify where any particular process
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should execute, but some users may desire to launch processes on specific nodes so a

cluster shell should allow users to specify the node for a process. Similarly, whether

due to an administrative requirement that users exclusively reserve and use a subset

of nodes or simply user desire, a cluster shell should allow specification of a subset

of all cluster nodes to which it may assign user processes. However, because nodes

may be used simultaneously by many users, a cluster shell should allow multiple users

access to nodes simultaneously and provide security measures to protect users and

their processes. Unless specific nodes are requested for specific processes, the shell

should assign processes to lightly loaded nodes to make best use of available resources.

The ability to script a series of non-interactive commands is a useful and common

single-system shell feature, so it should also be possible to create cluster shell scripts.

In addition to basic scripting constructures like for loops, a cluster shell should provide

a parallel construct like a forall loop allowing concurrent execution of loop commands

on all selected nodes.

To reduce scalability issues, a cluster shell should avoid designs that contain any

inherent bottlenecks such as routing all communications through any one node. De-

sign should also be aware of limitations of commonly used utilities. Use of rsh, for

example, which in turn uses privileged sockets (between 512 and 1023), limits the

number of simultaneous connections to at most 256 and, hence, severely limits scala-

bility. Potential alternatives might use Remote Procedure Calls (RPC), ssh, or basic

sockets.
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For portability and maintainability, a Beowulf cluster shell should not be restricted

to a highly specialized operating system environment but should make use of standard

system calls and utilities.

2.2 Project Goals: Providing a Foundation

For the beosh project, a set of initial goals was chosen to provide a solid founda-

tion for realization of the ideal on Linux-based clusters or similar systems. These

initial goals were chosen with the needs and priorities of the project’s target clusters

in mind, but without assumptions about the number of nodes in any cluster, any

particular hardware, or any special operating system features. Any utility software

used by beosh should be widely available so that beosh can be easily adapted to

other clusters with Linux-like operating systems. The only initial cluster organiza-

tion requirement is that the home file system must be shared by all nodes so that a

valid command or path on one node would also be a valid on any other node and any

input or output files will be accessible anywhere on the cluster. This is a standard

setup for Beowulf clusters.

The central requirement for beosh is that it must provide a user with a Single

System Image of the cluster by distributing commands and command pipelines across

available cluster nodes or a subset of nodes without the user having to explicitly spec-

ify where any command should be executed. Beosh must also allow parallel execution

of commands on a set of nodes as pdsh does. Because many users are already familiar
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with pdsh syntax, beosh should use pdsh syntax for specifying session nodes.

As is common in single-system shells, beosh must provide a user with the ability

to launch and manage multiple concurrent jobs by starting jobs in the foreground or

background, killing or stopping the foreground job, and restarting a stopped job in the

foreground or background in response to the same job control signals and commands

used by single-system shells.

Users of the target clusters for this project are required to exclusively reserve and

limit themselves to a subset of nodes through the Portable Batch System (PBS). To

make beosh compatible with PBS, beosh should recognize when a user has reserved

nodes through PBS by checking the PBS NODEFILE environment variable and filter-

ing out selected nodes not appearing in the reserved nodes file. Where other batch

schedulers are used, an alternate environment variable pointing to a reserved nodes

file could be specified.
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Chapter 3

BEOSH DESIGN

3.1 Choosing a Project Approach

3.1.1 Potential Approaches

The two general types of commands a user is expected to execute are distributed

commands and parallel commands. Pdsh is already in widespread use as a parallel

command shell and it was desireable to make use of pdsh as the foundation for an

enhanced application, as a pattern for the parallel aspects of a standalone application,

or as a utility for a standalone application. Four potential approaches to beosh

development were identified based on the relationship to pdsh.

1. Modify pdsh to add process distribution and job control support.

2. Create a new shell with process distribution and job control features and import

parallel functionality from pdsh.

3. Create a new shell with process distribution and job control features and forward

any parallel commands to pdsh.
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4. Create a completely new system with all desired capabilities but with no con-

sideration or use of existing software.

3.1.2 Plan A: Integrate With PDSH

The first plan for beosh was to start with pdsh code and modify it to support distri-

bution of pipelined commands and job control. By starting with pdsh, beosh could

take advantage of the routines and infrastructure of an already accepted and refined

application. Parallel commands could be executed in the default way and daemons for

distributed commands could easily be started in parallel. Node selection and filtering

through a number of modules is also already built into pdsh.

As an exercise to become familiar with pdsh code, a pdsh module was written to

filter nodes not currently reserved by the user through PBS[10]. It became clear with

increasing familiarity with pdsh that its design is so rooted in parallel execution that

it would be exceedingly difficult to modify it to support distributed commands or

job control. Such extensive modifications would both negate many of the advantages

of starting with an established application and likely inhibit its acceptance. On

the other hand, if the existing basic design and functionality of pdsh were retained,

few if any existing routines could be reused and so a completely independent code

path would be needed for distributed command functionality. Another issue from

a project maintenance standpoint complicates integration with pdsh. Integrating

new functionality into pdsh or integrating pdsh-based parallel command code into a
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new application would require either that the pdsh team take responsibility for the

new code or that beosh managers update pdsh-based parallel code whenever pdsh

is updated. For all of these reasons, it was decided that modification of pdsh was

not a good option all and integration of pdsh-code into a new application would not

be a viable alternative.

3.1.3 Plan B: A Separate Distributed Shell

The remaining options after ruling out integration with pdsh were to implement an

entirely new standalone application with all desired functionality or to create a shell

for distributed commands with job control that uses pdsh as a utility for executing

parallel functions. Because pdsh is so widely used and is already a refined application

for parallel command execution, there seemed to be no compelling reason to reinvent

parallel command functionality. It was decided, therefore, that beosh would be a

separate shell implementing distributed functionality, but it would require pdsh to

be installed for parallel functionality and as a utility for hostname listing.

3.1.4 Language and Communications

When designing for a cluster system, fewer assumptions can be made about language

and protocol support than for a typical single-user system. Because of the often

streamlined and tightly controlled nature of clusters, it is important that dependencies

for a highly portable cluster shell be as universal as possible. For these reasons, it

was decided that the C language would be used as it is most likely to be supported on
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any potential *nix cluster. Standard system calls with near-universal behavior should

likewise be used.

For local and networked interprocess communication using C, there are a variety

of options including remote procedure calls (RPC), remote sockets, and pipes. In

addition to being most universal, sockets and half-duplex pipes allow for the most

straightforward and direct connections between input, output, error, and administra-

tive streams envisioned for beosh processes and job processes they manage.

For scalability, beosh design should avoid any potential bottlenecks such as rout-

ing communications through any one node or unnecessarily adding communications

hops to data passing through pipelines. Use of sockets allows direct connections

between job processes on different nodes without any unnecessary hops and allows

construction of supporting management infrastructure across nodes without bottle-

necks. Communication between parent processes and fork()-ed children through

half-duplex pipes is likewise direct.

The client needs to be able to start backend command managers remotely as

described in Section 3.2.1. Though it suffers from serious scalability limitations, beosh

currently uses rsh because it allows for very straightforward client-side detection

when remote processes exit and the ability to easily kill remote processes by killing

child processes that have exec()-ed rsh. The scalability issues, however, make rsh

an untenable long-term solution and an alternate design using ssh is described in

Section 7.1.
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3.2 Distributed Command Managers

3.2.1 General Backend Design

The initial system design envisioned for handling distributed commands was to have

a complex, persistent, root-owned daemon on each node of the cluster to manage

local slave shells on behalf of remote clients. For scalability and stability, persistent

daemons would need to organize themselves into a network and handle the addition

of new nodes and the loss of others dynamically with little or no hard-coded config-

uration. Some mechanism would also need to be established to restart any crashed

daemons. In this system, it was thought that daemons could communicate their cur-

rent loads with other daemons and the daemons would be responsible for distribution

of jobs. Because daemons may handle sessions for many users, they would need some

means to keep client sessions and jobs organized and protected from one another.

Under this design, all of the real power of beosh would be in the backend and

the client would simply need to be able to attach to some daemon that would fork()

a child with the user’s permissions to initiate establishment of a pipeline with other

daemons and pass output and error streams back to the client. While this plan has

appeal, it seemed overly complicated and likely to suffer from frequent errors. Such

a design would also impose constant overhead on cluster nodes. The organization of

a self-assembled network of daemons would also be unlikely to fit arbitrary subsets

of nodes requested by clients. Such a system might be practical for a very large

cluster where the overhead of starting backend command managers ad hoc would
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be prohibitively expensive and there is no intent to limit clients to subsets of nodes.

Based based on expected use on the target clusters, however, this design was set aside

in favor of running ad hoc backend distributed command managers (dcmdmgrs) to fit

the subset of nodes in use by the client.

By starting backend command managers only as needed by a client session, there

is no need for persistent, self-organizing daemons and each client session can have its

own independent set of user-owned managers. Organization can be communicated

to these dcmdmgrs to fit the needs of the client. With this straightforward option

available, the complicated, all-powerful daemon approach was abandoned.

Top-level dcmdmgrs check at a configured interval to see if they have any children

running; if not, the dcmdmgr exits. This idleness checking should prevent dcmdmgrs

from running indefinitely if no client is making use of them while also allowing for

long-running jobs.

By starting dcmdmgrs as user processes, permissions and environment variables

such as the user’s default shell should be the same for a dcmdmgr process as for the

user. When started, a dcmdmgr receives as a required argument the port it should

listen to. To reduce the risk of conflicts with dcmdmgrs started by other users, the port

used by the client and all dcmdmgrs it starts is chosen based on the pid of the client.

If EADDRINUSE is returned from a call to bind(), the port is not available. The

dcmdmgr exits and when the client recognizes that it has exited, it can then select a

new port and restart all dcmdmgrs with the new port until it finds one available for
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all dcmdmgrs.

Dcmdmgrs fork() and exec() their commands using “/bin/bash -c command”.

This means most users should get the shell syntax and behavior they expect and it

provides access to the scripting features of that single-system shell. If an alternate

backend shell were desired, it could be made configurable.

For a dcmdmgr to learn its node’s own local IP address, the hostname must appear

in its local /etc/nodes file.

3.2.2 Job Management

There are many possible ways dcmdmgrs might handle the multiple jobs a session may

be running concurrently on its selected nodes. Each node could have one dcmdmgr

for each job distinguished by a unique port, but this would potentially require finding

and tying up many free ports. Alternatively, if each session had one dcmdmgr on each

node, the number of ports required could be kept low, but dcmdmgrs would then be

required to keep multiple simultaneous jobs organized as well as their processes for

appropriate handling of job control messages. Neither of these first two options was

appealing.

