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ABSTRACT

Compute clusters are used to solve large, computation-intensive problems. These

systems are shared due to a large investment in resources to set up and maintain

these systems. Often, a job queue or batch system, such as a Portable Batch System

(PBS) is used to enable sharing the cluster resources among many researchers. This

project provides a mobile application which allows the user to view the status of the

jobs on a cluster. Also, the ability to perform some simple administrative tasks is

included. The application is written for Android devices, using the Java programming

language. This is a good case study for developing a medium complexity application

with performance issues.
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CHAPTER 1

INTRODUCTION

1.1 Background

The proliferation of mobile devices enabled a level of convenience which has not been

experienced before. Many applications produced for these devices have provided ways

for people to utilize their available time more effectively. Simple tasks can now be

completed during moments that were not usable before, while riding a bus, in an

elevator, or at a restaurant waiting for your party to arrive.

For those who manage computer clusters, a mobile application would make it

possible to monitor the cluster while not in the office or in front of a computer

terminal. Such an application could provide simple functionality that would allow one

to do simple job management tasks and be aware of how the cluster is functioning,

while away from the office or lab.

This project produces such an application. The following sections in this chapter

provide background information to set the stage for understanding the details of the

project design, implementation, challenges, and lessons learned.
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Figure 1.1: A Beowulf Cluster Configuration

1.2 Computer Clusters

A computer cluster is composed of an interconnected network of workstations or

personal computers, which are then used to solve computation-intensive problems.

One architecture for a computer cluster is the Beowulf architecture, which is illus-

trated in Figure 1.1. The Beowulf architecture has a master node and a number

of compute nodes. The software written to run on these clusters usually employs

message-passing software such as Message Passing Interface (MPI) or Parallel Virtual

Machine (PVM) [16].

There is cost associated with building and maintaining a cluster. For that reason,

clusters are often shared among many researchers and compute jobs are placed in a

batch system. Often, a job queue or batch system, such as a Portable Batch System

(PBS) is used to enable sharing the cluster.

1.3 Mobile Devices

Developing applications for mobile devices comes with a unique set of challenges.

Understanding how the application is expected to behave in this environment is
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paramount to building a useful and successful application. The remaining sections

of this chapter lay the groundwork for understanding how these challenges may be

addressed.

1.4 Activity Lifecycle

For the vast majority of Android applications, there is a graphical user interface

which gets displayed on the screen of the device. An Activity represents all graphical

components that are displayed on the screen at any given moment. As a user engages

with the application, many Activities may be traversed.

Since the user can switch between applications in a fairly unpredictable manner,

understanding the life-cycle an Activity can go through is important. Fortunately,

Android provides a framework to handle this behavior. Figure 1.2 depicts a simplified

version of the Android activity life-cycle. When the life-cycle begins, the Android

framework will call the onCreate method for the Activity. While at the very end of

the life, the onDestroy method is called. Only while the Activity is in the running

state, will it be in the foreground and visible on the screen. Depending on user

activity and resources, the Activity may move to the background (paused) or even

be destroyed by the OS. One thing is certain, every time the Activity enters the

running state, the onResume method is called. And, every time the Activity leaves

the running state, the onPause method is called by the framework.

The Activity class provided by the Android framework provides an interface, part

of which is composed of methods listed in the activity life-cycle. For example, the

onCreate() method is often overridden in subclasses of Activity. Understanding this

diagram is very important for developing useful Android applications.
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Figure 1.2: Simplified Android Activity Lifecycle

1.5 Activity Stack

When an application is started in Android, an Activity stack is associated with it.

The stack represents the current task being performed. As new activities are started

they are pushed onto the stack. The activity at the top of the stack is the activity

the user sees on the screen. If the back button is pressed, an activity is popped from

the stack, which results in the next activity being displayed on the screen.

1.6 Multitasking in Android

A task represents something the user is trying to accomplish and is represented by a

group of Activities. A task may be as simple as reading email or using the web browser.

