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Scalability of Incompressible Flow Computations on Multi-GPU

Clusters Using Dual-Level and Tri-Level Parallelism

Dana A. Jacobsen∗, and Inanc Senocak†

Boise State University, Boise, Idaho, 83725

High performance computing using graphics processing units (GPUs) is gaining popularity in the scien-
tific computing field, with many large compute clusters being augmented with multiple GPUs in each node.
We investigate hybrid tri-level (MPI-OpenMP-CUDA) parallel implementations to explore the efficiency and
scalability of incompressible flow computations on GPU clusters up to 128 GPUS. This work details some
of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain
parallelism using OpenMP for intra-node and MPI for inter-node communication. Comparisons between the
tri-level MPI-OpenMP-CUDA and dual-level MPI-CUDA implementations are shown using computationally
large computational fluid dynamics (CFD) simulations. Our results demonstrate that a tri-level parallel im-
plementation does not provide a significant advantage in performance over the dual-level implementation,
however further research is needed to justify our conclusion for a cluster with a high GPU per node density or
when using software that can utilize OpenMP’s fine-grain parallelism more effectively.

I. Introduction

Graphics processing units (GPUs) have enjoyed rapid adoption within the high-performance computing (HPC)

community. GPU clusters, where fast network connected compute-nodes are augmented with latest GPUs,1 are now

being used to solve challenging problems from various domains. To be specific, we define multi-GPU clusters as those

where each compute-node of the cluster has at least two GPUs. Examples include the Lincoln Tesla cluster operated

by the National Center for Supercomputing Applications (NCSA) at University of Illinois at Urbana Champaign2 and

the recent release of IBM’s iDataPlex dx360 M3 mainstream HPC system using NVIDIA Tesla GPUs.3

Many multi-GPU clusters such as the previous examples use two GPUs per node. On these systems it can be

efficient to use a dual-level parallel method using NVIDIA’s Compute Unified Device Architecture (CUDA),4 or

Open Computing Language (OpenCL)5 for fine-grain GPU parallellism and the Message-Passing Interface (MPI)6

for coarse-grain parallelism. The overhead of inter-node communication between the two GPUs is generally not a first

order effect. Some systems have densities as high as eight GPUs per node,7,8 wherein the inter-node overhead of MPI

can be substantial.

GPU computing has evolved from hardware rendering pipelines that were not amenable to non-rendering tasks, to

the modern General Purpose Graphics Processing Unit (GPGPU) paradigm. Owens et al. 9 survey the early history as

well as the state of GPGPU computing up to 2007. The use of GPUs for Euler solvers and incompressible Navier-

Stokes solvers has been well documented.10–16

Thibault and Senocak15 developed a single-node multi-GPU 3D incompressible Navier-Stokes solver with a

Pthreads-CUDA implementation that targets multi-GPU desktop platforms. This work was extended in Jacobsen

et al. 16 where an MPI-CUDA implementation was presented and assessed on the NCSA Lincoln Tesla Cluster. These

papers give details on the software implementation for multi-GPU clusters using a dual-level MPI-CUDA method.

The present work builds upon these efforts and incorporates a third level of intra-node parallelism using OpenMP to

arrive at a hybrid MPI-OpenMP-CUDA approach.

Cappello, Olivier, and Etiemble17–19 were among the first to present the hybrid programming model of using MPI

in conjunction with a threading model such as OpenMP. They demonstrated that it is sometimes possible to increase

efficiency on some code by using a mixture of shared memory and message passing models. A number of other papers

followed with the same conclusions20–27. Many of these papers also point out a number of cases where the applications
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or computing systems are a poor fit to the hybrid model, and in some cases performance decreases. Lusk and Chan28

describes using OpenMP and MPI for hybrid programming on three cluster environments, including the effect the

different models have on communication with the NAS benchmarks. They believe this combination of programming

models is well fitted to modern scalable high performance systems.

Hager, Jost, and Rabenseifner29 give a recent perspective on the state of the art techniques in hybrid MPI-OpenMP

programming. Particular attention is given to mapping the model to domain decomposition as well as overlapping

methods. Results with hybrid models of the BT-MZ benchmark (part of the NAS Parallel Benchmark suite) on a Cray

XT5 using a hybrid approach showed similar performance at 64 and fewer cores, but greatly improved results for

128, 256, and 512 cores, where a good combination of OpenMP fine-grain parallelism combined with MPI coarse-

grin parallelism can be found that matches well with the hardware. These examples also take advantage of the loop

scheduling features in OpenMP. Advantages in fine grain parallelism like this will not be able to be taken advantage

of in a model where OpenMP is only used for coarse-grain data transfer and synchronization.