To minimize port use and overhead from constant job ID checking in the backend,

a client could start and connect to the tail dcmdmgr only, passing it all commands of

the job pipeline and the nodes assigned to execute each command. The tail dcmdmgr

would strip the tail command from the job and launch the next dcmdmgr, passing it the

commands and nodes remaining in the job. This would continue until dcmdmgrs for
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all commands in the job were launched. This design is highly scalable by avoiding any

fanout issues from the client and allowing each job to have an independent pipeline,

but other drawbacks prevented it from being chosen. All job control messages sent

by the client would have to pass through the pipeline starting at the tail end and

reflect back again when reaching the head for the client to get confirmation that the

message was acknowledged by the whole job. While restart commands should begin

with the tail process and end with the head process, stop and kill commands should

begin with the head process and end with the tail. Stop and kill commands, then,

would not begin to be carried out until they had been propagated the entire length

of the pipeline. Establishing a pipeline in sequence this way also prevents multiple

parts of the pipeline from being set up simultaneously.

A fourth option allows the client to initiate job control commands at either end of

the pipeline and makes it possible to have multiple dcmdmgrs establishing connections

simultaneously. The client remotely starts dcmdmgrs on all nodes and connects to each

in turn from tail to head, passing each its command assignments. Dcmdmgrs fork()

a child dcmdmgr to directly manage each command from the set of commands. Child

managers for the job self-assemble into a bi-directional pipeline mirroring the job’s

process pipeline, connected to the client at each end. When all its required sockets

have been connected, a dcmdmgr can fork() and exec() its assigned command.

Each process exec()-ed by a dcmdmgr has its stdin and stdout directly connected

to its upstream and downstream processes respectively. Stderr is connected to an
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error handling thread of the parent dcmdmgr for forwarding to the client through the

dcmdmgr pipeline. Each dcmdmgr retains sockets established for bi-directional job

control administration and sockets to propagate error messages coming from its child

process and from upstream dcmdmgrs.

The top-level dcmdmgr on each node does not accept a new set of commands

until its children have finished establishing the pipeline for the current job. Although

multiple pipelines can be running for a client at the same time on the same nodes,

proper establishment of sockets between dcmdmgrs limits a client session to starting

one pipeline at a time. This way, only one port is needed for each session, dcmdmgrs

directly managing commands for a job never need to check session or job IDs so job

control commands can be accepted and forwarded without additional overhead, and

all input, output, and error traffic can be propagated through a job’s pipeline as fast

as the sockets will allow.

Minimal information is needed by dcmdmgrs once a job pipeline is established.

Only the client needs to know if a job is running in the foreground or background.

The backend dcmdmgrs only need to know if it should be running, stopped, or killed.

To prevent a malicious user from sending commands to a dcmdmgr started by

a user with greater privileges, dcmdmgrs need to be able to verify that commands

are comming only from the client that started them. Rather than implement an

elaborate authentication scheme or incorporate any particular existing authentication

mechanism, beosh leverages the fact that a port can only be in use by one process
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on a node at a time. As long as the client is running on the original node and uses

the same port to send command messages, a dcmdmgr can compare the node and

port for every command connection against that of the original connection from the

client. Assuming the legitimate client is always the first to contact any dcmdmgr it

has started, dcmdmgrs can reject connections from illegitimate clients.

3.3 The Beosh Client

3.3.1 General Client Design

By giving the client responsibility for job distribution and for starting and monitoring

the status of dcmdmgrs for its session, the client has more to manage than originally

envisioned. However, with backend design completed and the decision to use pdsh

for parallel command execution, design of the client is relatively straightforward and

can closely follow that of a basic single-system shell.

Like dcmdmgrs, the beosh client runs as a user process giving the user the same

permissions with beosh that they would have with a single-system shell. Tasks re-

quiring higher privileges are handled by calling setuid processes such as rsh and pdsh

from within beosh client.

3.3.2 Job Management and Job Control

A single-system shell fork()s and exec()s commands to protect itself and indepen-

dent jobs from one another, keeping a handle on process group pids for job control in
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a data structure like a linked list. While remote execution of jobs inherently reduces

the threat of one job interfering with another, I/O errors will sometimes occur and

fork()-ing a child to directly manage each job’s I/O is still safer than having the

top-level process or a thread directly manage jobs. The primary roles of the top-level

beosh client process, like those of a single-system shell, are to parse user input and

coordinate job control.

Unlike in a single-system shell, however, the children of the top-level client are

not necessarily the intended recipients of user-given job control signals. The top-level

client needs to be able to notify the child managing a target distributed job of the

job control signal so that it can pass that message to the job. Two possibilities for

notifying child clients were considered. First, the child could have its own signal

handlers for the job control signals. The parent, then, could signal its children and

have them respond according to their own signal handling routines. Signal handling,

however, is a disruption to the normal flow of a process and it was felt that signaling

children represented a threat to the operation of their primary I/O responsibilities.

Implementing multiple routines to handle the same signals also increases the potential

for confusion and error in maintaining the code. Finally, passing a simple message

between processes seems to be a misuse of signals.

For these reasons, a pipe is created prior to fork()-ing child clients and this pipe

is stored in the top-level client’s job list. When a signal is received by the parent in

distributed mode, a corresponding job control message is sent to the appropriate child
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over its pipe. The child’s administrative thread listens for parent commands on this

pipe in addition to listening to its head and tail administrative sockets and sends the

message down the appropriate socket. When the message has propagated through

the pipeline and back to the client, the child notifies the waiting parent through a

second pipe.

Job control is different in parallel mode, however, because child processes of the

top-level client exec() pdsh to execute commands across selected nodes. The chil-

dren, in this case, are the intended recipients of job control signals and the signal

handling function, recognizing that beosh is in parallel mode, signals the target child

directly.

A linked list of jobs is maintained by the top-level client with nodes for all current

jobs. The client keeps a pointers to the foreground job node and the last stopped job

node for targeting jobs when signaled by the user.

3.3.3 Job Distribution

When the top-level beosh client has parsed user input into jobs and jobs into com-

mands, it sequentially fork()s a child for each job to distribute the commands of

that job over the client’s selected nodes. Though any number of jobs might be run-

ning simultaneously, jobs must be started sequentially because proper establishment

of pipelines by backend dcmdmgrs requires that only one job be distributed at a time.

Unless the number of nodes available to users is effectively unlimited so that each

process can execute on its own node, efficient use of cluster resources calls for some sort
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of load balancing. If all processes induced identical load on nodes and communication

carried no costs, simple round-robin assignment of commands would be as good as

any other assignment approach. However, communication between nodes does tend

to be significantly expensive and the burdens induced by processes vary widely.

Ideally, processes would be dynamically redistributed to balance load across all

nodes. However, dynamic load balancing is challenging even for independent pro-

cesses, let alone for connected processes distributed across nodes, and relocating

processes carries significant overhead of its own. While beosh intends to consider

load balancing, it is not the intent that the beosh project will solve the challenge of

dynamic load balancing for highly-connected processes.

So, if processes will not be relocated once started, job distribution must be decided

based on information that can be known before the job is started. Until a process is

running, it is difficult to know anything about the load it will place on a node. The

position of a process in a pipeline is also no indicator of load potential. While the

current load on selected nodes can be known in advance, this requires some monitoring

overhead and making effective use of this information is its own challenge.

Since there are no guarantees that using current load information would make

load balancing more effective, it was decided to start with a simpler solution. As-

suming that users of a cluster do so because they tend to run demanding processes,

and further assuming that it is more beneficial to spread processes over as many

nodes as possible than to minimize the number of connections between nodes, sim-
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ple round-robin command assignment was considered first. Random distribution was

also considered, but it fails to guarantee even distribution of processes or that all

nodes will be utilized. Though round-robin assignment accomplishes both of these

objectives, jobs may have more processes than the user has nodes. Because local com-

munication is faster than communication over a network, a better distribution would

divide job processes evenly over nodes, assigning consecutive processes to nodes that

must execute more than one process. The beosh client combines this distribution

technique with round-robin assignment of the starting node for each job.

Once the client has decided which commands will be assigned to each node, it

can send dcmdmgrs on those nodes a job assignment with the upstream nodes for

each command to enable the dcmdmgrs to assemble the job pipeline. Currently, the

client distributes job assignments sequentially beginning with the dcmdmgr whose job

assignment includes the tail process. This order is to improve the likelihood that the

tail dcmdmgr will be ready to receive connections from the client when the client has

finished distributing job assignments. This order also allows the client to retain the

last socket made to the head dcmdmgr as an administrative socket for job control

communication. Although parallel distribution of job assignments through multiple

threads exists as a potential optimization, the average number of job assignments

per job would have to be high enough to justify the added overhead of spawning

threads and assumes simultaneous distribution of assignments over the network is

even possible.
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3.3.4 Dcmdmgr Management

In addition to the commandline parsing and job management roles of a single-system

shell, the beosh client must be able to build a list of nodes on which it can distribute

jobs and it must be able to manage the dcmdmgrs it starts on those nodes. Because

beosh requires pdsh as a dependency for parallel command execution, the client is

also able to make use of pdsh as a utility to build and filter the hostname list as

specified through startup commandline options. In addition to hostname options as

expected by pdsh, beosh adds two additional startup options, both of which affect the

nodes on which dcmdmgrs will be started: one to specify parallel execution rather than

the default distributed execution mode and one to override the PBS node filtering

required on the target clusters. If parallel execution is specified, no dcmdmgrs will

be started because pdsh doesn’t use them. If PBS node filtering is enabled in either

beosh or in pdsh through the pbsnodefile module, the override option turns off

filtering.

Beosh supports filtering of nodes by current PBS node reservations either through

the beosh client or through pdsh using the pbsnodefile module. The choice of

whether to filter out unreserved nodes is made by setting USE PBS FILTERING to

TRUE or FALSE in beosh list node.h. Likewise, if pdsh uses the pbsnodefile

module, PDSH WITH PBS FILTERING in beosh list node.h should be set appropri-

ately.

The client is responsible to start dcmdmgrs on all nodes selected to receive com-
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mands for a job and to restart dcmdmgrs that have timed out or otherwise exited

since last used. It would have been possible to use pdsh to start dcmdmgrs on all

selected nodes, but tracking them individually would have been difficult. So, instead,

the client fork()s children to remotely start dcmdmgrs so that it can use their process

IDs to recognize when dcmdmgrs exit. For convenience in development, child clients

exec() rsh to start dcmdmgrs. However, as has been noted already, rsh draws from

the limited set of reserved ports and, therefore, has a serious scalability problem. Use

of rsh should be replaced by ssh or another less restricted remote protocol before

beosh can be considered ready for large-scale cluster environments. The choice of

remote protocols could be made configurable in the future.

