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ABSTRACT

There are many small and medium businesses with mid sized data sets that would

like to implement low budget data management systems that will perform well with

their exisiting budget and scale as more data is accumulated. One solution is to

choose one of the many high-performing and cost effective Big Data management

systems such as Hive and Phoenix. Another option is to use parallel database

management systems whick are high-peformance alternatives but are expensive and

can be complicated to implement. The purpose of this project was to compare Hive

and Phoenix with MySQL to see if either are viable alternatives to relational database

management systems for realtime data retrieval. The case study involved two complex

stored procedures given by a local company, iVinci Health, and three simulated data

sets with sizes ranging from 864.08 MB to 3.83 GB. The stored procedures take

user input, generate and execute a complex query and then return the results. A

web application was created to simulate how the data will be accessed in the real

application. The results show that for this case study, MySQL outperforms both

Phoenix and Hive. However, Hive will outperform MySQL as the data sets increase

significantly in size.
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Chapter 1

INTRODUCTION

1.1 Overview

This is a time where there is so much data being stored for many purposes. Businesses

can log every time some one visits a website, makes a payment, and many other things

that they can use to give them insight on their customers. This is creating a need

for new forms of Business Intelligence (BI) so businesses can have a competitive

edge. Getting, storing, and analyzing digital data, as done in BI, can provide insights

for organizations. The easiest part done in BI is usually storing and accessing the

data since a relational database management system (RDBMS), the most popular

database management system, is used to begin with most of the times. This will

be a challenge as the data starts accumulating into several gigabytes or terabytes as

well as when the company expands and gets more customers. That means that as

the data grows, they must modify their storage methods to a parallel RDBMS or

distributed among several networked systems that are managed by a distributed data

management system (DDMS). Parallel RDBMSs are expensive, but there DDMSs

alternatives that are open-source.

In this research, we will investigate the performance of open-source software

solutions on mid-sized data sets for a small to medium business using a realistic

case study. This research will extend a previous project that was done by Marissa
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Hollingsworth, which we will refer to as Marissa’s project from here on [10]. We

will implement solutions using traditional RDBMS (MySQL) and a DDMS (Hive and

Phoenix) to analyze the data. We will also create a web application for a user to input

data which will be used as input to the stored procedures and return the results. Our

goal is to determine if Hive or Phoenix are viable alternatives to MySQL for retrieving

results in realtime.

1.2 Marissa’s Project

This project builds upon a previous project done by Marissa Hollingsworth [10]. Both

projects were done for a local software company, iVinci Health, that provides tools

for customer information management and record analysis. This company evaluates

current and historical payment habits for each customer account and attempts to

predict future payment patterns based on past trends. They predict whether a

payment will be on time, late, or delinquent to help with collecting payments. For

example: if a customer has made late payments in the past, then the company can

expect the customer to continue making payments even though they may not be on

time, and avoid sending them to a collection agency [10].

A major concern for the company in the previous project was the expansion from

several hundred to several thousand customers, which would increase the amount

and complexity of data. This increase affects storage and access of data from their

current hardware system and will force them to use a more complex system. Several

risks are involved in getting a new hardware system while maintaining existing service

which include: the time to implement, cost, and data integrity and service availability

may be compromised as the data is being transferred. To mitigate these risks, the
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company decided to compare other systems before converting their entire business

architecture. Therefore the previous project addressed two of the company’s major

concerns: data storage model and the scalability of data analysis software [10].

Marissa was given the RDBMS solution with a small data set. She used Hadoop

to generate large data sets based on statistics from the data set she was given. After

generating the large data set, she implemented the solution to the same problem

in Hive and MapReduce. She concluded that MapReduce was more efficient than

MySQL with data sets of 1GB or larger and Hive was better with data sets larger

than 5GB. The following table shows the runtime performance of MySQL running on

the master node and MapReduce/Hive running on a master node plus four datanodes.

Table 1.1: Run-time (seconds) performance of MySQL server running on master node
and MapReduce/Hive running on master node plus four datanodes

# Accounts MySQL MapReduce Hive

500 4.20 81.14 535.1

1000 13.83 82.55 543.64

2500 85.42 84.41 548.45

5000 392.42 83.42 553.44

10000 1518.18 88.14 557.51

15000 1390.25 86.85 581.5

20000 2367.81 88.90 582.7

Although the project concluded that MapReduce and Hive perform better on

large data sets, the company had further requirements and did not use this solution.

Now they need to query the data in realtime for their new customer facing website.

The problem with the previous solution is that the results for Hadoop and Hive are

written to the Hadoop distributed filesystem (HDFS). However, the company needs

to directly access the results instead of having to get them from HDFS first. These

are the issues this project investigates.
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1.3 Structure

Chapter 2 provides an overview of the technologies that were used for this project.

We will give an overview of RDBMS and an overview and explanation of the Big

Data technologies used: Hadoop (MapReduce, HDFS), HBase, and Phoenix.

Chapter 3 presents the case study for a specific small to medium business, iVinci

Health. iVinci Health now creates patient billing and management tools for hospitals

and health care providers. We discuss the challenges they face and define their specific

case study. We explain their data storage model and give a brief overview of the two

queries they need to accomplish. We present the problem statement and then list

what this research project will try to accomplish.

In Chapter 4, we define the design and implementation for the MySQL, Phoenix,

and Hive solutions. First we discuss the MySQL solution and how it is setup. Then

we discuss the Phoenix solution and detail the data transformation and how the data

is loaded. Next we discuss the Hive solution and how it is setup. Finally, we discuss

the web application and how it connects to MySQL, Phoenix, and Hive to JDBC.

In Chapter 5, we discuss the results and analysis for this case study. Here we will

go into detail about the setup for our experiment including the hardware environment

and query types used to ensure thorough testing. We will also present the performance

results.

Chapter 6 presents the conclusion of the research project and future work.
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Chapter 2

BACKGROUND

2.1 Business Intelligence

Business Intelligence (BI) is used to help organizations make decisions. BI involves

the analysis of data with the intent of enhancing business performance by helping

organizations make more informed business decisions. BI technologies can be used to

provide historical, current, and predictive views of business operations.

BI systems have three components: data sources, data warehousing, and analytics.