Balaji et al. 30 discuss issues arising from using MPI on petascale machines with close to a million processors. A

number of MPI collective operations are shown to have exponential time with respect to the number of processors. The

tested MPI implementations also allocate some memory which is proportional to the number of processes, limiting

scalability. These as well as other limitations lead the authors to suggest a hybrid threading / MPI model as one way

to mitigate the issue. However, in the case of a typical GPU system the situation is not as bad. In this case the CUDA

model for fine-grain parallelism manages 256 to 512 processing elements within a single process, and this number will

likely increase with future GPUs. Hence a one million processing element GPU cluster using just MPI-CUDA may

have fewer than 4000 MPI processes. This indicates that clusters enhanced with GPUs look well suited for petascale

and emerging exascale architectures. On the other hand, it also indicates that the hybrid model has less potential

benefit on multi-GPU clusters.

Nakajima31 describes a three-level hybrid method using MPI, OpenMP, and vectorization. This approach uses MPI

for inter-node communication, OpenMP for intra-node communication, and parallelism within the node via the vector

processor. It closely matches the rationale behind the present approach for the multi-GPU cluster implementation.

Weak scaling measurements showed worse results for 64 and fewer SMP nodes, but improved with 96 or more. GPU

clusters with 128 or more compute-nodes (256 or more GPUs) are rare at this time but trends indicate these machines

will become far more common in the high performance computing field32.

While these articles show some potential benefits for using the hybrid model on CPU clusters, a question is whether

the same benefits will accrue to a tri-level CUDA-OpenMP-MPI model, and whether they will outweigh the added

software complexity. With high levels of data parallelism on the GPU, separate memory for each GPU, low device

counts per node, and currently small node counts, the GPU cluster model has numerous differences from dense-

core CPU clusters. In this paper we investigate several methods of distributing computation using a tri-level parallel

approach, using MPI for coarse-grain inter-node communication, OpenMP for medium-grain intra-node communica-

tion, and CUDA for fine-grain parallelism within the GPUs. We extend a dual-level MPI-CUDA 3D incompressible

Navier-Stokes solver to use a hybrid MPI-OpenMP-CUDA approach.

II. Governing Equations and Numerical Approach

Navier-Stokes equations for buoyancy driven incompressible fluid flows can be written as follows:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −1
ρ
∇P + ν∇2u + f , (2)

where u is the velocity vector, P is the pressure, ρ is the density, ν is the kinematic viscosity, and f is the body force.

The Boussinesq approximation, which applies to incompressible flows with small temperature variations, is used to

model the buoyancy effects in the momentum equations33:

f = g · (1 − β(T − T∞)), (3)

where g is the gravity vector, β is the thermal expansion coefficient, T is the calculated temperature at the location,

and T∞ is the steady state temperature.

The temperature equation can be written as34,35

∂T

∂t
+ ∇ · (uT ) = α∇2T + Φ, (4)
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a) b)

Figure 1. Lid-driven cavity simulation with Re = 1000 on a 256 × 32 × 256 grid. 3D computations were used
and a 2D center slice is shown. a) Velocity streamlines and velocity magnitude distribution. b) Comparison to
the benchmark data from Ghia et al. 41.

where α is the thermal diffusivity and Φ is the heat source.

A. Projection Algorithm

The buoyancy-driven incompressible form of the Navier-Stokes equations (Eqs. (1)-(4)) do not have and explicit

equation for pressure. Therefore, a variety of methods have been proposed for splitting the solution into fractional

steps where the momentum and pressure are independently solved. These include the projection algorithm of Chorin36,

Patankar’s SIMPLE scheme37,38 and its variants, and others. Many of these fractional-step methods are reviewed and

contrasted in the survey of Guermond et al. 39.

