
Boise State University
ScholarWorks

Mathematics Undergraduate Theses Department of Mathematics

5-2017

Complementary Coffee Cups
Brandon Sams
Boise State University, brandonkeithsams@gmail.com

Follow this and additional works at: http://scholarworks.boisestate.edu/
math_undergraduate_theses

Part of the Mathematics Commons

Recommended Citation
Sams, Brandon, "Complementary Coffee Cups" (2017). Mathematics Undergraduate Theses. 6.
http://scholarworks.boisestate.edu/math_undergraduate_theses/6

http://scholarworks.boisestate.edu?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.boisestate.edu/math_undergraduate_theses?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.boisestate.edu/math?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.boisestate.edu/math_undergraduate_theses?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.boisestate.edu/math_undergraduate_theses?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.boisestate.edu/math_undergraduate_theses/6?utm_source=scholarworks.boisestate.edu%2Fmath_undergraduate_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


Complementary Coffee Cups

Brandon Sams
Boise State University

Advisement from Dr. Zach Teitler

April 2017

1 Introduction

In a 2006 paper [1], mathematician Thomas Banchoff posed a new calculus prob-
lem, when he filled two cups with coffee. One was convex, while the other was
concave, but in such a way so as to fit together perfectly. These cups were thus,
complementary. The next natural question he asked was “Which cup has more
volume?”, so that he could be gracious enough to give the larger of the two to his
wife. Banchoff decided to explore this topic, but he left some unanswered ques-
tions along the way. Under what conditions would two Complementary Coffee
Cups have the same volume? Does the answer depend on the curve between the
two cups? Can a coffee cup be complementary to itself? If so, under what con-
ditions does this occur? Does the volume of a pair of solids have anything to do
with lateral surface area. This paper will explore the mathematical relationship
between pairs of complementary coffee cups by answering these questions.
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2 Background: Modelling the Problem

This paper will model one coffee cup as a volume of revolution about the y-axis,
defined by the radius x = f(y). The lower bound for the integral will be y = a,
and the upper bound will be y = b.

The complementary cup will be modeled as a volume of revolution about
another axis, x = k, where the radius of the complementary volume will be
k − f(y). Again, the lower bound will be y = a, and the upper bound will be
y = b, so as to have the two solids of revolution have the same height.
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Figure 1: Complementary Coffee Cups arising from a parabola.

The cups will be assumed to be handle-free. They also have zero thick-
ness. Both these assumptions are done to make the coffee cup be approximated
succinctly by a volume of revolution.

Setting up the problem in this way requires a few restrictions.

a < b

0 ≤ f(y) ≤ k for y ∈ [a, b]

3 A Simple Example

Before looking at more complex problems, it will be useful to examine a case
which is simple, but non-trivial. See Figure 1. We will begin by taking the
curve between the two cups to be a specific parabola.

Let f(y) = 1 − y2. Therefore, since f(y) crosses the y-axis at y = ±1,
−1 ≤ a < b ≤ 1. In this case, for the sake of demonstrating an example, let
a = −1, and b = 1.

The two volumes, V1 and V2, will be calculated using the Disk Method [2,
Section 6.3]. This method will be the best to use in further examples, as it
allows each volume to be calculated using a single integral.

We begin by assuming the two volumes are equivalent, with the goal of
finding a specific value of k.
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V1 = V2

Using the Disk Method, we only need to know a function for the radius of each
solid of revolution to calculate the volume. For V1, the radius is R1 = f(y). For
V2, the radius is R2 = (k − f(y)).∫ b

a

π(f(y))2dy =

∫ b

a

π(k − f(y))2dy

Now we substitute in the relevant information. That is, f(y) = 1− y2, a = −1,
and b = 1. ∫ 1

−1
π(1− y2)2dy =

∫ 1

−1
π(k − (1− y2))2dy

We expand both the integrands on the left and right hand sides.∫ 1

−1
π(1− 2y2 + y4)dy =

∫ 1

−1
π(k2 + 2ky2 − 2k + y4 − 2y2 + 1)dy

Cancel the π from both sides.∫ 1

−1
(1− 2y2 + y4)dy =

∫ 1

−1
(k2 + 2ky2 − 2k + y4 − 2y2 + 1)dy

Group terms on the right hand side, and split into two separate integrals.∫ 1

−1
(1− 2y2 + y4)dy =

∫ 1

−1
(1− 2y2 + y4)dy +

∫ 1

−1
(k2 + 2ky2 − 2k)dy

Subtract
∫ 1

−1(1− 2y2 + y4)dy from both sides.

0 =

∫ 1

−1
(k2 + 2ky2 − 2k)dy

Integrate.

0 = k2y +
2

3
ky3 − 2ky

∣∣∣1
−1
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Substitute the limits of integration.