Because all dcmdmgrs for a session share a common port number, a session can

only start one dcmdmgr on any node. There may be cases, however, where a user

wants to specify that a particular node should be utilized more heavily than others.

It is not uncommon, for example, to have some nodes with more or faster processors

or memory than others. Although it is not yet implemented in beosh, it should be a

simple matter to recognize when a node is specified more than once at startup and

to assign more commands to that node accordingly.

Originally, port selection began with each user’s uid, but later used the client pid

instead. A weakness of basing port selection on a uid is that every client started

by the same user will start in the same place to find a port. If a user has multiple

clients open at once and many ports are tied up, it is possible that they will exceed
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their configured number of retries before getting past the block of used ports. If uids

are assigned consecutively on a system, multiple users could likewise find themselves

frequently competing for ports. Though less prone to confict than uid, pids are still

assigned consecutively on a system and the potential for conflicts remains fairly high.

The client now uses a hash function based on its pid to separate ports even between

clients with consecutive pids.

Currently, the client starts dcmdmgrs on all its nodes during startup and refreshes

all dcmdmgrs prior to distributing each job. The advantage of this arrangement is

that it minimizes the chance that a dcmdmgr will exit between the time it is checked

and the time the client tries to send it a job assignment. Unfortunately, this puts

overhead where the user is most likely to notice it. Two alternative approaches might

reduce the user’s awareness of dcmdmgr management overhead, but care would need

to be taken to keep the risk of sending job assignments to unprepared dcmdmgrs low.

If the client used a single dcmdmgr-managing thread, it could be continually mon-

itoring and refreshing dcmdmgrs so that they are prepared when a job is received. To

prevent the managing thread from changing the port number and restarting dcmdmgrs

with the new port at the same time the main thread is trying to send job assignments,

a mutex locking the dcmdmgr list would be needed.

It would also be possible to have a thread for each dcmdmgr which would allow the

client to start and refresh all dcmdmgrs in parallel. It might be more difficult, though,

to recognize when a dcmdmgr can’t start with the current port and all dcmdmgrs need
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to be restarted with a new port and coordinate the transition of all dcmdmgrs to the

new port. As with the single thread, a mutex would need to protect simultaneous use

of the node list by the main client thread and dcmdmgr-managing threads. Because

each thread would manage a different dcmdmgr, there would be no conflicts between

managing threads as long as each is notified of port changes, but with each thread

contending with the main thread for access to the node list, they would all be forced

to contend for the sole mutex. This option seems less likely to yield a real performance

improvement than the single thread option.

When the client recognizes that a dcmdmgr has exited, an attempt is made to start

a new one on the node with the same port number. This action should account for

any dcmdmgrs that time out after sitting idle beyond their configured wait time. If the

new dcmdmgr fails to start, the client assumes the port is in conflict and advances the

port number. All dcmdmgrs need to use the same port, so when the port is changed,

all dcmdmgrs are killed and new ones are started with the new port number. This

approach, however, fails to account for the significant problem of a dcmdmgr that

exits in error during pipeline establishment for a job.

If a dcmdmgr exits in error while involved in pipeline establishment, it leaves other

dcmdmgrs in a hung state. Dcmdmgrs that are not yet fully connected will wait in-

definitely for connections that will never come. Child job processes of fully connected

dcmdmgrs will wait indefinitely for input that will never come. The child client pro-

cess managing the job will wait indefinitely for the pipeline to be established. When
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the top-level client refreshes the exited dcmdmgr, it does not recognize that the set

of dcmdmgrs is in an unusable state. The job that failed to start is lost and subse-

quent job assignments sent to hung dcmdmgrs will not be received as job assignments

because those dcmdmgrs expect only connections for pipeline establishment.

Unfortunately, the client cannot differentiate between a dcmdmgr that has timed

out and one that has exited in error because it detects exit of dcmdmgrs indirectly

through its child processes that remotely executed the dcmdmgrs. To maintain a com-

plete set of dcmdmgrs capable of receiving jobs regardless of exit conditions, the client

restarts all top-level dcmdmgrs whenever any of them exits. This is a straightforward

solution that seems to account for errors of many kinds, but it could result in frequent

unnecessary restart overhead for users who do not make continuous use of all of their

available nodes. To minimize the frequency of unnecessary restarts, the timeout pe-

riod for dcmdmgrs should be set high enough to cause only rare interruptions to active

user sessions while ensuring that truly idle sessions do not tie up ports indefinitely.

On exit, the client kills any of its remaining dcmdmgrs to leave a clean system.

To coordinate the current working directory of the client and all dcmdmgrs, the

client connects to any dcmdmgr it has started and notifies it of its current working

directory so it can change its own current working directories to match. Likewise,

whenever the client’s current working directory changes, it contacts all dcmdmgrs to

notify them of the change.
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3.3.5 Socket Management

For each job, the child client managing the job must manage:

1. the upstream (tail) and downstream (head) administrative sockets for passing

job control messages to dcmdmgrs,

2. the input socket to receive the output of the job pipeline,

3. the input socket to receive error messages from the job,

4. and a pair of pipes to the parent client from which it receives and confirms job

control directives.

A child client managing a job handles socket I/O with an administrative thread

and an error thread in nearly identical fashion to dcmdmgrs while the main thread

handles reading the output of the job pipeline.

The administrative thread listens for job control directives from the parent client

and propagates them down the appropriate upstream or downstream administrative

socket. It also listens for returned directives that have been propagated through the

administrative loop. When a response is received, the child notifies the waiting parent

through a second pipe.

The error thread listens for error messages from the job’s error pipeline and writes

them to stderr. When it receives EOF from the socket, it recognizes the job as

completed and exits.
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When the main thread, listening for output from the job, receives EOF, it rec-

ognizes the job as complete and waits for the error thread to join before exiting.

Waiting for the error thread accounts for the less direct route error messages must

take as compared to output and allows any lagging error messages to be received

before destroying the error thread.

3.3.6 I/O Redirection

Input redirection is handled by the dcmdmgr managing the head process of a job.

Output and error redirection are the responsibility of the client. Output and error

redirection apply only to the job with which they are associated. The client’s own

error messages are always written to stderr.

3.3.7 Security

Beosh security is limited because security is not the primary goal of the beosh project

and time constraints restricted development to only core features.

The target clusters are separated from outside networks by firewalls and all com-

mands requested by users are executed with the user’s own permissions. To prevent

malicious users from submitting commands to dcmdmgrs of other users, dcmdmgrs ac-

cept command connections only from the first node and port that connects to them

on the assumption that the first connection will be from the legitimate client.

All socket traffic is unencrypted, however, and users will need to be made aware

of the risks present in using beosh as is. To allow for future security modifications,
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beosh should avoid design choices that will prevent use of encryption or more secure

authentication through Kerberos, ssh, or some other means later on.
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Chapter 4

OPERATION OF DISTRIBUTED COMMAND

MANAGERS

4.1 Assembling a Pipeline

When the user enters a job, the client parses it and selects nodes over which to

distribute commands as it sees fit. If not running already, the client remotely starts

a dcmdmgr on each selected node, passing each the common port number shared by

all for establishing sockets (Figure 4.1). The protocol used to start dcmdmgrs (rsh,

ssh, etc.) is up to the client. Choosing a port is also the client’s responsibility. If the

specified port is already in use, the dcmdmgr exits. It is up to the client to recognize

and handle this. If the dcmdmgr is able to start, it listens on its assigned port for a

command assignment.

The client connects to each dcmdmgr in turn from tail to head and passes it its

job assignment (Figure 4.2). The job assignment includes:

1. The number of commands in the job that the dcmdmgr will be managing.

2. The set of commands it will manage for this job. Each command assignment

includes:
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dcmdmgr 0 dcmdmgr 2dcmdmgr 1

client

port port port

Figure 4.1. The client starts one dcmdmgr on each selected node.

(a) The command string.

(b) The input file. This should be empty string for all but head dcmdmgr and

is ignored by all but head dcmdmgr.

(c) The node responsible for the next command upstream from this one in

the pipeline. This is used to establish connections to that node’s dcmdmgr.

The“upstream” node may be the current node. If node is NULL, this

command is the head of the pipeline.

There is no need for dcmdmgrs to know a job ID or anything of the sort. Keeping

jobs straight is the responsibility of the client. The client is responsible to send

each dcmdmgr its commands in tail to head order so the dcmdmgrs can assemble the

pipeline correctly.

The first socket from the client is assigned to the dcmdmgr’s upstream administra-

tive socket file descriptor. All dcmdmgrs except the dcmdmgr handling the head com-
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mand will eventually replace this socket with one from its actual upstream dcmdmgr.

dcmdmgr 0 dcmdmgr 2dcmdmgr 1

client

job assignmentjob assignment job assignment

(adm)

Figure 4.2.: The client sends each dcmdmgr its job assignment. Assignment order
is from tail to head with the head dcmdmgr retaining the socket as its upstream
administrative socket.

Each dcmdmgr handles its commands in the order received, listening for new socket

connections from the downstream command’s dcmdmgr or, for the tail command,

the client (Figure 4.3). The client, as the process furthest downstream, initiates

the assembling of the pipeline by contacting the dcmdmgr that was assigned the tail

command (Figure 4.4). This first dcmdmgr listens for three socket connections and

assigns them to the following file descriptors in order:

1. Downstream administrative socket (open for 2-way communication)

2. Downstream error (open for writing only)

3. Downstream output (open for writing only)

The downstream-connected dcmdmgr now fork()s a child to handle all additional

management for the current command (Figure 4.5). The parent dcmdmgr closes its
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dcmdmgr 0 dcmdmgr 2dcmdmgr 1

client

adm

listen listen listen

Figure 4.3.: All dcmdmgrs listen for administrative, error, and output socket connec-
tions from downstream.

handles on the downstream sockets and starts listening for downstream connections

for the next command in its job assignment.

When all of its commands are being handled by a child dcmdmgr, the parent

dcmdmgr closes all of its open socket file descriptors and returns to waiting for addi-

tional job assignments from clients.

If it has one, a newly fork()-ed child dcmdmgr contacts its upstream dcmdmgr,

which may even be the parent dcmdmgr on the same node, to establish sockets for

the following 3 file descriptors in order:

1. Upstream administrative socket (open for 2-way communication)

2. Upstream error (open for reading only)

3. Upstream input (open for reading only)

The other ends of these sockets are being assigned to the downstream set of file
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dcmdmgr 0 dcmdmgr 2dcmdmgr 1

client

adm

listen listen

adm
out

err

Figure 4.4.: As the furthest downstream process, the client initiates pipeline estab-
lishment by connecting to the tail dcmdmgr.

descriptors by the contacted dcmdmgr (Figure 4.5).