The approach used in this study is the projection algorithm of Chorin, where the velocity field is predicted using

the momentum equations without the pressure gradient term36,40. The resulting predicted velocity field does not satisfy

the divergence free condition. By enforcing the divergence free condition on the velocity field at time t+1, a pressure

Poisson equation can be derived from the momentum equations given in Eq. (2). The above equations are discretized

on a uniform Cartesian staggered grid with second order central difference scheme for spatial derivatives and a second

order accurate Adams-Bashforth scheme for time derivatives. The pressure Poisson equation is solved using either a

fixed iteration Jacobi solver or a geometric multigrid solver.

Validation on a number of test cases including the well-known lid-driven cavity and natural convection in heated

cavity problems41,42 were used to compare the overall solutions to known results. Figure (1) presents the results of a

lid-driven cavity simulation with a Reynolds number 1000 on a 256 × 32 × 256 grid. Figure (1a) shows the velocity

magnitude distribution and streamlines at mid-plane. As expected, the computations capture the two corner vortices at

steady-state. In Fig. (1b), the horizontal and vertical components of the velocity along the centerlines ar e compared

to the benchmark data of Ghia et al. 41. The results agree well with the benchmark data. The numerical results for the

tri-level and dual-level parallel versions do not differ.

III. Multi-GPU Cluster Implementation of a 3D Incompressible Navier-Stokes Solver

Multiple programming APIs along with a domain decomposition strategy for data-parallelism is required to achieve

high throughput and scalable results from a CFD model on a multi-GPU platform. For problems that are small

enough to run on a single GPU, overhead time is minimized as no GPU/host communication is performed during the

computation, and all optimizations are done within the GPU code. When more than one GPU is used, cells at the
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a) b)

Figure 2. The domain decomposition. a) The decomposition of the full domain to the individual GPUs. b)
An overview of the communication, GPU memory transfers, and the intra-GPU 1D decomposition used for
overlapping.

edges of each GPU’s computational space must be communicated to the GPUs that share the domain boundary so they

have the current data necessary for their computations. Data transfers across the neighboring GPUs inject additional

latency into the implementation which can restrict scalability if not properly handled.

CUDA is the API used by NVIDIA for their GPUs.4 CUDA programming consists of kernels that run on the

GPU and are executed by all the processor units in a SIMD (Single Instruction Multiple Data) fashion. The CUDA

API also extends the host C API with operations such as cudaMemcpy() which performs host/device memory

transfers. Memory transfers between GPUs on a single host are done by using the host as an intermediary – there are

no CUDA commands to operate between GPUs. On a given thread, CUDA kernel calls are asynchronous (i.e. control

is given back to the host CPU before the kernel completes) but do not overlap (i.e. only one kernel runs at a time).

Memory operations are synchronous and do not start until previous kernels have completed unless the CUDA streams

functionality is used, which provides a mechanism for memory operations to run concurrently with kernel execution

as well as host computation.

POSIX Threads43 (Pthreads) and OpenMP44 are two APIs used for running parallel code on a single machine

using shared memory, such as widely available symmetric multiprocessor machines. These APIs both use a shared

memory space model. Combined with CUDA, multiple GPUs on a single computer can perform computation, copy

their neighboring cells to the host, synchronize with their neighbor threads, and copy the received boundary cells to

the GPU for use in the next computational step.

The Message Passing Interface (MPI) API is widely used for parallel programming on clusters. MPI works on

both shared and distributed memory machines. In general it will have some performance loss compared to the shared

memory model used by threading APIs such as OpenMP and Pthreads, but in return it offers a highly portable solution

to writing programs to work on a wide variety of machines and hardware topologies. Using MPI with one process

mapped to each GPU is the most straightforward way to use a multi-GPU cluster.

A. Domain Decomposition

A 3D Cartesian volume is decomposed into 1D layers. These layers are then partitioned among the GPUs on the

cluster to form a 1D domain decomposition. The 1D decomposition is shown in Fig. (2a). After each GPU completes

its computation the edge cells (“ghost cells”) must be exchanged with neighboring GPUs. Efficiently performing
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this exchange process is crucial to cluster scalability. CUDA is used within the GPUs to perform an orthogonal 2D

decomposition of the data within each GPU.

While a 1D decomposition leads to more data being transferred as the number of GPUs increases, there are ad-

vantages to the method when using CUDA. In parallel CPU implementations, host memory access can be performed

on non-contiguous segments with a relatively small performance loss. In contrast, the CUDA API only provides a

way to transfer linear segments of memory between the host and the GPU. Hence, 2D or 3D decompositions for GPU

implementations must either use nonstandard device memory layouts which result in poor GPU performance, or run

separate kernels to perform gather/scatter operations into a linear buffer suitable for the cudaMemcpy() routine.