Multitasking is achieved with Android when the home button is pressed while using
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an application. This puts the current task into the background and displays the

home screen. The user can then choose to begin another task by selecting an icon

for any application. Once the icon is selected, the chosen application launches. If the

newly launched application had a task in the background, the result is that the task

is moved to the foreground and is now the currently active task. At most, only one

task can be in the foreground. Understanding how this process works is important for

application development. Activities which are part of the stack for a task that is in

the background have not been destroyed and may be resumed when the application

is brought to the foreground. However, the developer cannot assume the activities

will not be destroyed since the operating system may destroy these activities to free

up resources for other applications.

1.7 Project Statement

This project provides a mobile application for monitoring the status of jobs on a

cluster and also perform simple job management tasks. The application runs on

Android phones, using operating system version 2.2 or later.

1.8 Prior Work

A search on any mobile application web site will find several Secure Shell (SSH)

client applications [4]. However, at the time of this writing, there doesn’t seem to be

any mobile applications specifically designed for monitoring and managing PBS jobs.

Although an SSH client application for a mobile device could be used to monitor PBS

jobs on a cluster, it would not take advantage of the typical user experience expected
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from mobile applications. The user would have to use the keyboard available on the

device.

Figure 1.3 shows how the UI of an SSH client application may look. Just as if

the user was using their desktop computer, they are expected to type in the entire

command using the CLI. Although this is flexible and allows the user to execute any

command they wish, it is cumbersome on a mobile device. For example, it would

take over 40 touches to delete three cluster jobs using the CLI.

Figure 1.3: Screenshot of a Typical SSH Client Application UI

Figure 1.4 displays a screenshot of how the PBS Job Watcher application was



7

envisioned. This is not a screenshot of the actual application, but the final product

does look similar. It has a more graphical look, compared to the UI for the SSH client

app, and is more typical of mobile applications. Although, the user cannot type in any

command they wish, they can accomplish most common commands with a minimal

amount of interaction. For example, to accomplish the same task of deleting three

cluster jobs discussed previously, the user only needs to execute about four touches.

For these reasons, an application specifically designed for monitoring and main-

taining PBS jobs on a cluster would be preferred over a generic SSH client application.

Figure 1.4: Prototype of the UI for this Application
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CHAPTER 2

REQUIREMENTS

2.1 Target Device

The target device for this application is an Android phone running SDK version 2.3.4.

The earliest SDK for this application is version 2.0. Although this application will

run on Android tablets, the user interface was not optimized for the larger screen size

that a tablet device offers.

2.2 Application Behavior

This application will allow the user to view jobs running on any number of remote

clusters, given they are able to establish SSH communication with a single gateway

machine. An Internet connection is required for this to be possible. Once information

on cluster jobs is obtained, the user can browse through the jobs and view detailed

information. Also, simple operations may be performed on selected jobs.

2.3 Performance

As with any mobile application, its affect on battery usage and resources such as

memory is important. The design of this application attempts to minimize the impact.
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2.4 Design Patterns

Object-oriented design patterns should be used in the design, where appropriate. Us-

ing them enables flexibility, software reuse, and ease of maintenance. This application

uses design patterns.
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CHAPTER 3

ANALYSIS

3.1 Operating Environment

The operating environment for this application involves the mobile device on which

the application is installed, the Internet, a gateway machine, and a number of clusters

connected to the gateway. Figure 3.1 shows how the different entities interact.

There are a number of clusters, with each master node maintaining a queue of

jobs. In PBS, the CLI provides the command qstat to view job information. Some

items included in the job information are job identification, job name, job owner, and

more.

Each master node can be accessed through a gateway machine. The gateway has

a connection to the Internet. For users to access the gateway from the Internet, they

must be approved for access to the gateway through SSH.

3.2 Secure Shell

Since the application will be using SSH to establish communication with the gateway

machine, it is reasonable to explore the options for providing this ability through

software. One obvious choice would be to implement the SSH2 protocol from scratch.
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Figure 3.1: Operating Environment for the Application

Since Android programming is done using the Java programming language, it would

be implemented in Java.

Another option would be to explore existing third-party packages available. This

is commonplace in software development, since there are many libraries that have

already been developed for reuse. Two third-party packages or libraries available are

libssh2 and Java Secure Channel.