If the child dcmdmgr has no upstream dcmdmgr node for its command, it is the

head of the pipeline and has all of the connections it needs.

Once all of its communications connections have been made, the dcmdmgr creates

its pipe for stderr and fork()s and exec()s its command (Figure 4.6). Because the

pipeline is established from tail to head, there is no need to wait for any additional

go-ahead confirmation.

After fork()-ing, the new command child sets its stdout to the downstream

output file descriptor, its stderr to the new error file descriptor, and its stdin to

the upstream input file descriptor. The parent dcmdmgr closes its handles on the

downstream output and upstream input file descriptors.

When all dcmdmgrs have fork()-ed and exec()-ed their commands, the job pro-
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dcmdmgr 0 dcmdmgr 2dcmdmgr 1
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adm
adm err

adm
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dcmdmgr0’
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Figure 4.5.: The downstream-connected tail dcmdmgr fork()s a child to contact its
upstream dcmdmgr which may be the parent or a dcmdmgr on another node.

cess pipeline is complete, a parallel pipeline of sockets for error propagation is estab-

lished, and a complete, 2-way ring of administrative sockets has been formed joining

all dcmdmgrs and the client (Figure 4.7, Figure 4.8).

4.2 Shutting Down a Pipeline on Completion

When a dcmdmgr’s child has finished as detected by a call to waitpid(), it sends a

command completed message to its downstream dcmdmgr over its downstream ad-

ministrative socket. Any dcmdmgr that has received a command completed message

from its upstream dcmdmgr is free to exit. When the client receives a command com-

pleted message from the tail dcmdmgr, it knows the job is finished, but to complete
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dcmdmgr 0 dcmdmgr 2dcmdmgr 1

client

adm
adm err

adm
err

out

dcmdmgr 0’

adm

out

err

out

err

cmd 0

dcmdmgr 1’

listen listen

Figure 4.6.: The fully connected tail dcmdmgr creates a pipe to receive error messages
from its child. When the command is fork()-ed and exec()-ed, its stdout, stdin,
and stderr are assigned to the sockets and pipe established by its parent. While
this is happening, the second dcmdmgr is establishing connections to its upstream
dcmdmgr.

the cleanup of the pipeline, it must send a command completed message to the head

dcmdmgr. The reason for delaying the shutdown of the pipeline is for the sake of error

messages that may be propagating through the pipeline more slowly than process

output.

If a dcmdmgr has sent its command completed message but has not received a

command completed message from its upstream process for some timeout interval,
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cmd 1

err
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Figure 4.7.: The second dcmdmgr fork()s and exec()s its command. The head
dcmdmgr has no upstream dcmdmgr and already has its “upstream” administrative
socket. It is fully connected and ready to fork() and exec() its own command.

it should be free to exit. This could happen, for example, to the head node if the

client dies before it is able to send the finished head node its command completed

message. However, there is currently no timeout to account for a hung dcmdmgr. This

has not actually been a problem because the call to select() in the administrative

thread returns when a socket connection is broken. When the administrative thread

recognizes that one of its sockets is broken, it knows it is of no more use and sends an

error notification down its remaining socket before exiting, leaving the main thread
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Figure 4.8.: When the head dcmdmgr has fork()-ed and exec()-ed its command, the
process pipeline and parallel dcmdmgr pipelines are fully connected and operational.
All top-level dcmdmgrs are free to listen for their next job assignments.

free to exit.

4.3 I/O Threads and Job Control

After all upstream and downstream socket connections have been established and its

assigned command has been exec()-ed, a dcmdmgr creates a thread for each of the

following tasks:

1. Reading from the upstream and downstream administrative sockets, handling
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messages received on those sockets, and propagating received messages from

one administrative socket to the other.

2. Reading from the upstream error socket and child error pipe and propagating

received messages to the downstream error socket.

To avoid busy-waiting, I/O threads call select() to block indefinitely until one of

the thread’s assigned file descriptors is readable.

The ring of administrative sockets allows the client to send a job control mes-

sage through the pipeline starting at either end. When select() returns in the

adminThread, the upstream administrative socket is checked first for a kill command

followed by a stop command and finally a command completed notification. If none of

these commands has been received, the downstream administrative socket is checked

for a restart command.

To stop a job, the client sends a stop message to the head dcmdmgr. The head

dcmdmgr stops its child with a SIGTSTP signal before passing the stop message to its

downstream dcmdmgr over its downstream administrative socket to prevent a down-

stream command from being stopped before an upstream command. Each dcmdmgr

receiving the stop message likewise stops its child and propagates the message down-

stream. When the client receives the stop message from the tail dcmdmgr, it knows

the job is stopped.

Killing a job works similarly to stopping a job. The client sends a kill message

to the head dcmdmgr and it is propagated downstream. However, when killing a job,
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each dcmdmgr propagates the kill message before killing its child with SIGINT. This

order is to avoid having the main dcmdmgr thread recognize the exit of the child and

exit itself, thereby terminating all related threads, before the adminThread is able to

propagate the kill command. When the client receives the kill message from the tail

dcmdmgr, it knows the job is dead.

To resume a job, the client sends a resume message to the tail dcmdmgr. The tail

dcmdmgr restarts its child with a SIGCONT signal and sends the resume message to its

upstream dcmdmgr over its upstream administrative socket. Each dcmdmgr receiving

the resume message resumes its child before propagating the message upstream. This

order is to prevent an upstream command from restarting before its downstream

command. When the client receives the resume message from the head dcmdmgr, it

knows the job is running again. Note that it is completely irrelevant to a dcmdmgr

if its child process is running in the foreground or the background. Foreground and

background only have meaning to the client.

When select() returns in the errThread, first the upstream error socket is

checked followed by the exec()-ed command’s error descriptor. Priority, then is

given to error messages being propagated from upstream. However, when either error

file descriptor is read, reading stops at the end of a line or at the specified buffer size

and select() is called again. This may result in interleaving of error streams, but it

is intended to prevent downstream error messages from being permanently suppressed

by a prolific upstream process.
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Chapter 5

OPERATION OF THE BEOSH CLIENT

5.1 The Main Client Loop

On startup, the command line options are parsed. Host selection options are expanded

by fork()-ing and exec()-ing pdsh to execute the “hostname” command with all

node selection options from the commandline. Awk is used to parse only the host-

names out of the pdsh output. If pdsh was not configured to use the pbsnodefile

module, beosh was configured to require PBS node filtering, and the user did not

specify the override option, the node list returned by pdsh is filtered by the user’s

currently reserved PBS nodes. If errors occur during parsing, beosh client exits with

appropriate messages of woe or chastisement.

The client gets user information including user name, user ID, and home directory

with with getpwuid(). If using rsh for starting dcmdmgrs, permission to execute

remote commands is verified with ruserok().

Dcmdmgrs are started on all selected nodes using rsh. The port number sent to

dcmdmgrs is selected based on the client’s pid. Ports are limited to the range 5000 to

49125 to avoid Berkley ephemeral ports and “correct” ephemeral ports. Port selection
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starts with 5000 + pid and increments from there, wrapping back to 5000 if reaching

the upper bound. Whenever dcmdmgrs are started or refreshed, if they repeatedly exit,

the port is assumed to be in conflict and a new port is chosen by incrementing the

previous port number. All dcmdmgrs are restarted when a new port is chosen. In any

given round of dcmdmgr refreshing, if a configured maximum number of ports has

been tried without success, the client exits.

To manage dcmdmgrs, the client fork()s a child for each node and stores its pid in

the node’s node in the node list. Each child process exec()s rsh to start a dcmdmgr

on its node passing it the session port as a commandline argument. Whenever the

client needs to refresh dcmdmgrs, it can iterate over the node list and check for children

that have exited with waitpid(), starting new dcmdmgrs as needed.

Signal handling for SIGINT and SIGTSTP is set to notify the client child managing

the current foreground job of the signals if in distributed mode. If in parallel mode,

signals will be passed directly to the foreground pdsh process.

If a trailing command was given at the commandline, beosh runs noninterac-

tively and exits after executing only the given command. Otherwise, beosh runs

interactively, accepting input indefinitely with readline() until the user enters the

“exit” command. As commands are entered, they are added to readline history for

convenience.

The client initializes signal handling for SIGINT ånd SIGTSTP to call a method

that will propagate those signals to the current foreground process.
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User input is parsed to break each commandline into pipelines (jobs) and then

further into commands. Input, output, and error redirection files are stored in com-

mand structures with their associated commands. If a job has been specified as a

background job, that information is also stored in the job structure. The command

line structure containing its parsed parts is sent to the execJobs() method which

iterates over the jobs in the structure.

5.2 Job Execution

When execJobs() receives a command line structure from the main program loop,

it iterates over the jobs, handling them sequentially. If the current job has one

command and that command is a built-in beosh command, it is handled by the

beoshBuiltIn() method. Built-in commands include the job control directives “fg”

and “bg”, the job status command “jobs”, the change directory command “cd”, the

readline history command “history”, and the exit commands “exit” and “logout”.

When a built-in command has been handled, execJobs() moves to the next job in

the command line structure.

If the job is not a built-in command, a pipe is created for communicating job

control messages to the soon-to-be-fork()-ed child. In parallel mode, child processes

are signaled directly, so no pipe is needed, but the parent expects all of its children to

have one for populating its process list. If the client is in the default distributed mode,

dcmdmgrs are refreshed and the pointer to the starting node is initialized if necessary.
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A child is fork()-ed to be the dedicated manager of the job if in distributed mode

and to be exec()-ed as a pdsh process if in parallel mode. The top-level client stores

the child pid, job status, and job control pipe for each child.

A child client, immediately after being fork()-ed, sets its signal handling to de-

faults so that it will not compete with the parent for signal handling and creates

a new process group for itself. In distributed mode, the child calls dcmdExec() to

coordinate establishment of a dcmdmgr job pipeline and threads to handle I/O re-

sponsibilities of the client for the job. In parallel mode, the child calls pdshExec()

to forward the job to pdsh.

Each job is assigned the next available job number. This is 1 if there are no other

unfinished jobs or 1 plus the highest unfinished job number.

When all jobs have been handled in execJobs() and the function returns, the

parent client clears the command line structure, identifies, reports, and clears any

completed background jobs, and waits for the next command line.