These routines add significant time and hinder overlapping methods. For this reason, the 1D decomposition is deemed

best for moderate size clusters such as the ones used in this study.

To accommodate overlapping, a further 1D decomposition is applied within each GPU. Figure (2b) indicates how

the 1D layers within each GPU are split into a top, bottom, and middle section. It also shows how communication and

computation can be executed separately, allowing overlap. In an MPI-CUDA implementation, each process handles

CUDA control and memory accesses for a single GPU, and multiple GPUs on a single compute-node can be managed

by making multiple processes per node, and performing MPI transactions between each process regardless of whether

it is on the same node. In contrast, the hybrid MPI-OpenMP-CUDA implementations create one process per compute-

node, and an OpenMP thread per GPU. One or more additional threads may be used for MPI communication with

the neighboring compute-nodes. For ghost cells interior to the compute-nodes, only OpenMP synchronization is

necessary.

B. Implementation of the Projection Algorithm

for (t=0; t < time_steps; t++)
{

adjust_timestep(); // Adaptive timestepping

for (stage = 0; stage < num_timestep_stages; stage++) {
temperature <<<grid,block>>> (u,v,w,phiold,phi,phinew);
ROTATE_POINTERS(phi,phinew);
temperature_bc <<<grid,block>>> (phi);
EXCHANGE(phi);

turbulence <<<grid,block>>> (u,v,w,nu);
turbulence_bc <<<grid,block>>> (nu);
EXCHANGE(nu);

momentum <<<grid,block>>> (phi,uold,u,unew,vold,v,vnew,wold,w,wnew);
momentum_bc <<<grid,block>>> (unew,vnew,wnew);
EXCHANGE(unew,vnew,wnew);

}

divergence <<<grid,block>>>(unew,vnew,wnew,div);

// Iterative or multigrid solution
pressure_solve(div,p,pnew);

correction <<<grid,block>>> (unew,vnew,wnew,p);
momentum_bc <<<grid,block>>> (unew,vnew,wnew);
EXCHANGE(unew,vnew,wnew);
ROTATE_POINTERS(u,unew); ROTATE_POINTERS(v,vnew); ROTATE_POINTERS(w,wnew);

}

Listing 1. Host code for the projection algorithm to solve buoyancy driven incompressible flow equations on
multi-GPU platforms. The outer loop is used for time stepping, and indicates where the time step size can be
adjusted. The EXCHANGE step updates the ghost cells for each GPU with the contents of the data from the
neighboring GPU.

The projection algorithm described in section A. is implemented with pseudocode shown in listing 1. At each

timestep there is also optional progress status output, and VTK visualization output. When the timestep loop ends,
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the process writes the final output and clears GPU memory, then returns to the common code, which can exit. This

method is used for both dual-level and tri-level implementations.

C. Tri-Level MPI-OpenMP-CUDA Implementations

To investigate whether additional efficiency can be gained from removing redundant message passing when processes

are on the same host, a threading model is added. The effectiveness of this solution depends on a number of factors,

with some barriers to effectiveness being:

• Density of nodes: With more GPUs per node, the potential effectiveness can be increased. Only clusters with

two GPUs per node were available for this study.

• MPI implementation efficiency: The OpenMPI 1.3.2 software on the NCSA Lincoln Tesla cluster seems reason-

ably well optimized. Goglin45 discusses optimizations of MPI implementations to improve intra-node efficiency.

A number of optimizations have been performed on MPI implementations since the early hybrid model papers

were written, including a reduction in the number of copies involved, as well as the extensive optimizations

performed in Open-MX. Since the application being studied only using OpenMP and MPI for coarse-grain

parallelism, any benefits in latency for small transactions will not have an impact.

• A large number of nodes: Many of the hybrid model papers note benefits occurring only as the number of nodes

grows19,29,31. While the 64-node 128-GPU implementation used in this study is larger than many published

cluster results, it may still be too small to see an appreciable benefit.

• A good match between the hardware, the threading models, and the domain decomposition: A number of

hybrid model papers show application / hardware combinations that show reduced performance with the hybrid

model19,21,23,28.

• Interactions between OpenMPI, OpenMP, and CUDA can exist: For instance, the default OpenMPI software on

the NCSA Lincoln Tesla cluster is compiled without threading support.