Data sets can be defined as Big Data and can be sourced externally (i.e. media data,

reports, etc.) or internally (account transactions, reports, etc.). A data warehouse

contains a data storage that is designed to manage data gathered over time and

an analytical data storage designed to manage and retrieve a historical store for

predictive analysis. The last component includes the software tools used to access

the analytical data store and then do the prediction procedures.

In the early development stages, businesses typically use a RDBMS for both

operational and data warehousing. When the data sets are small, this strategy

works well because it is cost-effective, efficient, and simple. However, as the data

increases, this approach no longer works with BI analysis because of the architecture

of the database [11]. This is when distributed solutions should be considered since

they can be used with Big Data technologies like Phoenix and Hive. The following
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sections provide background information on RBDMS, Big Data analysis technologies

that are used in our research - Hadoop, Hive, HBase, Phoenix, and web application

technologies.

2.2 Relational Database Management Systems

Today’s most popular model is the relational database model. It is used to store

and access operational data that is optimized for real-time queries on relatively small

data sets. Data is organized as a set of tables with fields represented as columns and

records represented as rows in the table [2]. A RBDMS is the software in charge of

the storage, retrieval, security, deletion, and integrity of the data within the relational

database [1]. The data can be accessed and modified in many ways through Structured

Query Language (SQL) operations which are based on relational algebra.

RDBMS also have stored procedures which are operations that run within a

RDBMS and can be called internally or externally [1]. They are prepared SQL code

that will be saved and reused to avoid writing the same query over and over again.

Stored procedures also have the ability to accept parameters and build the query

according to the input data. They are especially beneficial in web applications with

forms that require a POST call. For example imagine we have a web application with

a form that requires a user to input a month, year, and user name. A stored procedure

could take this input and perform a long and complicated query and return the results.

This is useful because we can just call the stored procedure directly instead of sending

the whole query over every time especially if it is a long query or is commonly used.
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2.2.1 MySQL

MySQL is a freely available open-source RBDMS implementation [13]. It supports

many database features including: replication, partitioning, stored procedures, views,

MySQL Connectors used to build applications in multiple languages, and MySQL

Workbench, which is a visual tool used for modeling, SQL development, and SQL

administration [13].

A common MySQL deployment will include a server that is installed on one high-

end server that accepts local and remote client queries. The database is limited to the

hard drives of the servers so when the amount of data exceeds the storage capacity,

then the model will fail and a DBMS with an underlying distributed storage will need

to be deployed.

2.3 Big Data Analytics

While the RDBMS model is well suited and optimized for real-time queries on rel-

atively small data sets, it was not designed for Big Data analysis, largely due to

the limited storage capacities and the underlying write-optimized “row-store” archi-

tecture [18]. While write-optimization allows for efficient data import and updates,

the design limits the achievable performance of historical data analysis that requires

optimized read access for large amounts of data. Another drawback of the RDBMS

approach stems from the lack of scalability as the number of stored records expands.

To overcome this obstacle, we can move data to a parallel DBMS.

Parallel DBMSs share the same capabilities as traditional RDMBSs, but run on a

cluster of commodity systems where the distribution of data is transparent to the end

user [14]. Parallel RDBMSs have been commercially available for several decades and
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offer high performance and high availability, but are much more expensive than single-

node RDBMSs because there are no freely available implementations and they have

much higher up-front costs in terms of hardware, installation, and configuration [17].

In contrast, Hadoop can be deployed on a cluster of low-end systems and provides a

cost-effective, “out-of-the-box” solution for Big Data analysis. While some parallel

DBMSs may have relative performance advantages over open-source systems, such

as Hadoop, the set-up cost and cost to scale may deter small to medium businesses

from using them. Furthermore, Hadoop is better suited for BI analysis because it

allows for the storage and analysis of unstructured data, while parallel DBMSs force

the user to define a database schema for structured data [14].

Figure 2.1 shows a high level architecture for MySQL, Hive and Phoenix.

Figure 2.1: Architecture for MySQL, Hive, and Phoenix
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2.3.1 Hadoop Distributed Filesystem

Hadoop is an open-source implementation of the MapReduce framework developed

by Google. Hadoop provides several open-source projects for reliable, scalable, and

distributed computing [5]. Our project will use the Hadoop Distributed Filesystem

(HDFS) [6], Phoenix [15], and Hive [9].

The Hadoop Distributed Filesystem (HDFS) is a scalable distributed filesystem

that provides high-throughput access to application data [6]. HDFS is written in the

Java programming language. A HDFS cluster operates in a master-slave pattern,

consisting of a master namenode and any number of slave datanodes. The namenode

is responsible for managing the filesystem tree, the metadata for all the files and

directories stored in the tree, and the locations of all blocks stored on the datanodes.

Datanodes are responsible for storing and retrieving blocks when the namenode or

clients request them.

2.3.2 MapReduce

MapReduce is a programming model on top of HDFS for processing and generating

large data sets. It was developed as an abstraction of the map and reduce primitives

present in many functional languages [3, 7]. The abstraction of parallelization, fault

tolerance, data distribution and load balancing allows users to parallelize large compu-

tations easily. The map and reduce model works well for Big Data analysis because

it is inherently parallel and can easily handle data sets spanning across multiple

machines.

Each MapReduce program runs in two main phases: the map phase followed

by the reduce phase. The programmer simply defines the functions for each phase
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and Hadoop handles the data aggregation, sorting, and message passing between

nodes.There can be multiple map and reduce phases in a single data analysis program

with possible dependencies between them.

Map Phase. The input to the map phase is the raw data. A map function should

prepare the data for input to the reducer by mapping the key to the the value

for each “line” of input. The key-value pairs output by the map function are

sorted and grouped by key before being sent to the reduce phase.

Reduce Phase. The input to the reduce phase is the output from the map phase,

where the value is an iterable list of the values with matching keys. The reduce

function should iterate through the list and perform some operation on the data

before outputting the final result.

2.3.3 Hive

Implementing MapReduce jobs may take a few hours or even a few days, which is

why Facebook decided to develop Hive [19]. Hive is a layer on top of Hadoop that

allows the user to query and manage data using Hive Query Language (HiveQL).

Hive converts the queries into MapReduce jobs and HDFS operations with several

optimizations and then executes it on the Hadoop cluster [9]. It is convenient to

use because HiveQL is very similar to SQL, which is commonly used by in database

systems.