Libssh2 is a C implementation of the SSH2 protocol [7]. Since it is written in

C, this library can be used with almost any programming language. Java Secure

Channel is a pure Java implementation of the SSH2 protocol [6]. Since most Android
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programming is done with the Java programming language, Java Secure Channel is

used in this application.

3.3 Development Environment

This project was developed using an Apple MacBook Pro (13 inch, early 2011), using

Java SDK version 1.6.0 29, and git version 1.7.5.4. GitHub [3] was used for a remote

repository, and the GitBox (version 1.4) desktop application [12] was used for pushing

to the remote repository.

The Eclipse IDE [2] was used for implementing and debugging the software. Here

are the specifications for the Eclipse install used for this project.

• Eclipse IDE for Java Developers

– Indigo Service Release 1

– Build id: 20110916-0149

– Android Development Toolkit (ADT)

∗ The Android Open Source Project

∗ 15.0.1.v201111031820-219398

∗ com.android.ide.eclipse.adt

∗ Dalvik Debug Monitor Service (DDMS)

∗ TraceView

∗ Hierarchy Viewer
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CHAPTER 4

DESIGN AND IMPLEMENTATION

The first section, Application Design, describes a high-level view of how the appli-

cation is organized. The sections that follow go into more detail on the individual

components of the application design and implementation.

4.1 Application Design

Figure 4.1 shows the overall design of the application. Starting from the bottom layer,

the Java Secure Channel is the third-party package which provides the implementation

of the SSH2 protocol. Alongside is the SQLite database, which is a self-contained,

serverless SQL database engine [10].

The second layer from the bottom contains the lowest layer that is implemented

in this project. The Cluster Communication is supported by a set of Java classes

which provide an interface to the Java Secure Channel. The DB Adapter provides an

interface to SQLite.

Services do the heavy lifting for the application. They coordinate all of the

needed network communication by using the Cluster Communication and the access

to the data via the DB Adapter. The Services are responsible for using background

threads for performing long running tasks, which improves the responsiveness of the
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application. The classes in this layer extend the Service class provided by the Android

framework, in the android.app package.

Finally, the Android UI layer is at the top. This layer provides the user interface

components which are displayed on the screen of the Android device. All of the classes

in this layer are subclasses of the Activity class provided by Android framework, in

the android.app package. The remaining sections discuss these components in more

detail, with the exception of Java Secure Shell and SQLite, which are third-party

packages.

Figure 4.1: Application Design

4.2 Cluster Communication

4.2.1 Java Secure Channel

The Java Secure Channel package provides the classes needed to achieve SSH com-

munication [6]. The classes described in this section provide an interface to the Java

Secure Channel package. There are many reasons for having such an interface. For

example, the interface isolates the third-party package from the rest of the application.

This makes it easier to replace the Java Secure Channel package with a different
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package that provides the same functionality. This may be desirable if another

package becomes available that gives a performance advantage.

4.2.2 Adapters for Session and Channel

The Session and Channel classes are adapters to the Session and Channel mecha-

nisms [11] which are implemented by the Java Secure Channel package.

4.2.3 Host Classes

Three classes represent the different hosts which the application will be connecting

to with SSH. These classes are shown in Figure 4.2. This group of classes implements

the Composite pattern [14]. Gateway plays the Composite role of the pattern, while

Cluster plays the Leaf role. Host implements the default behavoir for the class

hierarchy. Figure 4.3 shows the class diagram for the Host class.

Figure 4.2: Host Classes

The Gateway class implements methods which manage the children or Cluster

objects. The implemented methods are shown in Figure 4.4. The Cluster class has

methods which pertain to the details of a cluster. Getters and setters are used to
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Figure 4.3: Host Class Diagram

keep track of the data related to the cluster. Figure 4.5 shows these methods in the

class diagram.