0 = (k2 + 2
3k − 2k)− (−k2 − 2

3k + 2k)

Combine like terms.

0 = 2k2 + 4
3k − 4k

Factor out k, and cancel. This is valid beacuse k 6= 0. Combine like terms, and
solve for k.

0 = 2k − 8
3

8
3 = 2k
4
3 = k

Therefore, for the simple example of a parabola f(y) = 1−y2 rotated about the
y-axis and evaluated over the interval [−1, 1], the complementary “coffee cup”
will be rotated about the axis x = 4

3 . See Figure 1. With k determined, we can
calculate V1 and V2 exactly.

V1 = V2∫ b

a

π(f(y))2dy =

∫ b

a

π(k − f(y))2dy∫ 1

−1
π(1− y2)2dy =

∫ 1

−1
π( 4

3 − (1− y2))2dy

V1 = V2 =
16π

15

4 The Arbitrary Case: Disk Method

The previous section was good for demonstration purposes, but this section will
show all the work that can take place before the substitution step. This work
results in the following theorem. See Figure 2.

Theorem 1. Two complementary solids of revolution have equal volumes if and
only if the cross sections of those complementary solids have equal areas.

Proof. We begin in a similar fashion, by assuming the two solids of revolution
have the same volume.
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Figure 2: V1 = V2 ⇐⇒ C1 = C2

V1 = V2

Using the Disk Method, we only need to know a function for the radius of each
solid of revolution to calculate the volume. For V1, the radius is R1 = f(y). For
V2, the radius is R2 = (k − f(y)).

∫ b

a

π(f(y))2dy =

∫ b

a

π(k − f(y))2dy

Cancel the π from both sides.∫ b

a

(f(y))2dy =

∫ b

a

(k − f(y))2dy

Expand the integrand on the right hand side.∫ b

a

f(y)2dy =

∫ b

a

(k2 − 2kf(y) + f(y)2)dy

Split the right hand side into two separate integrals.∫ b

a

f(y)2dy =

∫ b

a

(k2 − 2kf(y))dy +

∫ b

a

f(y)2dy
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Subtract
∫ b

a
f(y)2dy from both sides of the equation.

0 =

∫ b

a

(k2 − 2kf(y))dy

Factor out the constant k.

0 = k

∫ b

a

(k − 2f(y))dy

Divide both sides by the constant k. Note that this only works for k > 0. If
k = 0, then since 0 ≤ f(y) ≤ k that means f(y) = 0 by the Squeeze Theorem
[2, page 96]. This forces the cross sections, C1 and C2 to be equivalent, as they
are both zero. This completes the proof in this case. The rest of the proof will
proceed assuming k > 0.

0 =

∫ b

a

(k − 2f(y))dy

Add
∫ b

a
2f(y)dy to both sides.∫ b

a

2f(y)dy =

∫ b

a

kdy

Factor out the constant, 2, from the integral on the left hand side.

2

∫ b

a

f(y)dy =

∫ b

a

kdy

Integrate the right hand side.

2

∫ b

a

f(y)dy = ky
∣∣∣b
a

Substitute in the limits of integration on the right hand side.

2

∫ b

a

f(y)dy = k(b− a)

6



−2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5
f(y)

y = b

y = a

x
=
k

x
=

0
1
2C1

1
2C1

−2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5
f(y)

y = b

y = a

x
=
k

x
=

0

1
2C1

1
2C2

Figure 3: Decomposition of the C1 and the rectangle between the axes of revo-
lution.

7



Here, we can take a step back, and examine what this has produced. The left
hand side is the area of the cross section of V1, denoted C1 in figure 2, and the
right hand side is the area of a rectangle with side lengths equal to k and (b−a).
Since the Left Hand Side is:

2

∫ b

a

f(y)dy = 1
2C1 + 1

2C1

and the Right Hand Side is:

k(b− a) = 1
2C1 + 1

2C2

and we know these are equivalent, we know that:

1
2C1 + 1

2C1 = 1
2C1 + 1

2C2

This is illustrated in figure 3. We can multiply all parts by 2.

C1 + C1 = C1 + C2

Subtract C1 from both sides.
C1 = C2

By reversing the above steps, this grants the converse.

5 Arbitrary Case: via Pappus’s Theorem

The Disk Method is not the only way to calculate the volume of a solid of
revolution. A common and very powerful theorem, called Pappus’s Theorem [2,
page 919], is also sufficient. It runs as follows:

Theorem 2 (Pappus’s Theorem). Let D be a region in the plane and let L be
a line in the plane of D. If L does not meet D, then the volume of the solid
generated when D is rotated around L is given by

V = AP

where A is the area of D, and P is the perimeter (or circumference) of the circle
described by the centroid of D as it revolves around L.

Using Pappus’s Theorem, we can provide an alternative proof of Theorem
1.