2.3.4 HBase

HBase is a NoSQL column-oriented database system that is distributed, persistent,

consistent, and is built on top of HDFS [4]. HBase lets us store and process large

amounts of data ac ross multiple machines. The benefits of using HBase are that
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it is cost effective, dependable, and is fast at retrieving data where it can give us a

random read/write access in realtime [8].

HBase has a basic client API that includes two commonly used features: scans and

filters. Scan is used to get data from HBase. It allows us to iterate through a range

of rows and lets you limit which columns are returned. Filters are more powerful

and effective for working with data. Filters are used to select certain columns or

cells based on a variety of conditions. There are many predefined filters provided by

HBase but it allows custom filters implementations.

HBase uses regions as the basic unit of scalability and load balancing. Contiguous

ranges of rows are stored together. Initially there is one region for a table and as

it becomes too large, it splits into two and so on. These regions are served by one

region server. A region server can have various regions and are in charge of handling

all requests for their regions (to add, remove, etc.). HBase also has a master server

that is in charge of assigning regions to the region servers for load balancing.

HBase has a coprocessor framework that provides a way to run custom code on

a region server. Coprocessors allow us to execute code on a per-region basis, giving

trigger-like functionality similar to that of stored procedures. HBase has some classes

based on the coprocessor framework which fall into two main groups: Observers

and Endpoints. Observers have callback functions (hooks) that are executed when

certain events occur, including user-generated, server-internal, and automated events.

Endpoints resemble stored procedures where we can invoke them anytime from the

client. The endpoint implementation will then be executed at the targeted region or

regions and the results from that execution will be returned to the client [4].
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2.3.5 Phoenix

While HBase provides a good framework for realtime random access read/write, there

is no well-defined API and comes with no built-in coprocessors. Apache Phoenix’s

mission is to become the standard means of data access through HBase with the use

of a well-defined, industry standard API. It is used by a few big companies for data

analytics including: ebay, Hortonworks, Dell, Intel, and Alibaba.com [15].

Apache Phoenix is an open source, parallel and relational database layer that is

built on top of HBase. It connects to a client-embedded JDBC driver to enable users

to create, delete, upsert, and query data, and to provide additional functionality used

by most SQL languages. They use their own language that is very similar to SQL.

Phoenix compiles the queries and statements from the client into a series of HBase

scans, filters, and coprocessors and then runs them to produce a result set that is

retrieved in the order of milliseconds for smaller queries and seconds when using

millions of rows [4].

2.4 Web Interface

Web applications are widely used by businesses to communicate and interact with

potential customers. A web application is a program running on a server that

responds to client requests to retrieve and submit data through the backend. They

can be deployed at a relatively low cost and typically don’t require the customer

to install anything other than a web browser. Our web application is built using:

HyperText Markup Language (HTML), Cascading Style Sheet (CSS), and JavaServer

Pages (JSP).
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2.4.1 HTML

HTML is used for writing web pages and is the building block for all web interfaces

[16]. HTML is written using HTML elements that consist of tags enclosed in angle

brackets. It describes the contents of the page such as paragraphs, tables, headings,

images, links, and lists.

2.4.2 CSS

CSS describes the way the contents in HTML should look such as fonts, colors,

and alignment [16]. The web originally did not use CSS and instead used HTML

formatting tags to indicate if the text should be a certain color, font, etc., but this

defeats the purpose of HTML. It lets the developer clearly distinguish between the

content and the way the content will look in a web browser.

2.4.3 JSP

JSP is a technology based on the Java language that is used to create dynamic,

platform-independent web applications [12]. JSP files are basically HTML files that

allow for special tags where we can add Java code to provide dynamic content. One

of the benefits of JSP is that it has access to the Java APIs, including the JDBC API

that can be used to connect to databases.

2.4.4 JDBC

JDBC is a Java database connectivity driver provided by Oracle [12]. JDBC is an

Application Programming Interface (API) for the Java programming language that

defines how a client may access a database.
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Chapter 3

DATA RETRIEVAL ANALYSIS: A CASE STUDY AND

PROBLEM STATEMENT

This case study was provided by a local software company, iVinci Health. This com-

pany specializes in patient billing and management tools for hospitals and healthcare

providers. They provide a website used by hospitals for finances and billing of health

services for their patients. The website shows patient billing, management tools, and

financial options. This case study will focus on two of the tools. The first one gets

user input including a start date, end date, and other input used to do data analysis

that returns the number of accounts that paid, the payment agency, and the total

amount paid for every month between the start and end date. The second chart gets

user input to do data analysis that gives a payment summary that goes back up to

three years. This case study will strictly focus on getting accurate results and testing

the retrieval speeds to see if there is a viable alternative to RDBMS solution.

This company keeps expanding and attaining more customers which means they

have more data for the data analysis. This was the concern investigated in Marissas

project that used Hadoop and Hive to show they are better for doing the predictive

data analysis on large data sets. However, the new challenge is that the results were

stored in HDFS and there is no direct way to get the results from HDFS. They

have made several changes since Marissa’s project including the website for their
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customers. The new challenge that iVinci Health wants to address is whether there

is a viable alternative to the RDBMS solution for real-time data retrieval using a

web interface. The company provided three simulated data sets that were to be used

as long as everything is secure (a Non-Disclosure Agreement was signed). The data

provided was not actual client data. It was produced and constructed to be realistic

and representative of the field structure and data typically used in hospital billing

systems.

3.1 The Case Study

3.1.1 Data Storage and Relationship Model

The company uses RBDMS for data management. The data includes the following ta-

bles: RptAllOperationsBatchCollectionsReportSummary, RptAllOperationsBatchCol-

lectionsReportPaymentSummary, and RptCashCollectionsMonthlyReportSummary

RptAllOperationsBatchCollectionsReportSummary: The primary key is the

RptAllOperationsBatchCollectionsReportSummaryID attribute. Each RptAl-

lOperationsBatchCollectionsReportSummary entity stores 75 columns including

batchYearMonth, batchFiscalYear, location, as well as many others.

RptAllOperationsBatchCollectionsReportPaymentSummary: This entity has

a foreign key, RptAllOperationsBatchCollectionsReportSummaryID, from Rp-

tAllOperationsBatchCollectionsReportSummary. Each RptAllOperationsBatch-

CollectionsReportPaymentSummary entity stores 79 columns.