There are two popular threading models in use today: POSIX Threads (Pthreads) and OpenMP. OpenMP has

become the dominant method used in the HPC community, and it was decided this was the model to be used for this

study. It is not believed that this choice had a noticeable performance impact, and OpenMP is clearer to read. The

thread level parallelism is on a coarse grain level, since CUDA is handling the fine grain parallelism.

MPI defines four levels of thread safety: SINGLE, where only one thread is allowed. FUNNELED is the next level,

where only a single master thread on each process may make MPI calls. The third level, SERIALIZED, allows any

thread to make MPI calls, but only one at a time is using MPI. Finally, MULTIPLE allows complete multithreaded

operation, where multiple threads can simultaneously call MPI functions.

With many clusters having pre-installed versions of MPI libraries, sometimes with custom network infrastructure, it

is not always possible to have access to the highest (MULTIPLE) threading level. Additionally, this level of threading

support typically comes with some performance loss, so lower levels are preferred if they do not otherwise hinder

parallelism46. Three implementations were created, using the SERIALIZED, FUNNELED, and SINGLE levels. The

first implementation used one thread per GPU, with each thread responsible for any possible MPI communications

with neighboring nodes. The second used N + 1 threads for N GPUs, where a single thread per node handles all MPI

communications and the other threads manage the GPU work. This can help alleviate resource contention between

MPI and GPU copies, since each activity is on its own thread. Additionally this lets one use the FUNNELED level,

which increases portability and possibly can increase performance. Lastly, the third version uses OpenMP directives

to only perform MPI calls inside single-threaded sections.

IV. Performance Results from NCSA Lincoln and TACC Longhorn Clusters

The NCSA Lincoln cluster consists of 192 Dell PowerEdge 1950 III servers connected via InfiniBand SDR (single

data rate). 47 Each compute node has two quad-core 2.33GHz Intel64 processors and 16GB of host memory. The cluster

has 96 NVIDIA Tesla S1070 accelerator units each housing four C1060-equivalent Tesla GPUs. An accelerator unit is

shared by two servers via PCI-Express ×8 connections. Hence, a compute-node has access to two GPUs. In this study
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// COMPUTE EDGES
if (threadid > 0)

pressure <<<grid_edge,block>>> (edge_flags, div,p,pnew);

#pragma omp single
{

MPI_Irecv(new ghost layer from north)
}
if (threadid > 0)

cudaMemcpy(south edge layer from device to host)
// Ensure all threads have completed copies
#pragma omp barrier
#pragma omp single
{

MPI_Isend(south edge layer to south)
MPI_Irecv(new ghost layer from south)

}
if (threadid > 0)

cudaMemcpy(north edge layer from device to host)
// Ensure all threads have completed copies
#pragma omp barrier
#pragma omp single
{

MPI_Isend(north edge layer to north)
}

// COMPUTE MIDDLE
if (threadid > 0)

pressure <<<grid_middle,block>>> (middle_flag, div,p,pnew);

#pragma omp single
{

MPI_Wait(new ghost layer from north)
MPI_Wait(new ghost layer from south)

}
// Ensure all threads wait for MPI communication
#pragma omp barrier
if (threadid > 0) {

cudaMemcpy(new north ghost layer from host to device)
cudaMemcpy(new south ghost layer from host to device)

}
// Ensure all threads have completed copies
#pragma omp barrier
#pragma omp single
{

MPI_Waitall(south and north sends, allowing buffers to be reused)
}

if (threadid > 0)
pressure_bc <<<grid,block>>> (pnew);

ROTATE_POINTERS(p,pnew);

Listing 2. An example Jacobi pressure loop using tri-level MPI-OpenMP-CUDA and simple computational
overlapping. This uses the SINGLE threading level.
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a) 3D Growth (Lincoln)

b) 3D Growth (Longhorn)

Figure 3. Efficiency of the three MPI-CUDA implementations with increasing number of GPUs (weak scal-
ability presentation). Growth is in three dimensions. The size of the computational grid is varied from
416 × 416 × 416 to 2688 × 2688 × 2560 with increasing number of GPUs. a) NCSA Lincoln Tesla cluster,
b) TACC Longhorn cluster.
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Figure 4. A comparison of weak scaling with the fully overlapped MPI-CUDA and single threaded MPI-
OpenMP-CUDA implementations, with growth in three dimensions. Since the hybrid implementations use
all the GPUs of a single node, the base value for parallel scaling is set to a single node of the NCSA Lincoln
Tesla cluster containing two GPUs.

we show performance measurements for 64 of the 192 available compute-nodes in the Lincoln Tesla cluster, with 128

GPUs being utilized.