5.2.1 Distributed Jobs

The child client breaks its job into command assignments for distribution over the

selected nodes, beginning with the next node in the node list after the last node given

a command assignment in the previous job. This round-robin adjustment to the

starting node ensures that commands will not be started on a few nodes repeatedly

while other available nodes never receive an assignment.

Load balancing is simple, but serves to distribute commands evenly over available
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nodes while also minimizing network traffic. First, the minimum number of commands

that will be be assigned to any node is calculated with integer division as commands

/ nodes. Then, the number of remaining commands is calculated with modular

division as commands % nodes. When assigning commands, each node will receive the

minimum number of consecutive commands from the job (which may be none) and,

if its index in the assignment loop is less than the number of remainder commands,

it receives one more.

The child client connects to the dcmdmgr on each node in turn beginning with

the node that will handle the tail of the pipeline and ending with the node that

will handle the head of the pipeline, passing each dcmdmgr its commands in tail-to-

head order. The socket connection to the head dcmdmgr is retained by the client as

the client’s head administrative socket and by the head dcmdmgr as its “upstream”

administrative socket.

Each command assignment includes the command string and its arguments, the

input file name if input redirection was specified and the command is the head com-

mand, and the name of the node to which the upstream command’s dcmdmgr is

assigned. The upstream dcmdmgr may actually be the same one assigned the current

command. Fear not. The dcmdmgrs can handle it.

When all commands have been distributed, if output redirection was specified for

the job, the client opens the output file and dup()s its stdout to the file. Error

redirection is handled in the same way.
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The client, as the furthest downstream process of the job pipeline, initiates es-

tablishment of the pipeline connections by contacting the tail dcmdmgr to open, in

order:

1. An administrative socket,

2. An error socket,

3. And an input socket.

The client’s input socket receives the final stdout of the pipeline and the error socket

receives the final stderr of the pipeline. Once the client has made these connections

to the tail dcmdmgr, the dcmdmgrs handle the rest of the connections and start their

commands.

To handle the pipeline error stream and administration sockets for job control, the

child client starts two threads: an error thread and an administrative thread. The

main client thread reads pipeline output directly. The error thread simply handles

input received from the error socket. The admin thread handles I/O from both the

head and tail administrative sockets and also propagates signals received from the

parent client.

Once the error and admin threads are started, the main child client thread reads

from its input socket until EOF is reached. When EOF is read, the child client closes

its input and head administrative socket connections, waits for the error thread to

finish, and then closes the error and tail administrative sockets before exiting.
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With this organization, only the parent process is aware of which jobs are in

the foreground or background. The child clients need only propagate job control

commands from the parent and the dcmdmgrs likewise need only propagate signals

and respond to propagated signals.

5.2.2 Parallel Jobs

In parallel mode, the child client exec()s pdsh with the node selection options orig-

inally given to beosh at startup. The parent client, as in distributed mode, creates

a process node for the job for use in job control.
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Chapter 6

EXAMPLE USAGE

[mvail@rookery ~]$ qstat -a

[mvail@rookery ~]$ pdsh -a hostname

node0: rookery.boisestate.edu

node4: node4

node1: node1

node2: node2

node5: node5

node6: node6

node7: node7

pdsh@rookery: node3: connect: No route to node

[mvail@rookery ~]$ beosh -a

Reserve nodes through PBS and try again.

[mvail@rookery ~]$ pbsget -6

#####################################################################

Allocate cluster nodes via PBS for running interactive parallel jobs.

#####################################################################

Trying for 6 nodes

qsub: waiting for job 48.rookery.boisestate.edu to start

qsub: job 48.rookery.boisestate.edu ready

[mvail@rookery PBS ~]:qstat -n

rookery.boisestate.edu:

Req’d Elap

Job ID Username Queue NDS Time S Time

---------- -------- -------- --- ----- - -----
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48.rookery mvail default 7 00:30 R --

node0/0+node7/0+node6/0+node5/0+node4/0+node2/0+node1/0

[mvail@rookery PBS ~]:beosh -a

pdsh@rookery: node3: connect: No route to node

beosh> pmode

beosh> hostname

node0: rookery.boisestate.edu

node4: node4

node1: node1

node5: node5

node2: node2

node6: node6

node7: node7

pdsh@rookery: node3: connect: No route to node

beosh> dmode

beosh> status

BEOSH has been running for 47 seconds.

Distributed Mode - Commands are distributed evenly across nodes.

Current port: 33598

Selected Nodes:

node0

node2

node1

node4

node7

node5

node6

Nodes were filtered by PBS.

beosh> sleep 10 &

[1] 28668

beosh> sleep 15 &

[2] 28675

beosh> sleep 10 &
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[3] 28678

beosh> sleep 20 &

[4] 28681

[1] Done sleep 10 &

beosh> sleep 5 &

[5] 28686

beosh>

[3] Done sleep 10 &

beosh>

beosh>

[2] Done sleep 15 &

beosh>

[5] Done sleep 5 &

beosh> jobs

[4] Running sleep 20 &

beosh>

beosh>

beosh> jobs

[4] Running sleep 20 &

beosh>

beosh>

[4] Done sleep 20 &

beosh> jobs

beosh> pwd

/home/mvail

beosh> cd ..

beosh> pwd

/home

beosh> cd

beosh> pwd

/home/mvail

beosh> ls -alh

total 1.9M

drwxr-xr-x 8 mvail mvail 4.0K Jul 4 16:18 .

drwxr-xr-x 13 root root 4.0K Jun 7 10:03 ..

-rw------- 1 mvail mvail 17K Jun 21 17:18 .bash_history
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-rw-r--r-- 1 mvail mvail 24 May 1 17:49 .bash_logout

-rw-r--r-- 1 mvail mvail 191 May 1 17:49 .bash_profile

-rw-r--r-- 1 mvail mvail 124 May 1 17:49 .bashrc

-rw-r--r-- 1 mvail mvail 5.5K May 1 17:49 .canna

-rw-r--r-- 1 mvail mvail 438 May 1 17:49 .emacs

-rw-r--r-- 1 mvail mvail 120 May 1 17:49 .gtkrc

drwxr-xr-x 3 mvail mvail 4.0K May 1 17:49 .kde

drwx------ 2 mvail mvail 4.0K Jun 7 16:09 .ssh

drwxrwxr-x 3 mvail mvail 4.0K Jun 1 10:06 .subversion

-rw------- 1 mvail mvail 7.0K Jul 4 16:18 .viminfo

-rw-r--r-- 1 mvail mvail 658 May 1 17:49 .zshrc

lrwxrwxrwx 1 mvail mvail 23 Jun 4 18:58 beosh -> dcmdmgr/src/

beosh/beosh

-rw-r--r-- 1 mvail mvail 636 Jun 21 16:03 beosh_snapshot_06_21.

README

-rw-rw-r-- 1 mvail mvail 1.6M Jun 21 17:12 beosh_snapshot_06_21.tgz

-rw-r--r-- 1 mvail mvail 929 Jul 4 16:23 dcmd.log

drwxrwxr-x 7 mvail mvail 4.0K Jun 21 15:21 dcmdmgr

-rwxr-xr-x 1 mvail mvail 490 Jun 21 15:26 make_beosh.sh

-rwxr-xr-x 1 mvail mvail 487 Jun 21 15:27 my_make_beosh.sh

drwxrwxr-x 2 mvail mvail 4.0K Jun 21 15:41 projectbackups

drwxrwxr-x 3 mvail mvail 4.0K May 1 17:51 pvm3

-rw-rw-r-- 1 mvail mvail 223K Jun 21 17:11 src.tgz

beosh>

beosh> ls -alhR | grep mvail | grep rw | grep Jun | sort | sort -r

| grep K | grep _ | grep c$ | grep beosh

-rw-rw-r-- 1 mvail mvail 9.2K Jun 4 16:22 beosh_list_node.c

-rw-rw-r-- 1 mvail mvail 8.9K Jun 15 22:03 beosh_parse.c

-rw-rw-r-- 1 mvail mvail 3.7K Jun 4 16:22 beosh_list.c

-rw-rw-r-- 1 mvail mvail 3.2K Jun 7 19:04 beosh_error.c

-rw-rw-r-- 1 mvail mvail 2.6K Jun 4 16:22 beosh_node.c

-rw-rw-r-- 1 mvail mvail 1.9K Jun 4 16:22 beosh_node_node.c

-rw-rw-r-- 1 mvail mvail 19K Jun 21 15:41 beosh_util.c

-rw-rw-r-- 1 mvail mvail 19K Jun 17 17:08 beosh_builtin.c

-rw-rw-r-- 1 mvail mvail 16K Jun 21 15:41 beosh_io.c

-rw-rw-r-- 1 mvail mvail 16K Jun 17 17:08 beosh_exec.c

beosh> help

BEOSH BUILT-IN COMMANDS:

’help’

- display this message
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’exit’ or ’logout’

- quit beosh

’cd [path]’

- change directory if in distributed mode

’jobs’

- list current status of stopped or background jobs

’fg [job number]’

- run last stopped job or numbered background job in the

foreground

’bg [job number]’

- run last stopped job or numbered background job in the

background

’history [n]’

- show all commands entered in the session or only the last

n commands

’dmode’

- switch to distributed mode

’pmode’

- switch to parallel mode

’status’

- display information about current beosh settings and nodes

’version’

- display current beosh version

beosh> status

BEOSH has been running for 256 seconds.

Distributed Mode - Commands are distributed evenly across nodes.

Current port: 33598

Selected Nodes:
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node0

node2

node1

node4

node7

node5

node6

Nodes were filtered by PBS.

beosh> hostname

rookery.boisestate.edu

beosh> hostname

node2

beosh> hostname

node1

beosh> hostname

node4

beosh> hostname

node7

beosh> hostname

node5

beosh> hostname

node6

beosh> hostname

rookery.boisestate.edu

beosh> hostname

node2

beosh> hostname

node1

beosh> hostname

node4

beosh> hostname

node7

beosh> hostname

node5

beosh> hostname

node6

beosh> hostname

rookery.boisestate.edu

beosh> pmode

beosh> hostname
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node0: rookery.boisestate.edu

node1: node1

node6: node6

node5: node5

node4: node4

node2: node2

node7: node7

pdsh@rookery: node3: connect: No route to node

beosh> status

BEOSH has been running for 300 seconds.

Parallel Mode - Commands are forwarded to PDSH for parallel execution

on all nodes.

Selected Nodes:

node0

node2

node1

node4

node7

node5

node6

Nodes were filtered by PBS.

beosh> dmode

beosh> history

0 pmode

1 hostname

2 dmode

3 status

4 sleep 10 &

5 sleep 15 &

6 sleep 10 &

7 sleep 20 &

8 sleep 5 &

9 jobs

10 jobs

11 jobs

12 ls

13 pwd
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14 cd ..