RptCashCollectionsMonthlyReportSummary: This entity does not have a pri-

mary or foreign key. It stores 72 columns including insurancePlans, paymentSource,

location, accounts, and transactionYearMonth.
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3.1.2 Data Retrieval

iVinci Health uses stored procedures to retrieve the data stored in the tables. These

stored procedures accept input parameters that are used to create and run a query.

Data retrieval is done though join, union, and other SQL queries. The input parame-

ters to the stored procedures are inserted from the web application form. The results

are returned as a table on the web application. There are two stored procedures used

for this case study:

1. spRptCashCollectionsMonthlyReport: retrieves data from the RptCashCol-

lectionsMonthlyReportSummary table.

2. spRptAllOperationsBatchCollection: retrieves data from RptAllOperations-

BatchCollectionsReportSummary and RptAllOperationsBatchCollectionsReport-

PaymentSummary tables.

The spRptCashCollectionsMonthlyReport stored procedure takes in seven input

parameters: pivotBy, viewPaymentsBy, billingApplicationID, filter, startYearMonth,

endYearMonth, and viewDatesBy. The filter input parameter is XML with 13 ele-

ments. Each element has a key and a value where they key is the column name of

the table and value is a list of values for that column. The value will contain “All” if

a particular column will not be filtered.

The spRptAllOperationsBatchCollection stored procedure takes in four input pa-

rameters: billingApplicationID, filter, paymentType, and excludeCash. The filter input

parameter is XML with 24 elements. Each element has a key and a value where the

key is the column name of the table and value is a list of values for that column or

“All” if there will not be a filter for that particular column.
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Figure 3.1: Generalized query generated by the spRptCashCollectionsMonthlyReport
stored procedure

SELECT substring ( datename ( mm , convert ( datetime , convert (
varchar (8 ) , TransactionYearMonth ) + ’01’ , 112) ) , 0 , 4) + ’

-’ + substring ( convert ( varchar (8 ) , TransactionYearMonth )
, 3 , 2) ) as val1 , TransactionYearMonth as val2 ,
other_fields

FROM RptCashCollectionsMonthlyReportSummary pf

WHERE input_parameters_conditions

GROUP BY TransactionDate , PaymentAgencyName

UNION
SELECT substring ( datename (mm , convert ( datetime , convert (

varchar (8 ) , TransactionYearMonth ) + ’01’ , 112) ) , 0 , 4)+ ’-

’ +substring ( convert ( varchar (8 ) , TransactionYearMonth ) ,
3 , 2) ) as val1 , TransactionYearMonth as val2 , other_fields

FROM RptCashCollectionsMonthlyReportSummary pf

WHERE input_parameters_conditions

GROUP BY TransactionDate

ORDER BY val1 , val2 asc

Figure 3.1 shows that the query generated by the stored procedure is the union

of two queries. Both of the queries are similar, the differences are that the first query

groups by one more column, PaymentAgencyName, and the conditions can vary more

based on user input. The query results will be sorted in ascending order based on

the zValue and otherValue fields, which are values of a particular column in the

RptCashCollectionsMonthlyReportSummary table.

Figure 3.2 shows that the second generated query consists of a nested query,

right join, order by, and other functions. The inner query retrieves values from the

RptAllOperationsBatchCollectionsReportSummary table based on some of the input

parameters that include: startDate, endDate, and paymentSource. Results will be

returned for all months between the start and end date and will do this for each
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Figure 3.2: Generalized query generated by the spRptAllOperationsBatchCollection
stored procedure

SELECT substring ( datename (mm , convert ( datetime , convert (
varchar , taobcp . YearMonth ) + ’15’ ) ) , 0 , 4) + ’-’ +
substring ( convert (varchar , taobp . YearMonth ) , 3 , 2) as
batch , . . . , sum( case when convert ( int , replace ( aobcp .
Months , ’+’ ,’’ ) ) = 1 then aobcp . TransactionAmount else 0
end) paymentMonth1 , . . . .

FROM (
SELECT some_fields

FROM RptAllOperationsBatchCollectionsReportPaymentSummary

WHERE input_parameters_conditions

) aobcp

RIGHT JOIN (
SELECT some_fields

FROM RptAllOperationsBatchCollectionsReportSummary aobc

WHERE input_parameters_conditions

GROUP BY Year , Month
) AS taobcp

ON taobcp . FiscalYear = aobcp . FiscalYear and taobcp . YearMonth
= aobcp . YearMonth

GROUP BY taobcp . FiscalYear , taobcp . YearMonth , aobcp .
PaymentSource , taobcp . Date , taobcp . Listed , taobcp .
adjustedFace , taobcp . accountCount

ORDER BY taobcp . YearMonth , aobcp . PaymentSource

payment source that can include patient cash, payor cash, or charity.

There is a right join with RptAllOperationsBatchCollectionsReportPaymentSum-

mary which joins the results from two similar queries. The right join takes place

when the fiscal year and fiscal month on both tables are the same.

There is a group by with seven different fields: fiscalYear, fiscalMonth, pay-

mentSource, batchDate, listed, adjustedFace and accountCount. The results are sorted

in ascending order based on two columns: batchYearMonth and paymentSource.
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The select statement of the outer query formats the value of a date, calculates

how much has been paid in the first 12 months, 18 months, 24 months, 36 months,

and calculates the liquidation. It uses substring, datename, and convert to format the

date. For example, if the yearMonth is 201202 (February 2012) then it will format it

to print the first three letters of the month followed by the last two digits of the year:

Feb 12.

3.2 Problem Statement

iVinci Health is faced with challenges pertaining to Big Data:

1. They want direct real-time access to data through stored procedures (or some-

thing similar).

2. The database access times increase drastically as the amount and complexity

of data accumulates over time.

To investigate solutions to these challenges we want to know if we can use a distributed

model, such as Hive or Phoenix, as viable alternatives to RDBMS stored procedures

to access data. We know Hive performs well for Big Data analysis but how will it

perform in this particular case? Thus, the goals of the research project are to:

• Design and implement a web application that will directly access data based on

user input.

• Implement and compare a Phoenix solution.

• Implement and compare a Hive solution.

Therefore, we will address the following questions:

1. Is there a viable alternative that will return results close to realtime and out-

perform RDBMS?
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2. Will the existing data schema work with each solution?