4.2.4 Host State Classes

The State design pattern [14] is used to implement the state of the Host objects. The

HostState classes are shown in Figure 4.6. The HostState class plays the State role,

while the other classes are ConcreteStates. The Host plays the Context role in this

implementation of the State pattern.
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Figure 4.4: Gateway Class Diagram

Figure 4.5: Cluster Class Diagram

A state diagram for these states is shown in Figure 4.7. Every Host begins its

life in the LoginNotVerified state. Once login information, hostname, username, and

password, has been verified, the Host will move to the LoginVerified state. Following

an open operation, the Host will be in the OpenState. The Host must be in the

OpenState in order for a command to be executed. While a command is being

executed, the Host will be in the ExecutingState. Once the command execution

has been completed, the Host will be back in the OpenState. A close operation may

be performed to move the Host to the ClosedState. The Host provides an interface
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Figure 4.6: HostState Class Hierarchy

for clients to make requests. These requests are delegated to the HostState object, for

the appropriate behavior for each request, depending on the state. A class diagram

for HostState is shown in Figure 4.8.

4.3 Job Data

4.3.1 SQLite Databases

The job information data must be persistent, due to the nature of Android appli-

cations. At any time, without warning, the application can be paused or destroyed

by the user or the operating system. Rather than waiting until that happens, the

job data will be saved to a file as soon as it is acquired. One benefit of the Android

devices over traditional computer desktop systems is that the persistent memory of

the system is typically solid state flash memory, instead of mechanical hard disk

drives. As a result, the access time is much faster.
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Figure 4.7: Host States

Figure 4.8: HostState Class Diagram

Additionally, since a file will be used to persist the data, a SQLite database is

used to take advantage of the powerful query operations available. Also, the Android

development framework provides classes which make it convenient to handle these

databases and display query results.

Initially, the design involved a single database, with a single table for job infor-
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mation. That table is shown in Figure 4.9.

Figure 4.9: Job Table

Since the requirement for multiple clusters was not known until after the design

and implementation was well under way, it seemed that the simplest way to support

handling multiple clusters connected to a single gateway was to provide a SQLite

database for each cluster. As a result, there will be a single database file for each

cluster.

This database design should be adequate for supporting thousands of jobs per

cluster. The id field is the primary key, as is typical in most SQLite database tables.

It has a unique integer value. The selected field represents a boolean value for whether

the user has selected the given job. A zero value represents false, while a value of one

represents true. The field, begin tracking, is a boolean value which signifies that the
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job is a newly added job. The field, stop tracking, is a boolean value which is used

to determine if a job should be purged from the database, since it is no longer being

tracked. A job not being tracked means that it is no longer showing up in the job

information data received from the cluster. The last field, elapsed time minutes, is

an integer value representing the number of minutes that has elapsed since the job

started.

The remaining fields are fields that directly result from the qstat command.

Table 4.1 summarizes them.

Table 4.1: Fields Related to the qstat Command Output
Field Description

job id job identifier assigned by PBS
username job owner
job name job name given by the submitter
session id the session id of a running job
node count number of nodes requested by the job
status the job’s current state
elapsed time amount of CPU time used by the job
nodes nodes the job is running on
tasks req number of CPUs requested by the job
memory req the memory requested by the job
time req the CPU time requested by the job

4.3.2 JobsData class

The JobsData class provides the interface to the SQLite database for the job in-

formation. Although there are object relational mappers (ORMs) available for use

with Android [9], this design does not use an ORM. Instead, the SQLite database

management classes provided by Android are used.

As shown in Figure 4.10, a JobsData object is composed of a DatabaseHelper

object. DatabaseHelper extends the SQLiteOpenHelper, which is one of the SQLite
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database management classes provided by the Android framework. The Database-

Helper overrides two methods, onCreate and onUpgrade. The onCreate method

determines how the database structure is formed. In this case, it is mainly a CREATE

TABLE statement, in SQL syntax, which is executed when the database is created

for the first time. The onUpgrade method is provided in order to support upgrading

the database structure. This may involve adding columns to a table, adding tables,

and possibly more.

Figure 4.10: JobsData class diagram

JobsData provides four methods which return Cursor objects. The Cursor class

comes from the SQLite classes provided by Android and is the result of a database

query. The reason these methods provide the cursor object, rather than an array, is

that the Cursor is used in some of the view classes to display data with the UI. This

will be discussed more in later sections. Each Cursor object should be closed when
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it is no longer needed. This is the responsibility of the calling method.