15 pwd

16 ls

17 cd

18 pwd

19 ls -alh

20 ls -alhR | grep mvail | grep rw | grep Jun | sort | sort -r

| grep K | grep _ | grep c$ | grep beosh

21 help

22 status

23 hostname

24 hostname

25 hostname

26 hostname

27 hostname

28 hostname

29 hostname

30 hostname

31 hostname

32 hostname

33 hostname

34 hostname

35 hostname

36 hostname

37 hostname

38 pmode

39 hostname

40 status

41 dmode

42 history

beosh> ls -alhR | grep mvail | grep rw | grep Jun | sort | sort -r

| grep K | grep _ | grep c$ | grep beosh &

[1] 28829

beosh> ls

beosh

beosh_snapshot_06_21.README

beosh_snapshot_06_21.tgz

dcmd.log

dcmdmgr

make_beosh.sh
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my_make_beosh.sh

projectbackups

pvm3

src.tgz

beosh> -rw-rw-r-- 1 mvail mvail 9.2K Jun 4 16:22 beosh_list_node.c

-rw-rw-r-- 1 mvail mvail 8.9K Jun 15 22:03 beosh_parse.c

-rw-rw-r-- 1 mvail mvail 3.7K Jun 4 16:22 beosh_list.c

-rw-rw-r-- 1 mvail mvail 3.2K Jun 7 19:04 beosh_error.c

-rw-rw-r-- 1 mvail mvail 2.6K Jun 4 16:22 beosh_node.c

-rw-rw-r-- 1 mvail mvail 1.9K Jun 4 16:22 beosh_node_node.c

-rw-rw-r-- 1 mvail mvail 19K Jun 21 15:41 beosh_util.c

-rw-rw-r-- 1 mvail mvail 19K Jun 17 17:08 beosh_builtin.c

-rw-rw-r-- 1 mvail mvail 16K Jun 21 15:41 beosh_io.c

-rw-rw-r-- 1 mvail mvail 16K Jun 17 17:08 beosh_exec.c

[1] Done ls -alhR | grep mvail | grep rw | grep Jun | sort | sort -r

| grep K | grep _ | grep c$ | grep beosh &

beosh>

beosh> cat dcmd.log

[rookery.boisestate.edu] 28671 dcmdmgr for sleep 10 starting

[node2] 9764 dcmdmgr for sleep 15 starting

[node1] 24039 dcmdmgr for sleep 10 starting

[rookery.boisestate.edu] 28671 dcmdmgr for sleep 10 exiting

[node4] 30179 dcmdmgr for sleep 20 starting

[node7] 15971 dcmdmgr for sleep 5 starting

[node1] 24039 dcmdmgr for sleep 10 exiting

[node2] 9764 dcmdmgr for sleep 15 exiting

[node7] 15971 dcmdmgr for sleep 5 exiting

[node4] 30179 dcmdmgr for sleep 20 exiting

[node5] 32468 dcmdmgr for ls starting

[node5] 32468 dcmdmgr for ls exiting

[node6] 6482 dcmdmgr for pwd starting

[node6] 6482 dcmdmgr for pwd exiting

[rookery.boisestate.edu] 28702 dcmdmgr for pwd starting

[rookery.boisestate.edu] 28702 dcmdmgr for pwd exiting

[node2] 9775 dcmdmgr for ls starting

[node2] 9775 dcmdmgr for ls exiting

[node1] 24051 dcmdmgr for pwd starting

[node1] 24051 dcmdmgr for pwd exiting

[node4] 30191 dcmdmgr for ls -alh starting

[node4] 30191 dcmdmgr for ls -alh exiting

[node7] 15996 dcmdmgr for grep beosh starting
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[node7] 15999 dcmdmgr for grep c$ starting

[node5] 32488 dcmdmgr for grep _ starting

[node5] 32492 dcmdmgr for grep K starting

[node6] 6504 dcmdmgr for sort -r starting

[node6] 6507 dcmdmgr for sort starting

[rookery.boisestate.edu] 28736 dcmdmgr for grep Jun starting

[node2] 9795 dcmdmgr for grep rw starting

[node1] 24069 dcmdmgr for grep mvail starting

[node4] 30209 dcmdmgr for ls -alhR starting

[node4] 30209 dcmdmgr for ls -alhR exiting

[node1] 24069 dcmdmgr for grep mvail exiting

[node2] 9795 dcmdmgr for grep rw exiting

[rookery.boisestate.edu] 28736 dcmdmgr for grep Jun exiting

[node6] 6507 dcmdmgr for sort exiting

[node6] 6504 dcmdmgr for sort -r exiting

[node5] 32492 dcmdmgr for grep K exiting

[node5] 32488 dcmdmgr for grep _ exiting

[node7] 15999 dcmdmgr for grep c$ exiting

[node7] 15996 dcmdmgr for grep beosh exiting

[rookery.boisestate.edu] 28747 dcmdmgr for hostname starting

[rookery.boisestate.edu] 28747 dcmdmgr for hostname exiting

[node2] 9803 dcmdmgr for hostname starting

[node2] 9803 dcmdmgr for hostname exiting

[node1] 24077 dcmdmgr for hostname starting

[node1] 24077 dcmdmgr for hostname exiting

[node4] 30217 dcmdmgr for hostname starting

[node4] 30217 dcmdmgr for hostname exiting

[node7] 16009 dcmdmgr for hostname starting

[node7] 16009 dcmdmgr for hostname exiting

[node5] 32502 dcmdmgr for hostname starting

[node5] 32502 dcmdmgr for hostname exiting

[node6] 6516 dcmdmgr for hostname starting

[node6] 6516 dcmdmgr for hostname exiting

[rookery.boisestate.edu] 28774 dcmdmgr for hostname starting

[rookery.boisestate.edu] 28774 dcmdmgr for hostname exiting

[node2] 9808 dcmdmgr for hostname starting

[node2] 9808 dcmdmgr for hostname exiting

[node1] 24083 dcmdmgr for hostname starting

[node1] 24083 dcmdmgr for hostname exiting

[node4] 30223 dcmdmgr for hostname starting

[node4] 30223 dcmdmgr for hostname exiting

[node7] 16014 dcmdmgr for hostname starting
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[node7] 16014 dcmdmgr for hostname exiting

[node5] 32508 dcmdmgr for hostname starting

[node5] 32508 dcmdmgr for hostname exiting

[node6] 6522 dcmdmgr for hostname starting

[node6] 6522 dcmdmgr for hostname exiting

[rookery.boisestate.edu] 28800 dcmdmgr for hostname starting

[rookery.boisestate.edu] 28800 dcmdmgr for hostname exiting

[node2] 9829 dcmdmgr for grep beosh starting

[node2] 9831 dcmdmgr for grep c$ starting

[node1] 24103 dcmdmgr for grep _ starting

[node1] 24106 dcmdmgr for grep K starting

[node4] 30243 dcmdmgr for sort -r starting

[node4] 30246 dcmdmgr for sort starting

[node7] 16035 dcmdmgr for grep Jun starting

[node5] 32528 dcmdmgr for grep rw starting

[node7] 16039 dcmdmgr for ls starting

[node7] 16039 dcmdmgr for ls exiting

[rookery.boisestate.edu] 28835 dcmdmgr for ls -alhR starting

[node6] 6542 dcmdmgr for grep mvail starting

[rookery.boisestate.edu] 28835 dcmdmgr for ls -alhR exiting

[node6] 6542 dcmdmgr for grep mvail exiting

[node5] 32528 dcmdmgr for grep rw exiting

[node7] 16035 dcmdmgr for grep Jun exiting

[node4] 30246 dcmdmgr for sort exiting

[node4] 30243 dcmdmgr for sort -r exiting

[node1] 24106 dcmdmgr for grep K exiting

[node1] 24103 dcmdmgr for grep _ exiting

[node2] 9831 dcmdmgr for grep c$ exiting

[node2] 9829 dcmdmgr for grep beosh exiting

[node5] 32534 dcmdmgr for cat dcmd.log starting

beosh> ls -alhR | grep mvail | grep rw | grep Jun | sort | sort -r

| grep K | grep _ | grep c$ | grep beosh > output

beosh> ls

beosh

beosh_snapshot_06_21.README

beosh_snapshot_06_21.tgz

dcmd.log

dcmdmgr

make_beosh.sh

my_make_beosh.sh

output

projectbackups



61

pvm3

src.tgz

beosh> cat output

-rw-rw-r-- 1 mvail mvail 9.2K Jun 4 16:22 beosh_list_node.c

-rw-rw-r-- 1 mvail mvail 8.9K Jun 15 22:03 beosh_parse.c

-rw-rw-r-- 1 mvail mvail 3.7K Jun 4 16:22 beosh_list.c

-rw-rw-r-- 1 mvail mvail 3.2K Jun 7 19:04 beosh_error.c

-rw-rw-r-- 1 mvail mvail 2.6K Jun 4 16:22 beosh_node.c

-rw-rw-r-- 1 mvail mvail 1.9K Jun 4 16:22 beosh_node_node.c

-rw-rw-r-- 1 mvail mvail 19K Jun 21 15:41 beosh_util.c

-rw-rw-r-- 1 mvail mvail 19K Jun 17 17:08 beosh_builtin.c

-rw-rw-r-- 1 mvail mvail 16K Jun 21 15:41 beosh_io.c

-rw-rw-r-- 1 mvail mvail 16K Jun 17 17:08 beosh_exec.c

beosh> rm output

beosh> ls

beosh

beosh_snapshot_06_21.README

beosh_snapshot_06_21.tgz

dcmd.log

dcmdmgr

make_beosh.sh

my_make_beosh.sh

projectbackups

pvm3

src.tgz

beosh> sleep 20 &

[1] 28879

beosh> sleep 15 &

[2] 28882

beosh> sleep 10 &

[3] 28889

beosh> sleep 5 &

[4] 28893

beosh> jobs
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[1] Running sleep 20 &

[2] Running sleep 15 &

[3] Running sleep 10 &

[4] Running sleep 5 &

beosh>

beosh> jobs

[1] Running sleep 20 &

[2] Running sleep 15 &

[3] Running sleep 10 &

[4] Running sleep 5 &

beosh> jobs

[1] Running sleep 20 &

[2] Running sleep 15 &

[3] Running sleep 10 &

[4] Done sleep 5 &

beosh> jobs

[1] Running sleep 20 &

[2] Running sleep 15 &

[3] Done sleep 10 &

beosh> jobs

[1] Running sleep 20 &

[2] Done sleep 15 &

beosh> jobs

[1] Done sleep 20 &

beosh> jobs

beosh> sleep 20

[1] Stopped sleep 20

beosh> bg

[1] sleep 20 &

beosh> jobs

[1] Running sleep 20 &

beosh> jobs

[1] Running sleep 20 &

beosh> jobs

[1] Running sleep 20 &

beosh> jobs

[1] Running sleep 20 &

beosh> jobs

[1] Done sleep 20 &

beosh> jobs

beosh> sleep 10
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[1] Killed sleep 10 &

beosh> jobs

beosh> sleep 10 &

[1] 28919

beosh>

No foreground process

beosh> bg

No current stopped job!

beosh> fg

No current stopped job!

beosh> jobs

[1] Done sleep 10 &

beosh> sleep 10

[1] Stopped sleep 10

beosh> jobs

[1] Stopped sleep 10

beosh> bg

[1] sleep 10 &

beosh> jobs

[1] Running sleep 10 &

beosh> fg

No current stopped job!

beosh> fg 1

[1] Killed sleep 10 &

Job did not confirm continued status. Job may or may not be running.

beosh> jobs

beosh> sleep 10

[1] Stopped sleep 10

beosh> bg

[1] sleep 10 &
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beosh> fg 1

sleep 10

beosh> jobs

beosh> sleep 10 &

[1] 28941

beosh> jobs

[1] Running sleep 10 &

beosh> fg 1

sleep 10

beosh> exit

Et tu, Brutus?