3. How much cost and effort will it take to deploy each solution?
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Chapter 4

DESIGN AND IMPLEMENTATION

The design and implementation process of this case study will be split into four

parts: MySQL solution, Phoenix solution, Hive solution, and web application imple-

mentation. First, we will discuss the implementation of the MySQL solution, then

the Phoenix solution, followed by the Hive solution. Finally we will discuss the web

application implementation that connects the user interface to MySQL, Phoenix, and

Hive solutions respectively to retrieve the results.

4.1 MySQL Solution

iVinci Health already has a RDBMS implementation for the data retrieval for this

case study using SQL server which was an advantage in terms of translating the

schema and stored procedures into a MySQL solution. We developed this solution

with the following steps:

1. Define schema for RptCashCollectionsMonthlyReportSummary, textitRptAllOp-

erationsBatchCollectionsReportPaymentSummary, and textitRptAllOperations-

BatchCollectionsReportSummary tables.

2. Implement MySQL script to load data into the tables.

3. Update existing SQL stored procedures to execute in MySQL.
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iVinci Health supplied the database schema and stored procedures for their SQL

solution, which were easily converted to MySQL with slight syntax modifications.

They also provided three simulated data sets, so a script was created to load these

data sets into the appropriate tables. The load script is a series of statements

in the following form: ‘load data local infile <filename> into table <table

name>’ where we specified what the fields are terminated by, what the lines are

terminated by, and to ignore the first line since it contains the names of the columns.

4.2 Phoenix Solution

iVinci’s SQL solution was also similar to the solution implemented for Phoenix. The

solution was developed in the following steps:

1. Define the schema for the three tables.

2. Implement script to load the data sets into the appropriate tables.

3. Translate the SQL stored procedure to a Java program that is ran by JSP.

Transforming the Data: The data given by iVinci Health had to be changed. The

data given by iVinci was separated by the ‘|’ character and we had to change

it to be separated by commas since csv files are used for bulk loading. We had

to add a column to the RptCashCollectionsMonthlyReportSummary table to be

used as the rowkey since this table doesn’t have a primary key that Phoenix

supports. Phoenix does not offer the option to auto-increment a field so we had

to generate the auto-increment rowkey values before loading the data into the

tables.

Schema and Loading Data into Tables: The schema for the Phoenix database

was derived from the schema given by iVinci Health with minimal syntax
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changes and adding the key column discussed above. Loading the tables is

very different than the MySQL solution. Phoenix provides two ways to load

the data into the tables: bulk load using MapReduce or a single-threaded psql

python script. To save time, MapReduce was chosen because it is distributed,

however, since there is only one reducer it was relatively slow even though it

did allow for multiple mappers. A Phoenix client jar file was used to execute

the CsvBulkLoadTool MapReduce job. The Hadoop job was executed us-

ing a command similar to the following:‘hadoop jar <phoenix client jar>

org.apache.phoenix.mapreduce.CsvBulkLoadTool --table <table name> --input

<files to load>’.

Translating SQL Stored Procedures : Since Phoenix does not offer stored pro-

cedures, we implemented an equivalent solution in Java since JSP is used for

the web application. The Java solution accepts input parameters and generates

a query that will be executed and return the results.

4.3 Hive Solution

Hive Query Language (HiveQL) is very similar to SQL, so we based our Hive solution

on iVinci’s SQL solution. This solution was very similar to MySQL and the steps

taken for this implementation were:

1. Define schema for RptCashCollectionsMonthlyReportSummary, textitRptAllOp-

erationsBatchCollectionsReportPaymentSummary, and textitRptAllOperations-

BatchCollectionsReportSummary tables.

2. Implement HQL script to load data into tables.

3. Translate the SQL stored procedures to a Java equivalent program ran by JSP.
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The data did not have to be transformed for the Hive solution. However, there

were some changes that had to be made in the schema to avoid transforming the data.

At the end of the defined schema we specified that the fields where terminated by

‘|’ instead of specifying this when we loaded the data. To load the data we used a statement of the following form: texttt’load

data inpath ¡files to load¿ into table ¡table name¿;’

4.4 Web Application Implementation

Now that we described the solutions for this case study we need a way to have direct

access to the results, which is through a web application. JSP was chosen for the

home page and the results page because Phoenix already connects through JDBC

and Hive comes with libraries to connect to JDBC. Figure 4.1 models the flow of the

web application:

4.4.1 Home Page

The home page is a JSP page that contains a form with all the required and optional

fields used in the stored procedures or Java equivalent program to generate the query

to be executed. There are six home pages: one for each solution and one for each

stored procedure or stored procedure equivalent. In the following code snippet we

can see how the form looks for the MySQL spRptAllOperationsBatchCollection stored

procedure home page.

<html>

<head>

<title>All Operations </title>

<link rel="stylesheet" type="text/css" href="index.css"/>

</head>
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Figure 4.1: JSP flow diagram

<body class="body">

<div id="header">

<h1>All Operations Batch Collection Report</h1>

</div>

<form method="post" action="AllOpsMySQLResults.jsp">

Billing Application ID:

<input type="text" name="billingapplicationid"/>

Payment Type:

<input type="text" name="paymenttype"/>

Exclude Cash:

<input type="text" name="excludecash"/>

<h1>Filters:</h1>

Initial Admit Dept ID:

<input name="initialadmitdeptid" type="text"/>

Primary Payor ID:
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<input name="primarypayorid" type="text"/>

.....

Next Statement Within Days ID:

<input name="nextstatementwithindaysid" type="text"/>

<input type="submit" value="Submit" name="indexSubmit">

</form>

</body>

</html>

4.4.2 Results Page

From the previous code snippet we can see that after the user clicks the submit button

it goes to the results JSP page. The results page will show a formatted table with

the results or it will display a message indicating that no results were found. There

are six JSP result pages: one for each stored procedure or Java equivalent program

and for each technology. The following code snippet shows the results JSP file:

<html>

<head>

<link rel="stylesheet" type="text/css" href="index.css"/>

<title>Cash Collections Results</title>

</head>

<body>

<%

//Connect to JDBC

AllOperations ao = new AllOperations(request);

String table = ao.runQuery("mysql", JDBCConnection);

%>

<%= table %>

</body>

</html>

The code snippet shows it uses JDBC to connect to the appropriate database and

how an AllOperation object is created and how it calls the run query method. The

run query method takes in two parameters: one String that specifies what technology
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to use and the JDBC connection so it can run and retrieve the query results using

this connection. One parameter in the home page form requires the user to enter the

query type: user input, all, half, and small. The user input takes the input from the

user and the others will call a method to generate the query with already defined

input values.