Proof. We begin by assuming
V1 = V2

By Pappus’s Theorem,
V1 = A1P1
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Where

A1 =

∫ b

a

f(y)dy

and
P1 = 2πXC

where XC is the x-coordinate of the centroid, calculated by [2, Section 8.3]

XC =
1
2

∫ b

a
f(y)2dy∫ b

a
f(y)dy

Therefore,

V1 =

(∫ b

a

f(y)dy

)(
2π

1
2

∫ b

a
f(y)2dy∫ b

a
f(y)dy

)

The 1
2 cancels with the factor of 2, and

∫ b

a
f(y)dy cancels from both the

numerator and denominator as well, assuming it is nonzero. (If it is zero, then
the cross section C1 = 0. Also, C2 = 0 and the proof in this case is completed.)
Thus,

V1 = π

∫ b

a

(f(y))2dy

Repeating a similar process with V2 yields

V2 = π

∫ b

a

(k − f(y))2dy

These equations should look familiar, because these are the formulas for
calculating the volume of a solid of revolution using the Disk Method. To
complete the proof from this point, see section 4 of this paper.

6 Self-Complementary Coffee Cups

In this paper, we have examined a coffee cup and its complement, where the
complement is not necessarily the same as the original cup. However, it may be
the case that the complementary cup is exactly the same shape as the original
cup! A simple example would be a cylinder of height b − a, and radius of k

2 ,
but this is certainly not the only case where this is true. Under what conditions
would a solid of revolution be complementary to itself?

Theorem 3. A solid of revolution is its own complement if and only if the
function, f(y), that defines the boundary between the two solids has the following
property:

f(y + a+b
2 ) + f(−y − a+b

2 )

2
=
k

2

for all y ∈ [a, b].
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Proof. All we need is for the function to have 180 degree rotational symmetry
about a certain point, P = (k

2 ,
a+b
2 ). We can translate the original function

f(y) in the following way:

g(y) = f(y + a+b
2 )− k

2

Now, for the function g(y), the point of interest is P ′ = (0, 0). This new
function g(y) has rotational symmetry about P ′ if g(y) is odd, and therefore
has the following property [2, page 6]:

g(y) = −g(−y)

Substituting,

f(y + a+b
2 )− k

2
= −(f(−(y + a+b

2 ))− k

2
)

Simplifying the Right Hand Side,

f(y + a+b
2 )− k

2
= −f(−y − a+b

2 ) +
k

2

Add f(−y − a+b
2 ) + k

2 to both sides.

f(y + a+b
2 ) + f(−y − a+b

2 ) = k

Divide both sides by 2.

f(y + a+b
2 ) + f(−y − a+b

2 )

2
=
k

2

Reversing the above steps grants the converse.

This gives us a not particularly elegant formula, but a formula nonetheless.
One could have stopped at the second to last line, but dividing both sides by
2 frames the theorem as the average of two separate x values, which must be
equal to k

2 .

7 Lateral Surface Area

It is tempting to consider that the volumes may be related to lateral surface
area. However,

Theorem 4. For the respective volumes V1 and V2, and the surface areas S1

and S2 for two complementary solids of revolution,

V1 = V2 6=⇒ S1 = S2
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Proof. The most direct way to prove the above statement is the provide a coun-
terexample. This is where the simple example from section 3 will be useful.
Recall that in that example, we know several key pieces of information:

f(y) = 1− y2
dx
dy = −2y

a = −1

b = 1

k = 4
3

V1 = V2 =
16π

15

The formula for lateral surface area of a volume of revolution about a vertical
axis is [2, page 623]: ∫ b

a

2πf(y)
√

1 + (dx
dy )2dy

Using this formula, we can plug in the known information and determine
the surface area for this specific pair of complementary solids of revolution.

S1 =

∫ 1

−1
2π(1− y2)(

√
1 + (−2y)2dy

≈ 10.965

S2 =

∫ 1

−1
2π(

4

3
− (1− y2))(

√
1 + (−2y)2dy

≈ 13.814

Therefore, S1 6= S2, and V1 = V2 6=⇒ S1 = S2.

8 Further Research Questions

If anybody is looking for further rabbit holes to fall down related to this topic,
one could consider filling the “coffee cups” with a nonuniform density fluid, and
defining the complementary object to be one with the same mass, but not nec-
essarily the same volume.

One could also consider the space filling efficiency of packing n pairs of “com-
plementary cups” into boxes. If anybody can figure out how to do this without
resorting to using the dreaded max() function, then they should be very proud
of themselves. From my research, one needed to use the max(f(y), k− f(y)) to
determine the size of the box that holds a set of cups. While one can solve for
the maximum value for a specific function that defines the boundary between
the solids of revolution, it does not appear to be possible to do it in general.

Also, the converse of Theorem 4 is possible to prove as well.
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