[mvail@rookery PBS ~]:qstat -n

rookery.boisestate.edu:

Req’d Elap

Job ID Username Queue NDS Time S Time

---------- -------- -------- --- ----- - -----

48.rookery mvail default 7 00:30 R --

node0/0+node7/0+node6/0+node5/0+node4/0+node2/0+node1/0

[mvail@rookery PBS ~]:qdel 48.rookery

qsub: job 48.rookery.boisestate.edu completed

[mvail@rookery ~]$ qstat -n

[mvail@rookery ~]$ beosh -a

Reserve nodes through PBS and try again.

[mvail@rookery ~]$ beosh -a -o -x node3

beosh> date

Tue Jul 4 16:33:03 MDT 2006

beosh> hostname

node4

beosh> hostname

node1

beosh> exit

Et tu, Brutus?

[mvail@rookery ~]$ beosh -a -o -x node3 -p hostname
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node0: rookery.boisestate.edu

node5: node5

node6: node6

node4: node4

node1: node1

node7: node7

node2: node2

[mvail@rookery ~]$ beosh -a -o -x node3 hostname

rookery.boisestate.edu

[mvail@rookery ~]$ beosh -ao beosh -w node4 -o hostname

node4

[mvail@rookery ~]$ beosh -w node4 -o beosh -w node5 -o hostname

node5

[mvail@rookery ~]$ beosh -aop beosh -ao hostname

node5: node5

node7: node7

node4: node4

node2: node2

node6: node6

node1: node1

node0: rookery.boisestate.edu

[mvail@rookery ~]$ beosh -aop beosh -aop hostname

node7: node7: node7

node7: node6: node6

node7: node4: node4

node7: node5: node5

node5: node5: node5

node7: node0: rookery.boisestate.edu

node5: node4: node4

node7: node1: node1

node7: node2: node2

node2: node2: node2

node1: node0: rookery.boisestate.edu

node1: node1: node1

node1: node2: node2

node1: node6: node6

node2: node1: node1

node2: node7: node7

node2: node5: node5

node2: node4: node4

node2: node0: rookery.boisestate.edu

node1: node5: node5
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node1: node4: node4

node5: node6: node6

node5: node1: node1

node5: node7: node7

node5: node2: node2

node1: node7: node7

node4: node6: node6

node4: node5: node5

node2: node6: node6

node4: node4: node4

node4: node1: node1

node4: node2: node2

node4: node7: node7

node4: node0: rookery.boisestate.edu

node5: node0: rookery.boisestate.edu

node6: node6: node6

node6: node5: node5

node6: node4: node4

node6: node1: node1

node6: node2: node2

node6: node7: node7

node6: node0: rookery.boisestate.edu

node0: node0: rookery.boisestate.edu

node0: node6: node6

node0: node5: node5

node0: node7: node7

node0: node4: node4

node0: node2: node2

node0: node1: node1

[mvail@rookery ~]$
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Chapter 7

IMPROVING BEOSH

7.1 Conversion to SSH and Persistent Command Sockets

The most critical need for beosh is conversion from rsh to a more scalable remote

protocol like ssh. With rsh, reserved ports are used to start each dcmdmgr for each

client creating competition between beosh users for resources. On the target clusters,

reserved ports are also used by other services such as Network File System (NFS).

Other applications such as pdsh account for rsh limitations with a sliding window

approach to limit the number of restricted ports in simultaneous use. The beosh

client, however, needs to be able to start an arbitrary number of remote processes

at once and keep the remote connections open indefinitely, making rsh an untenable

long-term solution.

Beosh used rsh during initial development because the Tux test cluster was not

set up for passwordless remote command execution using ssh. It was expected at the

time that swapping ssh into the place of rsh would be a negligible effort. Unfortu-

nately, the switch was not so simple. Client management of dcmdmgrs was designed

around rsh behavior as described in Section 3.2.1. A child rsh process exits when
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its remote process exits, allowing the parent client to recognize when a dcmdmgr exits.

Child ssh processes do not exit. Likewise, when the client kills a child rsh process,

the remote process is also killed allowing the client to clean up during a refresh or

when exiting. Killing a local ssh process does not kill the remote process.

Converting beosh to use ssh requires a change to the design by which clients

monitor and interact with their remote dcmdmgrs. To maximize scalability, the client

was designed to have no permanent communication connections to dcmdmgrs. New

sockets are created for each new command as in a stateless client-server architecture.

If this basic design were retained, a ping command would suffice for verifying a waiting

remote process, but would not distinguish between a hung process, a busy process,

or a dead process. An alternative to continual pinging is to ping and refresh all

remote processes only when a connection attempt fails, trading a constant level of

overhead for generally faster response interrupted by occasional long waits. However,

if the client does not recognize that a dcmdmgr is unresponsive until part way through

distributing commands for a pipeline and a new port has to be chosen, any dcmdmgrs

that already received assignments will be left in a hung state, waiting for pipeline

connections that will never arrive. For either of these options, establishment and

closure of socket connections for every ping of every dcmdmgr would create excessive

overhead.

Rather than create numerous temporary sockets, a permanent command socket

should be established between the client and each dcmdmgr when the dcmdmgr is



69

started. When a dcmdmgr dies, the socket EOF alerts the client that it has died. Un-

til then, all commands and job assignments would be delivered to the dcmdmgr over

the socket. Because a hung dcmdmgr cannot respond to a kill command, a kill signal

from the client must be delivered through a separate remote process. This design

was rejected early in the project because it ties up more ports on the client’s node

and is, therefore, less scalable than the stateless design. However, maintaining per-

manent sockets provides performance and security benefits over the stateless design.

With establishment of a permanent command socket, there is no need for authen-

tication before accepting commands. There is also no delay in creating and closing

socket connections for every command and job assignment making beosh much more

responsive.

7.2 Other Opportunities For Improvement

7.2.1 Improving SSI

Beosh does not not allow users to execute interactive processes such as vi remotely.

This includes commands that return a prompt for a password such as su. Though

this limitation is shared by other cluster shells including pdsh, it still disrupts the SSI

user experience and prevents a user from using beosh as a default, general-purpose

shell.

Another disruption to the SSI user experience is lack of synchronization of envi-

ronment variables. Though the current working directory is synchronized across all
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session nodes, environment variables are not. A simple workaround until such ca-

pability is added to beosh is to set any critical environment variables on all session

nodes using beosh in parallel mode or pdsh directly prior to executing any jobs that

rely on a particular environment variable.

7.2.2 Job Assignment

While it is expected that beosh would be used most often as an SSI shell shielding

users from having to be aware of the cluster behind the prompt, some users will want

more explicit control of where commands execute. Explicit command assignment is

actually not possible at this time, though such capability could certainly be added.

Uniform job distribution through the balanced round-robin-based algorithm does

not take into account potential hardware differences between nodes of a cluster.

Though not currently implemented, beosh could be modified to recognize repeated

instances of particular nodes when parsing the node list and assign additional com-

mands to those nodes.

A weakness of round-robin-based assignment is the potential for repeatedly assign-

ing demanding processes to the same node. Batch scripts running many variations

of the same pipelined job, for example, may continually wrap around the node list

and place the most demanding processes on the same nodes. A simple solution to

this problem while retaining the uniform process distribution of round robin is to

randomly reorder the beosh node list after each iteration through all of the session

nodes.
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7.2.3 Security

Security is basic. The client and backend command managers are user-level processes,

so users can only execute and access files with their own permissions. However, the

simple authentication of command connections is based on the assumption that the

first command connection to a newly-started dcmdmgr will be from the legitimate

client. Implementing persistent command sockets as described in Section 7.1 would

remove the need to check the source of every command, but a more trustworthy

authentication scheme is needed for establishing those sockets.

There is also no encryption of network traffic through pipelines allowing easy

viewing of other users’ traffic. The naive assumption is that most clusters are behind

a substantial firewall and access is restricted to trustworthy users. As with all such

assumptions, unfortunately, it is almost certainly wrong. However, encryption of

data through secure socket layer (SSL) or some other means could negatively impact

performance. Performance impacts should be considered if data encryption is to be

implemented.
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Chapter 8

CONCLUSIONS

8.1 Toward a Single System Image (SSI) Distributed Shell

Beosh provides a solid foundation for a production-quality, SSI cluster shell. As

presented here, it is suitable for use in a small cluster environment where users are

aware of the exposure of their data over unencrypted sockets and where there is little

competition for reserved ports required by rsh. Beosh can be configured to limit

users to nodes reserved through the Portable Batch System (PBS).

Beosh achieves distribution of individual commands and command pipelines across

available nodes without the user needing to specify where any command goes. Beosh

provides standard job control capabilities for distributed jobs including starting a job

in foreground or background, stopping a foreground job, and restarting a stopped

job in the foreground or background. The user’s current working directory is also

updated across all session dcmdmgrs when changed in the client.
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8.2 Code Reuse and Maintainability

Use of pdsh for hostname list expansion and parallel command execution avoids rein-

venting existing functionality and relieves beosh managers from maintaining parallel

functionality. Options when starting beosh follow pdsh syntax for easy migration

between shells.

