12-6-2023

Small Modular Nuclear Reactors (SMRs): Development of Small Nuclear Reactors (SMRs) to Supplement Power Needs

Owen Moss
Boise State University

Riley Schrock
Boise State University

Chad Rietze
Boise State University

Jake West
Boise State University

Deanna Baldwin
Boise State University

See next page for additional authors

This research was funded by the National Science Foundation, Award Number: 2221665.
Small Modular Nuclear Reactors (SMRs): Development of Small Nuclear Reactors (SMRs) to Supplement Power Needs

Abstract

- Small Modular Reactor (SMR) is a small nuclear reactor that can operate as part of or independently of the electrical grid system
- 100 to 1,000 times smaller than typical nuclear reactors
- Modular and easily transportable
- Reliable and operationally flexible

Comments
This research was funded by the National Science Foundation, Award Number: 2221665.

Authors
Owen Moss, Riley Schrock, Chad Rietze, Jake West, Deanna Baldwin, Brianna Brown, Enrique Ayala Gonzalez, Joseph Mondragon, and Gwen White

This student presentation is available at ScholarWorks: https://scholarworks.boisestate.edu/vip_2023/7
Small Modular Nuclear Reactors (SMRs)

VIP 400-007 CAES Scholars Instructors: Dr. Sondra Miller and Lindsey Wiggins
Students: Owen Moss, Riley Schrock, Chad Rietze, Jake West, Deanna Baldwin, Brianna Brown, Enrique Ayala Gonzalez, Joseph Mondragon and Gwen White

OVERVIEW
- Small Modular Reactor (SMR) is a small nuclear reactor that can operate as part of or independently of the electrical grid system
- 100 to 1,000 times smaller than typical nuclear reactors
- Modular and easily transportable
- Reliable and operationally flexible

COST
- Nuclear Battery/SMR should cost 70-115 USD/MWh to be competitive
- Disposal of spent fuel will cost around 1 USD/MWh (~every 3 to 10 years)
- Large scale production makes these figures much more attainable

APPLICATIONS
- Can act as power sources for remote areas (i.e. remote mining operations)
- SMRs have the ability to quickly generate power and shut down as needed. This makes the a reliable and safe energy source.
- Useful when power needs aren’t being met due to
 - Renewable energies being unreliable during a 24 hours cycle
 - Increased demand during evening hours and certain times of the year
 - Energy security for critical infrastructure such as hospitals, military installations, and emergency response centers.

BENEFITS
- Non Carbon emitting
- Easy installation and transportation
- Self regulating
- Reliable and resilient
- Easier to operate than large power reactors
- Long operation life
- Varied application potential
- On and Off grid uses

RECOMMENDATIONS
- Use SMRs when performing remote operations
 - Offset cost of trucking fuel and overloading power grid during operations
- Develop SMRs for communities that experience power extremes during certain times of the year
 - i.e unstable weather conditions
- Implement nuclear sector training programs for local talent and job growth
- Provides research opportunities to address industry challenges and encourage reactor design and safety innovation.

OBSTACLES
- SMRs may challenge current laws and regulations in the United States and internationally
- Adequate space and access to water, fuel, backup power
- Accessibility to site for security and emergency responses
- High capital and operations and maintenance (O&M) costs

REFERENCES (APA)