JobsData also has open and close methods for opening and closing the database.

The database should be closed when it is no longer needed. This may be done when

a Cluster is deleted from the cluster list, or when the JobsService is desroyed. The

JobsService would be destroyed some time after the last Activity is unbound from it.

Setting attributes on Job objects does not update the database, as would normally

be expected from a ORM scheme. In order to update the database, a Job object is

passed to the update method. If a Job exists in the database with a matching job

identifier, then the database is updated. Otherwise, the new job is inserted into the

database table.

The remaining methods for the JobsData class provide the means for getting data

that is needed for display. There are two getJob methods, which return a Job object.

The Job object can be used to extract job-specific information which can be displayed.

4.3.3 Job Class

A Job class is used to manage job-specific information. Figure 4.11 shows the class

diagram for Job. All of the methods are getters and setters. Garbage collection is an

expensive process and should be avoided, if possible. Therefore, extra effort was made

to ensure that the number of Job objects needed within the application is minimal.

4.4 Android UI

The Android UI component of this application is composed mainly of Activity sub-

classes. Each of the activities represent a single screen which is encountered while

using the application. The flow of the activities is shown in Figure 4.12.
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Figure 4.11: Job class diagram

4.4.1 ClustersActivity

The application begins by entering the ClustersActivity. When the ClustersActivity

is created, it is bound to a JobsService object, which will be discussed in a later
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Figure 4.12: Application Activity Flow

section. This screenshot of the ClustersActivity is shown in Figure 4.13. The user

may log in to the gateway by pressing the Login to Gateway button. Once the button

is pressed, the GatewayActivity is started, where the user can enter the gateway host

name, user name, and password fields. Returning to the ClusterActivity is achieved

by pressing the Login button. If the login was successful, the gatway’s host name will

appear in the button at the top of the screen. Otherwise, an error message displaying

the reason for the failed login attempt will be displayed. After a successful login, the

application will return to the ClustersActivity, and it would appear as in Figure 4.14.

If the login was successful, the other buttons, add and del will be enabled. Cluster

master node names may be added or deleted using these buttons. Pressing the add

button will start the NewClusterActivity.

The clusters displayed by the ClustersActivity represent the clusters whose jobs

will be monitored. The user may add a cluster to the list, by pressing the Add

button. The ClustersActivity employs a ListView, which is provided as part of

Android. Usually, ListView objects display simple text strings by default, for an

item in the list. One way to customize the display of the item, and make it a bit more
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Figure 4.13: Initial ClustersActivity Screen

Figure 4.14: Return to the ClustersActivity After a Successful Login

complicated compared to displaying only a simple string, is to use an ArrayAdapter.
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4.4.2 ClusterAdapter

ClusterAdapter extends ArrayAdapter, which is provided by Android. To customize

the view for an item in the list, the getView method is usually overriden to provide

the custom view. Figure 4.15 shows code that overrides the getView method. The

layout of the view is provided by a resource defined in an Android XML file.

In addition to displaying relevant data, the View which is returned by the getView

method also has a CheckBox, that can be used to select or deselect clusters. Selected

clusters can be deleted by pressing the delete button on the activity. In order to

provide this functionality, a listener is needed to see when the checked state of a

CheckBox has changed. This is provided by the onCheckedChangeListener that is

shown in Figure 4.16. The behavior of the listener is simple; it just calls setSelected

on the Cluster and passes in an appropriate value.