4.4.3 Using JDBC

Connecting to JDBC using MySQL was simple. We can connect using a statement

similar to the following:

Class.forName("com.mysql.jdbc.Driver");

Connection conn = DriverManager.getConnection("jdbc:mysql://host:port/db",

"username", "password");

...

conn.close();

Connecting to JDBC using Phoenix was also simple since Phoenix was designed

so results could be accessed using JDBC. The HBase client and Phoenix client jars

need to be in the build path. We can connect to JDBC by using code similar to:

Class.forName("org.apache.phoenix.jdbc.PhoenixDriver");

Properties prop = new Properties();

Connection conn = DriverManager.getConnection("jdbc:phoenix[:zk_quorum]

[:zk_port][:zk_hbase_path][:headless_keytab_file:principal]");

....

conn.close();

Connecting JDBC to Hive was the most complicated one. We have to have a few

jar files in the build path: hive-exec, hive-jdbc, and hive-service. Before connecting

to JDBC, HiveServer2 (HS2) and beeline must be started since this will be the client



28

JDBC will connect to. HS2 is a server interface that enables clients to execute queries

and return the results. Beeline is a JDBC client that depends on HS2. To use JDBC

we had to use statements similar to the following:

Class.forName("org.apache.hive.jdbc.HiveDriver");

Connection conn = DriverManager.getConnection("jdbc:hive2://<host>:<port>",

"<user>", "<password>");

...

conn.close();

Note from the previous code we must use the host and port where beeline is

running.
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Chapter 5

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter will outline RDBMS and DDMS performance comparison for our case

study using our solutions from Chapter 4. For each solution we will discuss the

efficiency and use the results to determine if Phoenix or Hive are viable alternatives

to RDBMS with results retrieved in realtime.

The experiment was conducted on the Boise State University Onyx cluster. The

cluster configurations and hardware specifications are in Appendix A. The experi-

ments were executed one at a time to ensure we had exclusive access to the server

and cluster resources. Before each execution we also made sure all the nodes were

up and made sure the nodes were not being used by another user to ensure exclusive

access to resources. Each average is calculated from an average of two program

executions.

5.1 Setup

MySQL was installed on the master node of the onyx cluster which is a 6-core hyper-

threaded processor with a total of 24 processing threads. We installed the 10.0.20-

MariaDB (x86 64) version of the MariaDB Server release for Linux on the master

node of Onyx. The tables were deleted and reloaded for each experiment to ensure

that queries were not stored in memory.
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We decided to install Hadoop 1.2.1 after seeing that Hadoop 2.4.1 used too many

resources for Onyx and gave runtimes up to 50% more than Hadoop 1.2.1. Hadoop is

setup to run Java 1.8.0-65. We had to configure the HDFS namenode and MapReduce

JobTracker on the Onyx master node along with four other nodes that are the HDFS

datanodes and MapReduce TaskTrackers which used 8 processing threads. Having

the master node as the namenode does not really add any more computing power for

Hive or Phoenix. The namenode is in charge of the directory tree of all the files in

the filesystem and tracks where the data is stored across the cluster [20] so it does not

provide any additional computing power for Hive or HBase in this experiment. For

the four datanodes we set the number of map tasks per job to be eight, one for each

core, and set the maximum number of map and reduce task to be set to 16 and 17,

respectively. We also setup the cluster for two and four datanodes where two nodes

was set to have a maximum of four map tasks per job and eight reduce tasks per job

and eight nodes was set to have a maximum of 16 map tasks per job and 17 reduce

tasks per job. Data for the namenode and datanodes are stored on a ext4 directory

of the local filesystem. To ensure that the data was distributed evenly across the

datanodes, we reformatted HDFS after each benchmark test.

We installed version 1.0.0 of Hive and configured it to run on top of the HDFS

specified above.

We installed version 0.94.26 of HBase and configured it to run on top of the HDFS

specified above. HBase uses the HDFS namenode (onyx master) as the HMaster, the

HDFS datanodes as the regionservers, and the zookeeper quorum consists of only the

onyx master since the cluster was small. Having the master node as the zookeeper

quorum does not really add any more computing power to HBase or Phoenix. The

zookeeper quorum is a list of servers used by zookeeper, which is a centralized service
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to enable synchronization across a cluster [4]. HBase was configured to use the built-in

zookeeper by setting HBASE MANAGES ZK to true in the hbase-env.sh file.

We installed version 3.3.1 and 3.1.0 of Phoenix and configured it to run on top of

HBase. Two versions were necessary since the all operations method works only with

version 3.3.1 since this is when inner joins became available and the cash collection

method only works with version 3.1.0. Phoenix 3.3.1 causes cash collections to time

out after 10 minutes due to not having enough resources, but it worked on Phoenix

3.1.0.

5.2 Execution

iVinci Health provided simulated three data sets for each table. The size for these

data sets range from 864.08 MB to 3.83 GB. The following table shows the size,

number of rows, and number of columns for each table. Notice we shorted the

tables names. RptAllOperationsBatchCollectionsReportSummary was shortened to

Account, RptAllOperationsBatchCollectionsReportPaymentSummary was shortened

to Payment, and RptCashCollectionsMonthlyReportSummary was shortened to Cash

Collections.

Table 5.1: Data Set Information

Table Name Size Rows Columns

Account 864.08 MB 1,444,417 75

Payment 1.07 GB 1,711,465 79

Cash Collections 3.83 GB 5,787,276 72

We had to load the data before running any tests. The loading times for each

technology varied. Phoenix was the slowest followed by MySQL and Hive. Hive was

the fastest and was able to load from HDFS in matter of seconds. MySQL took a
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few minutes: loading the Account table took about 3.5 minutes, Payment table took

about 2 minutes, and Cash Collections table took about seven minutes. Phoenix

took several minutes and the number of nodes in the cluster didn’t make a difference

since there was only one reducer. Phoenix took from 28-35 minutes to load the Cash

Collections table, 6-8 minutes to load the Account table, and 7-9 minutes to load the

Payment table. The times to load won’t be much of an issue since this will in theory

only happen once.

