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A Brief Encounter with Linear Codes

Brent El-Bakri
Boise State University

August 21, 2014

Abstract

While studying irreducible polynomials and fields our abstract algebra professor
briefly mentioned that they play a role in error correcting and detecting codes. It
was this comment that fostered the idea of further study on this topic. It would give
us the opportunity to to apply some abstract concepts to the physical realm. The
information contained herein is from researching the topic. Most of the material
relies upon matrices and polynomials. While it is brief in nature it does lay a simple
foundation of the some basic concepts of linear block blocks along with a subset
known as cyclic codes. These cyclic codes have a great deal of structure and we
further bring the abstract into the physical world by showing how cyclic codes can
be implemented in hardware. The information here is just the tip of iceberg so there
is so much more!!

MSC Primary 94B05, 94B15.
Keywords and phrases: Linear Codes, Cyclic Codes



1 Introduction

When was the last time someone ask you to repeat something? We all undoubtedly
have had conversations where we had to repeat ourselves due to the environment
around us, whether it was from an unexpected noise or perhaps we were in a noisy
situation to begin with like a concert. This repeating allows us to get our message
across and hopefully the reception is interpreted properly. This is a crude example
of a simple communication system that exemplifies the need for some form of error
correcting or detecting. In today’s society most information is transmitted or stored
in digital form. We see this every day such as online transactions, images, songs, and
even our TV broadcasts. Safeguards need to be in place so what is received is what
was sent without errors. We don’t want our online transaction billing our credit card
a $100 for a $10 dollar item, or our songs lyrics to be unrecognizable.

Suppose you are printing a file wirelessly from your laptop to a printer. It is
possible to model the data being transferred as string of 0’s and 1’s. Usually when a
0 is sent the printer will receive a 0 and the same thing with a 1. But occasionally
noise (hardware failures, electromagnetic interference and etc) will cause the 0 to
become a 1 or a 1 to become a 0. We would like to create ways to overcome these
errors that can happen during transmission.

Or what if you were streaming a video wirelessly to your laptop. You would hate
for your laptop to issue vertical syncs at the wrong times, it would make viewing
unpleasant.

Error correcting codes are used to correct and detect errors that can occur when
data is being transmitted across some noisy channel or stored on some medium. When
images are transferred back to earth from deep space probes, error codes are used
to help fight the noise caused by atmospheric conditions such as lighting and other
sources. Music CD’s use error codes so that a CD player can read data from CD even
if the data has been corrupted by a defect in the CD.

In systems where data is encrypted, correcting errors is even more important.
Having one wrong bit in the received ciphertext can cause a lot of changes in the
decrypted message. We would hate to be charged for $100 for that $10 purchase we
made online!

1.1 Some Examples

In this section we will introduce a few example of error-control codes. This will help
us see the difference between error-detecting and error-correcting codes.

Example 1.1. (The Repetition Code) This particular example will illustrate a simple
error-correction code. Suppose we only have two messages to send, ‘YES’ or ‘NO’.
We will let 0 represent ‘YES’ and a 1 to represent ‘NO’. If we send a 0 it is possible
to receive a 1 due to the noise in the channel. What we want to do is increase the
probability that the received message is correct. Instead of sending a single bit we
send 00000 for ‘YES’ and 11111 for ‘NO’ and the receiver will use a majority rule
to decode the result. So if zero, one or two bits are in error we will still decode the
proper message.
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Example 1.2. (ISBN) This simple example that is often shown in textbooks is the
ISBN code and the reader is encourage to look at [3] [4]. The first 9 digits of an
ISBN (x1 x2...x9) gives us information about the book, like language, publisher and
etc. These numbers are bound between 0 and 9 inclusive. To guard against errors,
the nine-digit number is encoded to a ten-digit number where the appended tenth digit
is chosen so that all 10 digits satisfy

10∑
i=1

ixi ≡ 0 mod 11

This tenth digit also known as a check digit may equal 10 and if this happens an
’X’ is used. This code can detect any single digit error.

The main purpose of error coding theory is to encode channel data with enough
redundancy and in an efficient manner so any errors can be corrected/detected. This
next example will provide a simple method to encode messages.