Similar to the dual-level performance results, a lid-driven cavity problem at a Reynolds number of 1000 was chosen

for performance measurements on the NCSA Lincoln Tesla cluster. As mentioned earlier, software issues on the NCSA

Lincoln cluster precluded effective testing of anything but the tri-level implementation using single threading. Strong

scaling and weak scaling measurements were performed, with little difference seen in most results. The weak scaling

results with growth in three dimensions is the worst case for this application, and shows the most difference between

the parallel methods. Figure (4) shows the the scaling efficiency of the fully overlapped dual-level MPI-CUDA and

the tri-level MPI-OpenMP-CUDA implementations in the 3D growth weak scaling scenario. The MPI-CUDA data

matches the fully overlapped data from Fig. (3), though 100% is set with two GPUs (a single node) rather than one.

With fewer than 4 nodes (8 GPUs), the dual-level MPI-CUDA implementation performs better. This may be due

to the more inefficient synchronization methods used in the tri-level method with single-threaded MPI. With 32 and

64 nodes (64 and 128 GPUs), there is a small benefit with the MPI-OpenMP-CUDA implementation. At this point the

amount of data being transferred may bring any efficiencies of the shared memory model to the forefront, outweighing

single-node synchronization. These results are consistent with the hybrid performance results shown by Nakajima31,

where MPI-vector outperformed his hybrid MPI-OpenMP-vector model at 64 and fewer nodes, and started showing

an increasing benefit at 96 nodes and and beyond. We did not measure the results beyond this number of GPUs, but

we believe the performance of the tri-level implementation should be further investigated on larger clusters.

V. Conclusions

We present a tri-level parallel implementation of the Navier-Stokes equations to simulate buoyancy-driven incom-

pressible fluid flows on multi-GPU clusters with heterogeneous architectures. We adopt NVIDIA’s CUDA program-

ming model for fine-grain data-parallel operations within each GPU, OpenMP for parallel operations within individual

compute-nodes, and MPI for coarse-grain parallelization across the cluster. We investigate the performance and scal-

ability of incompressible flow computations on the NCSA Lincoln Tesla cluster and compare to previous dual-level

parallel MPI-CUDA implementations16.

A number of issues with obtaining the most benefit from tri-level MPI-OpenMP-CUDA parallel methods have
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been identified. Compared to early results, current MPI libraries have much better optimization for multiple processes

per node. A number of the benefits ascribed to the hybrid programming model are obtained via OpenMP’s much

better fine-grain parallelism support, which is not used at all in this study, since all fine-grain parallelism is supplied

by CUDA. Other simulation software that can use both CPU and GPU resources for computation may show more

advantage. It is also an open question whether a much denser per-node GPU density may be able to take better

advantage of the tri-level parallelism. Having only two GPUs per node on current and planned GPU cluster designs

puts a limit on the possible benefit from the mixed API model.

Another issue encountered is MPI library threading support. The MPI libraries must support the degree of thread-

ing support necessary to achieve best performance. None of the available MPI libraries on the NSCA Lincoln or TACC

Longhorn clusters supported the highest levels of threading support. Because of the additional networking features

of these clusters, compiling an out-of-the-box MPI library will not achieve maximum performance. The reason full

threading support is not compiled in on by default is that it adds an additional overhead to all MPI calls. Therefore

any benefit from mixing MPI and OpenMP must outweigh the small loss on every MPI call. With only 2-3 threads per

process and no fine-grain parallelism via OpenMP, this is unlikely to occur in this model of tri-level parallelism.

Our performance measurements indicated the dual-level parallel model was better for small numbers of nodes,

but showed a very small gain for larger numbers (32 to 64 nodes, 64 to 128 GPUs). Because of limitations with

the MPI library noted previously, the implementation used was not optimal. We believe the gain from the tri-level

MPI-OpenMP-CUDA parallel method is unlikely to exceed the detremental additional software complexity with the

simulation model shown. Models that use fine-grain parallelism outside of CUDA, or have high GPU density per node

will see better results.
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