4.4.3 Gateway Activity

The GatewayActivity class represents the screen which is displayed to allow the user

to provide the host name, user name, and password needed to log into the gateway,

using an SSH connection. Figure 4.17 shows that the GatewayActivity class is a

subclass of the android.app.Activity class. Three methods are overridden, onCreate,

onRestoreInstanceState, and onSaveInstanceState. The last two are overridden to

preserve the state when the device orientation is changed. Figure 4.18 shows a

screenshot of the GatewayActivity.
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@Override

public View getView(int position, View convertView, ViewGroup parent) {

LinearLayout view;

Cluster cluster = getItem(position);

if (convertView == null) {

view = new LinearLayout(getContext());

String inflater = Context.LAYOUT_INFLATER_SERVICE;

LayoutInflater layoutInflater = (LayoutInflater) getContext().getSystemService(inflater);

layoutInflater.inflate(clusterItemLayout, view, true);

} else {

view = (LinearLayout) convertView;

}

CheckBox checkBox = (CheckBox) view.findViewById(R.id.cluster_item_checkbox);

checkBox.setOnCheckedChangeListener(getOnCheckChangeListener(cluster));

checkBox.setChecked(cluster.isSelected());

TextView nameView = (TextView) view.findViewById(R.id.cluster_item_name_field);

TextView jobCountView = (TextView) view.findViewById(R.id.cluster_item_count_field);

TextView ownersView = (TextView) view.findViewById(R.id.cluster_item_owners_field);

TextView syncTimeView = (TextView) view.findViewById(R.id.cluster_item_synctime_field);

nameView.setText(cluster.getHostname());

jobCountView.setText(Integer.toString(cluster.getJobCount()));

String ownersList = "";

for (String owner: cluster.getOwners()) {

ownersList += owner + ",";

}

if (ownersList.length() > 0) {

ownersList = ownersList.substring(0, ownersList.length() - 1);

}

ownersView.setText(ownersList);

syncTimeView.setText(cluster.getSyncTime());

return view;

}

Figure 4.15: Overriding the getView in ClusterAdapter
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private OnCheckedChangeListener getOnCheckChangeListener(final Cluster cluster) {

OnCheckedChangeListener listener = new OnCheckedChangeListener() {

@Override

public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

if (isChecked) {

cluster.setSelected(true);

} else {

cluster.setSelected(false);

}

}

};

return listener;

}

Figure 4.16: Providing the onCheckedChangeListener in ClusterAdapter

Figure 4.17: GatewayActivity Class Diagram

4.4.4 NewClusterActivity

The NewClusterActivity class represents the screen where the user can enter infor-

mation needed to log in to a new cluster. The cluster name, otherwise known as the

host name, is required. Also, the user name and password may be provided, or the
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Figure 4.18: GatewayActivity Screen

check box may be checked if those values are the same as the gateway. Figure 4.19

shows a screenshot of the NewClusterActivity.

Figure 4.19: Adding a Cluster in NewClusterActivity



31

4.4.5 JobsActivity

JobsActivity displays the jobs in the cluster’s PBS job queue. It has a listener, so it

can update itself when the job information has been updated by the JobsService.

4.4.6 JobOwnersActivity

This activity shows a list of job owners for the given cluster. If a job owner item is

clicked, the result is returned to the JobsActivity, where only the jobs for the chosen

owner will be displayed.

4.4.7 JobDetailActivity

JobDetailActivity displays all the available information for a particular job. It is

composed of several TextView objects, which are laid out based on the definition

provided by an Android XML layout file. The JobDetailActivity object has a listener,

so it knows when job information has been updated.

4.4.8 CommandActivity

CommandActivity allows the user to enter a command, as they would normally do

with a command line interface (CLI). The CommandService is used to actually

perform the execution on the particular cluster master node. The result of the

command is displayed in the TextView in this activity.

4.4.9 CommandHistoryActivity

The CommandHistoryActivity simply displays a list of previously entered commands.

If one of them is clicked on, then the activity returns the string value to the Com-

mandActivity where it is displayed in the text entry box.
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4.4.10 JobsPreferenceActivity

The JobsPreferenceActivity provides a way for the user to change the shared prefer-

ences within the application. The options available in the shared preferences involve

the frequency at which the job information is updated by performing communication

with each of the cluster master nodes. There are three values to change. The first

option is whether to perform the update while the application is running in the

background. A CheckBox is provided for this. Then next option, the frequency to

perform the update when the application is in the background, has a default value

of 60 minutes. Finally, the frequency to perform the update when the application

is in the foreground, has a default value of three minutes. The layout, default

values, and labels for this activity is defined in a Android XML resource file, named

preferences.xml. This method of implementing a PreferenceActivity is typical in

Android applications [15].