Example 1.3. Let C = {000, 110, 101, 011} be the set used to transmit {00, 11, 10, 01}.
Then it will be able to detect a single bit error. The following table will help show
this:

Data Encoded Data Received Data, single bit error

00 000 001, 100, 010
01 011 001, 010, 111
10 101 001, 100, 111
11 110 100, 010, 111

As can be seen any single bit error will be detected since the received words are not
valid messages ( or codewords).

The interesting thing about 1.3 is that each encoded message can be shifted right
by one and still be a valid message. It’s also possible to add any of the codewords
together and still get a codeword. This type code is known as a cyclic code We will
give a more formal definition of a cyclic code shortly. These codes are important for
two main reasons:

I Encoding and decoding computations can be implemented with shift and feed-
back registers.

II They have considerable inherent algebraic structure.

The rest of this paper will be provide the reader with the necessary information
to understand the math that is used to create such codes (mainly linear and abstract
algebra). Along with this math background, we will also look at the ideas behind basic
linear codes since cyclic codes are a subset of linear block codes. We will then examine
the structure of cyclic codes along with some examples of hardware implementation.
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1.2 Definitions and Terminology

The figure below shows the flow of information in a typical digital communication
system [6].

Figure 1: A simple communication system

Throughout this paper we model our digital data in as strings of discrete symbols
such as the binary symbols 0,1. Each string will be referred to as a message or just
data. Once the message travels through the channel encoder it becomes a codeword.
The second column of example 1.3 shows the codewords for the messages in the first
column. The complete set of codewords is what will call a code C. The channel will
be modeled as additive white Gaussian noise, which we model as string of symbols
that get added symbol wise to each packet of data sent across the channel. In our
case we are using binary symbols so addition is done modulo 2. For example if our
message m = 01 as in 1.3, we would transmit a codeword c = 011. If we had a noisy
channel and the receiver received r = 001, we would say noise word or vector e = 010.
In other words :

m→ Encode→ c→ Noise→ c + e = r → Decode→ m̂

Where m is the message and m̂ is whats received. We hope m = m̂ .
A q-ary code is given set of sequences of symbols from where each symbol is from

a set Fq of q distinct elements. Fq is called the alphabet. Example 1.1 and 1.3 above
can also be referred to as a 2-ary code. Example 1.2 is 11-ary.

The efficiency rate of a code is defined as a ratio of the number of symbols in the
message to the number of symbols in the codeword. In Example 1.3 our messages are
2 bits and the each code word is 3 bits for the rate is 66.67
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2 Introduction to Linear Block Codes

Let’s start with a vector space Vn of all n-tuples over GF (q),

Vn = {(a0, a1..., an−1)|ai ∈ GF (q)}

and define what a linear code is.

Definition 2.1. A subset C of Vn is a linear code if and only if C is a subspace.

With C defined as a subspace we can represent all the vectors (or codewords) in
the subspace by the row space of a (k×n) matrix G, called a generator matrix of C.
We may use the term code space interchangeably with subspace when referring to C.

G =


g00 g01 · · · g0,n−1
g10 g11 · · · g1,n−1
...

... · · · ...
gk−1,0 gk−1,1 · · · gk−1,n−1

 =


g0

g1
...

gk−1


The codespace C = span(g0,g1 · · ·gk−1) so if these row vectors are linearly inde-

pendent C has a rank or dimension of k. We will assume for this paper that rows of
G are linearly independent. And since we are over a field GF (q) that has q elements
we will have qk codewords in C and we will often refer to it as an (n, k) code.

Example 2.1. Let the matrix G1 , of a (5,3) code given as follows:

G1 =

1 0 1 1 0
1 1 0 1 1
0 1 0 1 0

 over GF(2)

Since the rows of G1 are linearly independent, we see that we have 23 = 8 code-
words for this code which are

C1 = {00000, 10110, 11011, 01010, 01101, 11100, 10001, 00111}

Example 2.2. Let G2 be a (4,2) linear code C2 over GF(3) :

G2 =

[
1 0 1 1
0 1 1 2

]
over GF(3)

C2 = {0000, 1011, 0112, 2022, 0221, 1120, 2210, 1202, 2101}

Again with the rows of G2 being linearly independent we see that we get 32 = 9
codewords [4].