We tested each stored procedure solution by generating three queries with different

filters. One uses filters to do analysis on all data by setting filters to all possible values,

the second uses XML filters to do analysis on about half of the data by setting the

XML filters to be half of all possible values, and the last one uses filters to analyze

a small amount of data by setting XML filters to use a small number of all possible

values. We will refer to them as all, half, and small.

We implemented three scripts to help automate the execution process for each

solution: Hive, Phoenix, and MySQL. These scripts perform the steps below, in

order.

• MySQL– (1) load schema to MySQL database, (2) load given data to MySQL

database tables, (3) create the stored procedures (4) execute and time the

queries and append the result to a file.

• Hive– (1) create and reformat the Hadoop cluster and ensure HDFS status,

(2) load the data sets to HDFS and create the Hive tables, and (3) execute and

time the queries and append the result to a file.

• Phoenix– (1) create and reformat the Hadoop cluster and ensure HDFS status,

(2) load the data sets to HDFS, (3) run HBase on top of HDFS, (4) create and

load Phoenix tables, and (5) execute and time the queries and append the result
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to a file.

5.3 Results

We used the sizes specified in Table 5.1 of the previous section. We also designed

three unique queries where one query used the XML filters to get all the data, another

used XML filters to retrieve approximately half of all the possible values, and the last

used XML filters to select a small number of possible values. Additionally, the All

Operations stored procedure equivalent for Phoenix ran on version 3.3.1 and the Cash

Collections stored procedure equivalent for Phoenix ran on version 3.1.0.

Table 5.2 shows the performance results of MySQL, Phoenix, and Hive for the

three different query types and the two stored procedures. MySQL ran on the master

node while Phoenix and Hive ran on the master node of onyx and two datanodes.

The Hive queries were configured to use four MapReduce jobs for Cash Collections

and five MapReduce jobs for All Operations.

Table 5.2: Run-time (seconds) performance of MySQL server running on master node
and Phoenix and Hive running on master node plus 2 datanodes

Stored Procedure Query Type MySQL Phoenix Hive

All Operations All 47.35 Time Out 87.29

All Operations Half 14.34 60.27 85.79

AllOperations Small 20.59 60.6 85.50

Cash Collections All 58.74 361.59 92.51

Cash Collections Half 31.25 195.61 89.61

Cash Collections Small 31.24 197.72 92.02

Table 5.3 shows the performance results of the same configuration but with double

the datanodes for a total of four.
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Table 5.3: Run-time (seconds) performance of MySQL server running on master node
and Phoenix and Hive running on master node plus 4 datanodes

Stored Procedure Query Type MySQL Phoenix Hive

All Operations All 47.35 Timed Out 58.54

All Operations Half 14.34 64.11 62.10

AllOperations Small 20.59 57.56 58.06

Cash Collections All 58.74 327.65 85.09

Cash Collections Half 31.25 190.03 75.78

Cash Collections Small 31.24 190.10 76.41

Table 5.4 shows the performance results of the same configurations as before but

with double the datanodes for a total of eight.

Table 5.4: Run-time (seconds) performance of MySQL server running on master node
and Phoenix and Hive running on master node plus 8 datanodes

Stored Procedure Query Type MySQL Phoenix Hive

All Operations All 47.35 Timed Out 58.80

All Operations Half 14.34 56.44 58.7

AllOperations Small 20.59 50.66 58.23

Cash Collections All 58.74 337.96 56.78

Cash Collections Half 31.25 224.33 55.84

Cash Collections Small 31.24 212.55 54.55

MySQL outperforms Hive and Phoenix for every query except the Cash Collections

stored procedure equivalent for the “all” query type. Hive outperformed MySQL by

approximately two seconds when using eight datanodes. The data set was relatively

small, so it wasn’t surprising that MySQL outperformed the others. The results for

Phoenix were disappointing, but not surprising since it is a relatively new open source

project. The Phoenix performance could be explained by its additional layer on top

of HBase so therefore Phoenix needs more resources. The Phoenix All Operations

and “All” query type timed out after ten minutes caused by not being able to obtain

sufficient resources.
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In all of the Hive runs for two, four, and eight nodes, the runtimes are consistent

for each query type. For example, for the All Operations with two nodes, the times

ranged from 85.50 seconds to 87.29 seconds and there is only a two second difference

between the “half” query type and “all” query type. This remains true for all Hive

runtimes, which is a good indicator that the runtime will remain relatively constant as

the data sets increase in size. In contrast, Phoenix and MySQL runtimes increase with

the amount of data. In the Phoenix Cash Collections stored procedure equivalent,

the runtimes for “all” query type is almost double the half query type. In the MySQL

All Operations method, the runtime for the “all” query type is about three times the

runtime of the half query type. MySQL Cash Collections runtime for the “all” query

type is about twice as much as the half query type. This is an indicator that as the

data sets size increase, the runtimes will increase more dramatically for MySQL than

Hive.

Table 5.5: Run-time (seconds) performance of MySQL server running on master node
with double the data.

Stored Procedure Query Type Regular Time (sec) Double Time (sec)

All Operations All 47.35 113.63

All Operations Half 13.34 27.06

AllOperations Small 20.59 38.89

Cash Collections All 58.74 118.53

Cash Collections Half 31.25 60.95

Cash Collections Small 31.24 57.18

To validate our hypothesis that the MySQL would increase more dramatically than

Hive, we doubled our data set and ran the same runtime benchmarks on MySQL and

Hive with the same configurations specified in the setup. We duplicated the data,

assigning unique primary key values to the new data. For this experiment we only

ran them for MySQL and Hive using the same configurations specified in the setup.



36

Phoenix was excluded because our previous results showed it is not a feasible solution.

Table 5.5 shows the results for MySQL, where Double Time is the runtime on double

the data set. Regular Time is the time to run on the original data set. Similarly,

Table 5.6 shows the results for Hive. From these results, we can see that the times for

MySQL doubled while the runtimes for Hive remained constant for HDFS running

on four and eight datanodes. We can conclude that Hive takes approximately 55 to

60 seconds to get up and running.

Table 5.6: Run-time (seconds) performance of Hive running on master node and 2,
4, and 8 datanodes with double the data.