4.5 Services

The Services provide the functionality to perform tasks on the data, which usually

involve tasks which take a long time. Sometimes, these tasks may take an indetermi-

nate amount of time, such as network communication. It is good practice to decouple

this functionality from the UI, in order to ensure the program is responsive to the

user. The following subsections describe the services which are used.

4.5.1 JobsService

The JobsService class is the workhorse of the application. Its main responsibility is to

keep the job information updated in each of the databases. It does this by setting a
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private SharedPreferences prefs;

private OnSharedPreferenceChangeListener prefsListener;

...

prefs = PreferenceManager.getDefaultSharedPreferences(getApplicationContext());

prefsListener = new OnSharedPreferenceChangeListener() {

@Override

public void onSharedPreferenceChanged(SharedPreferences sharedPreferences,

String key) {

updateFromPreferences();

}

};

prefs.registerOnSharedPreferenceChangeListener(prefsListener);

Figure 4.20: Setting Up an OnSharedPreferenceChangeListener

Timer to perform the next communication with the remote clusters. The time interval

to determine when the Timer will execute its task is stored in shared preferences.

One thing the JobsService must do is listen to see if these shared preferences get

changed by the user. In the onCreate method for JobsService the listener is set up.

The code snippet in Figure 4.20 shows how this is done. The updateFromPreferences

method reads the new values from the shared preferences.

Since Android services run on the main UI thread, along with the activities,

any long-running task, such as network communcation, must be performed on a

background thread. When the Timer executes its task, the background thread is

started, using the Runnable attribute of the JobsService, updateJobs. This attribute,

along with the other attributes and methods of the JobsService class is shown in the

class diagram in Figure 4.21.

One last function the JobsSevice performs is a notification when network commu-

nication is underway. The Notification classes provided by Android are used. As a

result, a notification icon is displayed in the area at the top of the phone’s display.

If the user drags the bar down to view the notification items, they can click or touch
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Figure 4.21: JobsService Class Diagram

the item for this application. The result will be the ClustersActivity is brought to the

foreground.



35

4.5.2 CommandService

The CommandService provides the means to execute a command on a given clus-

ter master node. The UI element that interacts with the CommandService is the

CommandActivity. The CommandService has a Gateway and a Cluster objects.

Figure 4.22 shows these attributes, along with the other attributes and methods.

Figure 4.22: CommandService Class Diagram
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CHAPTER 5

DISTRIBUTION

5.1 Web Site

The application is available for download from the website, http://cs.boisestate.

edu/~amit/research/pbs-app/. After downloading the .apk file onto the Android

device, the application can be installed. The Android device should be running

Android version 2.0 or higher.
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CHAPTER 6

CONCLUSION

6.1 Requirements

During the development process, the importance of the requirements phase was

discovered after the design and implementation stage was well under way. Specifically,

a potential customer for this application mentioned that their system architecture

involved a gateway to the Internet with several clusters connected to the gateway

machine. This is a typical configuration, which would probably have been determined

during a thorough requirements phase. However, as requirements change or features

are added, the development process must respond appropriately. This is one of the

central ideas behind the agile method of software development [8].

Fortunately, the design was robust enough that it was adapted to the additional

requirement. There were a few affected classes, and some classes were added, but the

majority of the design was unaffected.

6.2 Testing Challenges

Although unit testing is supported by Android and the ADT within Eclipse, there

are some limitations. There is little to no support for object mocking from libraries

such as jMock [5]. One of the main benefits for using mocking libraries such as these
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is the ability to mock concrete classes [13]. Unfortunately, the Dalvik VM does not

support the type of behavior these packages rely on [1].

6.3 Work to be Done

As with any user application, it never truly completed. The following subsections

describe the additional work to be done.

6.3.1 Optimizing Network Communication

Depending on the number of jobs in the cluster queue, network communication can

take a large amount of time. Some cases took over a minute. There are some things

that can be done to optimize network usage. Currently, the application downloads all

the job information from the cluster. In some cases, this may not be necessary. For

example, if the user is only interested in getting information on jobs for a particular

owner, it wouldn’t be necessary to update job information for all the jobs, all of the

time.