8.3 Portability

In addition to standard system calls, beosh uses only utilities commonly found or

widely available on Beowulf clusters including rsh or ssh (for remotely starting back-

end command managers), awk (for selecting hostnames from pdsh output), and pdsh.

Standard sockets and pipes are used for all interprocess communication.

Beosh has yet to be tested on a non-Linux cluster, but it has been built and tested

without requiring any changes on several clusters of different sizes and with differing

hardware, kernels, and compiler versions.

8.4 Performance and Overhead

Load balancing is through even distribution of pipelined commands across selected

nodes and a variation on round-robin assignment of the first node for each job. Im-

plementation of self-assembling communications pipelines through backend command

managers avoids communications bottlenecks and improves scalability. Though sub-
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jective performance seems high once a job is running, the overhead of starting up

backend managers, distributing command assignments, and establishing pipelines is

definitely noticeable for short-duration jobs and can detract from interactive sessions.

Each client session manages a single set of backend managers for all jobs, mini-

mizing required resources for overhead. Because backend managers only run for the

duration of a client session, resources are only used while needed.

Port selection using a hash based on client pid and the ability to choose a different

port when the selected port is already in use allows multiple users and sessions to use

nodes concurrently without any need to explicitly coordinate between them.
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Appendix A

BEOSH MAN PAGE

BEOSH(1) BEOSH(1)

NAME

beosh - Beowulf cluster shell

SYNOPSIS

beosh [options]... [command]

DESCRIPTION

beosh is a Single System Image (SSI) cluster shell enabling

distribution of non-interactive commands across available

nodes without having to specify exactly where any of them

should execute. Standard job control is available for jobs

distributed this way. If parallel execution is

specified, commands are forwarded to pdsh(1).

If a remote command is not specified on the command line,

beosh runs interactively, prompting for commands and

executing them when terminated with a carriage return.

pdsh(1) using the machines module is required as a dependency

for beosh for nodelist expansion and parallel command

execution. beosh node option syntax follows that of

pdsh(1) to ease user transition between shells.

If configured for Portable Batch System (PBS) support, beosh

will filter the nodelist returned by pdsh(1) to remove

nodes not currently reserved through PBS. beosh also

supports PBS filtering if pdsh(1) uses the pbsnodefile

module.
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OPTIONS

Target nodelist options use pdsh(1) syntax. To these

options, beosh adds an option for parallel execution and for

overriding PBS filtering if PBS filtering is configured.

Target nodelist options

-w node,node,...

Target the specified list of nodes. Do not use

with -a. No spaces are allowed in the comma-separated

list. The node list may contain nodelist

expressions of the form ‘‘node[1-5,7]’’.

For more information about the nodelist format, see

the HOSTLIST EXPRESSIONS below.

-a Target all nodes from machines file.

-x node,node,...

Exclude the specified nodes. May be specified in

conjunction with other target node list options

such as -a and -w.

Hostlists may also be specified to the -x

option (see the HOSTLIST EXPRESSIONS below).

Parallel execution option

-p Rather than distribute commands, execute commands in

parallel on all specified nodes using pdsh(1). In

parallel mode, job control is not available.

PBS filtering option

-o Override PBS filtering if PBS filtering is configured

for beosh or pdsh(1) uses the pbsnodefile module.

Other options

-h Output usage menu and quit.
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HOSTLIST EXPRESSIONS

As noted in sections above, beosh follows pdsh(1) syntax

for nodelist selection and accepts lists of nodes with the

general form: prefix[n-m,l-k,...], where n < m and l < k,

etc., as an alternative to explicit lists of nodes. This form

should not be confused with regular expression character

classes (also denoted by ‘‘[]’’). For example, foo[19]

does not represent an expression matching foo1 or foo9, but

rather represents the degenerate nodelist: foo19.

The nodelist syntax is meant only as a convenience on

clusters with a "prefixNNN" naming convention and

specification of ranges should not be considered necessary

-- this foo1,foo9 could be specified as such, or by the

nodelist foo[1,9].

Some examples of usage assuming PBS filtering follow:

Run command using reserved nodes in foo01,foo02,...,foo05

beosh -w foo[01-05] command

Run command in parallel on foo7,foo9,foo10 overriding PBS

filtering

beosh -w foo[7,9-10] -p -o command

Run command using foo0,foo4,foo5

beosh -w foo[0-5] -x foo[1-3] -o command

Run command using all reserved nodes

beosh -a command

As a reminder to the reader, some shells will interpret

brackets (’[’ and ’]’) for pattern matching. Depending on

your shell, it may be necessary to enclose ranged lists

within quotes. For example, in tcsh, the first example

above should be executed as:

beosh -w "foo[01-05]" command
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ORIGIN

A Master’s project by Mason Vail

<masonvail@mail.boisestate.edu> at Boise State University,

written for use on student and research clusters.

LIMITATIONS

beosh currently uses rsh(1) to start backend distributed

command managers (dcmdmgrs) which causes a potential

scalability problem due to rsh(1) use of reserved ports.

Hostlist parsing assumes numerical part of hostname is at

the end only, e.g. specifying foo[0-5]bar will not work.

Though current working directory is synchronized across

session nodes, environment variables are not. Prior to

executing commands with beosh depending on particular

environment variables, set them on all nodes using

beosh in parallel mode or with pdsh(1).

beosh does not allow execution of interactive commands

or commands that will result in prompts such as password

authentication.

FILES

SEE ALSO

pdsh(1), pbs(1B), rsh(1)

0.1 Linux BEOSH(1)
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Appendix B

SUMMARY OF BUILT-IN COMMANDS

help display built-in commands

exit quit beosh

logout quit beosh

cd < path > change directory if in distributed mode

jobs list current status of stopped or background jobs

fg < jobnumber > run last stopped job or numbered background job in the fore-
ground

bg < jobnumber > run last stopped job or numbered background job in the back-
ground

history < n > show all commands entered in the session or only the last n commands

dmode switch to distributed mode

pmode switch to parallel mode

status display information about current beosh settings and nodes

version display current beosh version

Ctrl-c kill foreground job (SIGINT)

Ctrl-z stop foreground job (SIGTSTP)
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Appendix C

BUILD AND TEST ENVIRONMENT

C.1 Laptop of Joy and Happiness

Coding was done on a beloved Dell Inspiron 9200 with all the hardware goodies.

• 2GHz Pentium M, 1GB RAM

• Fedora Core 3, kernel 2.6.12

• gcc version 3.4.4

• KDevelop version 3.2.2

C.2 Target Clusters

The following Beowulf clusters at Boise State University are the “target clusters”
referred to throughout the report.

C.2.1 Beowulf

Beowulf is the main research cluster for computer science at Boise State University
with a dual-processor head node and 60 dual-processor nodes.

• private gigabit ethernet

• head node: dual 2.4GHz Intel Xeon processors, 4GB RAM

• other nodes: dual 2.4GHz Intel Xeon processors, 1GB RAM

• Fedora Core 3, kernel 2.6.12

• gcc version 3.4.3
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C.2.2 Tux

Tux was a test cluster with 3 nodes isolated from the main Beowulf cluster. Most
development testing was done on Tux until it was effectively reduced to a single
node and became somewhat less than useful for testing a cluster shell. One node
was removed from the cluster shortly after development began for use as the NFS
manager for the main cluster. Another node suffered from the slow, sad degradation
of its harddrive rendering it unreliable at best. Shortly before the project ended, the
remaining node was scavenged for another student project and Tux was no more.

• private gigabit ethernet

• all nodes: dual 2.4GHz Intel Xeon processors, 2GB RAM

• Fedora Core 3, kernel 2.6.11

• gcc version 3.4.3

C.2.3 Rookery

Rookery is an 8-node student research cluster composed of assorted hardware. After
Tux, development testing moved to Rookery. It was extremely gratifying to see the
code compile and run on Rookery without warning or error despite it using a different
compiler than on the development laptop or on Tux.

• private gigabit ethernet

• head node: 1.7GHz Intel Celeron, 1GB RAM

• nodes 1-3: 1.7GHz Intel Celeron, 512MB RAM

• nodes 4-7: 1.2GHz Intel Pentium 3, 512MB RAM

• Fedora Core 4, kernel 2.6.14

• gcc version 4.0.1

C.2.4 Onyx

Onyx is the main computer science student Linux lab, but it is also a teaching and
student research cluster with a dual-processor head node and 32 nodes.

• private gigabit ethernet

• head node: dual 2.4GHz Intel Xeon processors, 3GB RAM
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• nodes 01-05: 1.4GHz AMD Duron processors, 512MB RAM

• nodes 06-32: 2.8GHz Intel Pentium 4 w/HT processors, 1GB RAM

• kernel 2.4.32 #4 SMP

• gcc version 3.3.2
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Appendix D

PROJECT MANAGEMENT

D.1 Source Control

For source control I used Subversion 1.1.4 with the BerkleyDB repository. The project
repository was originally placed on Beowulf where it would be safely backed up
nightly. Combination of a sequence of cluster crashes and the unintentional updating
of BerkleyDB on Beowulf as a dependency to another package resulted in corruption
and loss of the original repository after several weeks of work. I decided to create
the replacement repository on my laptop where I am the only user from local copies
of project files, freeze any and all updates to my laptop for the remainder of the
project (baring any more catastrophic events), and keep two other backup copies of
the repository on tux and onyx in case of damage to the original. Thumbs up to
Subversion, but thumbs down to using BerkleyDB for the repository. I will use flat
files for future projects. I will also not blindly trust automatic backups on a research
system with many users.

D.2 Where to get Beosh

Beosh was developed under the GNU General Public License version 2 and is available
for download from Boise State University.

http://cs.boisestate.edu/~amit/research/beosh

Future project development will be managed by Amit Jain at Boise State Univer-
sity.
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Appendix E

CLOSING QUANDARY

According to Edward A. Lee [5]:

. . . a folk definition of insanity is to do the same thing over and over
again and to expect the results to be different. By this definition, we in
fact require that programmers of multithreaded programs be insane. Were
they sane, they could not understand their programs.

My dilemma is this - If I succeed in convincing those who require convincing that
beosh does, in fact, work and, further, that I actually understand how and why it
works, have I actually succeeded in arguing for my own insanity, thus proving that I
and my work cannot possibly be approved? On the other hand, would I, by disavowing
understanding of how it works and even denying that I am sure that it does work,
defend my place as a rational, sane member of society (the sort of person I would
think would be deserving of approval) but forfeit credit for the work I’ve done?

These are the sorts of issues that have occupied a great deal of the time I should
have been using to figure out what actually does and does not work and deciding how
I feel about that. In the end, I am afraid tergiversation may be my only option and
I hope the reader will decide in my favor, whatever that means.
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