# Nodes Stored Procedure Query Type Regular Time(sec) Double Time (sec)

2 All Operations All 87.29 94.27

2 All Operations Half 85.79 89.65

2 AllOperations Small 85.50 89.66

2 Cash Collections All 92.51 131.11

2 Cash Collections Half 89.61 115.87

2 Cash Collections Small 92.02 113.49

4 All Operations All 58.54 67.51

4 All Operations Half 62.10 62.76

4 AllOperations Small 58.06 59.70

4 Cash Collections All 85.09 86.16

4 Cash Collections Half 75.78 76.07

4 Cash Collections Small 76.41 79.80

8 All Operations All 58.80 60.61

8 All Operations Half 58.7 60.43

8 AllOperations Small 58.23 61.39

8 Cash Collections All 56.78 64.23

8 Cash Collections Half 55.84 60.30

8 Cash Collections Small 54.55 61.08

16 All Operations All - 59.77

16 All Operations Half - 58.97

16 AllOperations Small - 62.33

16 Cash Collections All - 60.15

16 Cash Collections Half - 56.94

16 Cash Collections Small - 55.33

In Table 5.7 we can compare the runtimes for MySQL and Hive using sixteen
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datanodes with the doubled data sets. We can see that Hive outperforms MySQL

for the All Operations stored procedure equivalent with “all” query type. Hive also

outperforms MySQL with the Cash Collections stored procedure equivalent for all of

the query types!

Table 5.7: Run-time (seconds) performance of MySQL running on the master node
and Hive running on master node plus 16 datanodes with double the data.

# Stored Procedure Query Type MySQL Time Hive Time

All Operations All 113.63 59.77

All Operations Half 27.06 58.97

All Operations Small 38.89 62.33

Cash Collections All 118.53 60.15

Cash Collections Half 60.95 56.94

Cash Collections Small 57.18 55.33

In summary, neither solution is close to realtime, but MySQL outperforms Phoenix

by a dramatic margin and Hive by a small margin. From Table 5.5, we can conclude

that when the data sets double, Hive outperforms MySQL for the All Operations

“all” query type with two, four, eight, and sixteen nodes. Hive also performed better

with all of the Cash Collections query types with sixteen nodes and Cash Collections

“all” and “half” query types for eight datanodes. Therefore, MySQL is the best

candidate solution for this particular case study until there is a significant increase

in data. Phoenix is definitely not a viable alternative, but when the data increases

significantly, Hive proves to be a viable alternative. o



38

Chapter 6

CONCLUSION

In this chapter, we summarize our findings, discuss the results and implications, and

future directions for iVinci Health.

6.1 Summary

In Chapter 1 we introduced this research project. We provided a summary of what

Marissa’s project entailed and the results and timings of her project as well as briefly

introduced the issues preventing the company from adopting her solution.

In Chapter 2 we give a background for BI concepts for storage and access. We

also discuss the advantages and disadvantages for RDBMS. We summarized Big Data,

which is likely to become a problem even for small to medium businesses. At the end

we discussed Hadoop, MapReduce, Hive, HBase, Phoenix, and web interface concepts

and relevant information that is necessary for this case study.

In Chapter 3 we introduced the case study for iVinci Health and the problems with

Marissa’s project and how we attempted to solve them in more detail. We discussed

the data storage and access models, along with a description of how the data was

retrieved using stored procedures. We also went over what the two iVinci Health

stored procedures do and a general outline of the queries generated and executed.
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Then we formally present the problem statement and discuss the goals and what we

want to accomplish for this research project.

In Chapter 4 we defined the design and implementation for the RDBMS and

DDBMS solutions. We discussed in detail the components for the MySQL, Phoenix,

and Hive implementation of the solution. Finally, we discussed in detail what the

web application solution entails and how each solution connected to JDBC.

In Chapter 5 we discussed a performance comparison for our experiment using

RDBMS and DDMS. We discussed how the experiment was setup that included the

version of the technologies used. Then we explained how we executed each solution

and the steps taken. Finally, we presented the performance results for the experiment

runs. We observed that neither Hive or Phoenix are able to outperform MySQL for

this case study, but the Hive runtimes with the double data sets is evidence that this

will change with a significant increase in data sets.

6.2 Results and Implications

From the performance comparison between MySQL, Phoenix, and Hive, we can

conclude that:

1. Neither of the solutions were retrieved in realtime.

2. MySQL performs the best for this case study.

3. Phoenix performance was the worst and is definitely not a viable alternative to

MySQL at the moment,

4. Hive performance remained constant for all cluster sizes and will most likely

remain constant with larger data sets. The number of MapReduce jobs also

remained constant for All Operations and Cash Collections procedures.
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5. Hive will outperform MySQL as data sets increase dramatically in size.

Based on these conclusions we recommend to iVinci Health to keep their existing

RDBMS solution until their data set increases.

6.3 Future Direction

It would be interesting to further investigate RDBMS and DDMS implementations

to find a faster solution since the runtimes were not close to realtime for any of the

solutions.

• RDBMS

1. Benchmark performance of several RDBMS implementations including

MySQL Enterprise Edition, Microsoft SQLServer, PostresQL, and Oracle.

2. Investigate the performance ratio of parallel database solutions.

• DDMS

1. Hive– perform payment analysis benchmarks on various cluster configura-

tions.

2. Custom Distributed solution– It would be interesting to create our own

implementations for HBase right join, union, etc instead of using Phoenix.

We would like to implement them to be more efficient for our case study.

3. Explore other Big Data technologies like Pig and MongoDB.

4. Cluster– run the experiments on a dedicated cluster with full access and

no resource limitations.

We would also like to generate larger data sets to at what point DDMS outperforms

RDBMS.
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Appendix A

CLUSTER CONFIGURATION

A.1 Onyx Cluster Configuration

The benchmark experiments for the HBase and Hive solutions were executed on

the Department of Computer Science, Onyx cluster at Boise State University. The

cluster has one master node (node00) and 62 compute nodes (node01-node62), which

are connected through a private Ethernet switch. Figure A.1 shows the layout of this

cluster.

Figure A.1: Boise State University, Department of Computer Science, Onyx Cluster
Lab
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Master node (node00) is an Intel(R) Xeon(R) E5530 @ 2.6GHz processor with

hyper-threading. Each node has 12 cores, 32GB RAM and SCSI RAID disk drives.

Each computer node (node01-node62) is an Intel(R) Xeon Quad-core 3.1-3.2GHz

with 8GB RAM and 250GB disk. Each node has a NVIDIA Qudaro 600 graphics

card with 96 cores and 1 GB memory.
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