6.3.2 Additional User Features

As the need for additional user features arises, new versions of the application will

be released with new features implemented. Some examples of features may include

a more extensive set of commands to execute on cluster jobs.

6.3.3 User Interface Enhancements

The entire UI is composed of standard-looking Android components. This is okay

for a utility application. However, some improvements could be made, such as more
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graphics for buttons, instead of text. Also, different color schemes may improve the

look of the application. As new versions are developed, it is likely that the user

interface will see some improvements, as well.

6.3.4 Marketing the Application

Although, the Google Play store is one of the most useful tools for marketing an

Android application, a web page is also useful. A web page can provide more detailed

instructions for using an application, compared to what is usually offered within a

mobile application. And, the web page can direct potential customers to the Google

Play store, where the application can be purchased. Furthermore, the web page could

provide links to related tools.

6.3.5 iOS Version of this Application

Since there is a large user-base of iOS devices, it would make sense to have a version

of this application for these devices. I have been exploring how this application would

be implemented for iOS.

6.3.6 Optimizing the Application for Larger Screen Sizes

Android tablet devices have been coming to the market within the last year or two.

This application does not utilize the large screen real-estate available on these devices.

Improvements can be made to optimize the application for tablet devices.
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6.4 Experience

Developing an application for a mobile device turned out to be a different software

project, of sorts. There is some overhead that needs to be taken care of to manage

to possibility that the application could be shut down at any moment. This requires

a different mindset when developing the application. For example, in a traditional

desktop application, the user usually determines when the application ends, by choos-

ing exit from a menu or clicking the x in the corner of the main application window.

It is generally up to the user to decide if they want to save anything beforehand. This

isn’t the normal mode of operation for a mobile application.

I feel the experience gained from this project will help me complete future projects

successfully. This will be true for mobile applications and other projects. All phases

of the development process were experienced to a certain extent. However, there

could have been more emphasis on testing, up front. While developing some portions

of the project, this was the case. For example, unit testing was used, in the spirit

of test-driven development (TDD), for implementing the HostState classes. Other

portions of the project didn’t receive the same treatment, although it would have

been beneficial. And, I would have liked to explore the notion of design-driven testing

(DDT), which I have recently heard about.

Developing software is continually a learning process. With the advent of mobile

devices, there is some learning curve for developing for these new platforms. As of

this writing, mobile devices with multi-core processors are starting to come to market.

It will be interesting to see what the future holds for software development for these

devices and future ones.



41

REFERENCES

[1] Android Testing. https://sites.google.com/site/androiddevtesting/.

[2] Eclipse Foundation. http://www.eclipse.org.

[3] Git Hub. http://www.github.com.

[4] Google Play Android App Store. https://play.google.com/store/apps.

[5] jMock - An Expressive Mock Object Library for Java. http://www.jmock.org/.

[6] JSch - Java Secure Channel. http://www.jcraft.com/jsch/.

[7] LIBSSH2 - The SSH Library. http://www.libssh2.org/.

[8] Manifesto for Agile Software Development. http://agilemanifesto.org/.

[9] Ormlite - Lightweight Object Relational Mapping Java Package. http://

ormlite.com.

[10] SQLite. http://www.sqlite.org/.

[11] The Secure Shell Connection Protocol. http://www.ietf.org/rfc/rfc4254.

txt, 2006.

[12] Oleg Andreev. GitBox. http://www.gitboxapp.com, 2010.

[13] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided By
Tests. Addison-Wesley, 2010.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Indianapolis, IN, 1995.

[15] Reto Meier. Professional Android 2 Application Development. Wiley, Indianapo-
lis, IN, 2010.

[16] Barry Wilkinson and Michael Allen. Parallel Programming. Prentice Hall, second
edition, 2005.




	Boise State University
	ScholarWorks
	5-1-2012

	Android Application for Cluster Job Management
	Christopher Schance

	tmp.1474907181.pdf.2KC9r