One of the important concepts about codes is related to the next two definitions
and we will see shortly why this is so.
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Definition 2.2. The Hamming weight of a code vector c = (c0, c1..., cn−1), w(c) is
the number of nonzero components in c.

Definition 2.3. The Hamming distance between two vectors c1 and c2, d(c1, c2), is
the Hamming weight of c1− c2 or the number of positions in which the two codewords
differ.

Looking back at the C2 code we see that the Hamming weight for any nonzero
codeword is 2. The minimum distance ( dmin or just distance) of a code C is the
minimum distance between all distinct pairs of codewords. The distance of a linear
code is also the minimum weight of (nonzero) codewords.

Since we are using linear combinations of the rows of G to also represent codewords
or the fact that these combinations are still in the code space , we can say it’s a linear
code. We also say that it is a linear block code since all codes are fixed length, namely
n. In this paper we may use code, linear code or linear block code to mean the same
thing.

Definition 2.4. A (n× k) matrix G is said to be in systematic form if

G =
[
Ik P

]
or G =

[
P Ik

]
Theorem 2.1. Let G be an (n× k) matrix in systematic form as

G =
[
Ik P

]
then its null space is given by the row space of H,[

−PT In−k
]
or
[
In−k −PT

]
where PT is the transpose of P and In−k is the identity matrix of rank n− k, and

just negate PT to get −PT .

Proof. The proof of this is straight forward. If we expand G and H out and then
evaluate gi · hj for all i, j where gi · hj represents the dot product of the rows of G
and H, we see that each product is equal to zero.

G =


1 0 0 . . . 0 p0,0 p0,1 . . . p0,n−k−1
0 1 0 . . . 0 p1,0 p1,1 . . . p1,n−k−1

...
...

...
0 0 0 . . . 1 pk−1,0 pk−1,1 . . . pk−1,n−k−1

 =


g1

g1
...

gk



H =


−p0,0 −p1,0 . . . −p0,n−k−1 1 0 0 . . . 0
−p0,1 −p1,1 . . . −p1,n−k−1 0 1 0 . . . 0

...
...

...
...

...
−p0,n−k−1 −p1,n−k−1 . . . −pk−1,n−k−1 0 0 0 . . . 1

 =


h0

h1
...

hn−k


(2.1)
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In other words
G ·HT = 0.

One final thing we need to show is the rank(H = n - rankG. And this follow from
the fact that each matrix is in reduced echelon form. �

2.1 Dual code

We know from linear algebra that given a subspace of dimension k in a vector space
Vn of dimension n, there exists a complement of Vn with a dimension of r = n − k
which is also a subspace. So in effect we could also have defined a code C in terms
of this null space matrix.

H =


h0

h1
...

hr−1

 =


h00 h01 · · · h0,n−1
h10 h11 · · · h1,n−1
...

... · · · ...
hr−1,0 hr−1,1 · · · hr−1,n−1


H is called the parity check matrix or the H matrix of the code. We will also

require the r rows of H to be linearly independent, so its rank for an (n, k) code is
r − n− k.

By the definitions above we have for any u ∈ C,

u ·HT = 0

This equation will play in important part in our decoding of received codewords.
Finding H from G is pretty straight forward. We know that reducing G to its

canonical for by row operations will preserve its row and null spaces. So if we reduce
G1 from example 2.1 we get,

G1 =

1 0 0 0 1
0 1 0 1 0
0 0 1 1 1

 =
[
I3 P

]
And

H1 =
[
−PT I2

]
=

[
0 1 1 1 0
1 0 1 0 1

]
Where the Ik is the (k×k) identity matrix and the above are in systematic forms.
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2.2 Encoding and Decoding

What purpose do the generator matrix G and the parity check matrix H serve?
Simply put G allows us to encode a message and H helps us determine if the received
message has any errors.

If we let G be in systematic form,

G =


1 0 0 . . . 0 p0,0 p0,1 . . . p0,n−k−1
0 1 0 . . . 0 p1,0 p1,1 . . . p1,n−k−1

...
...

...
0 0 0 . . . 1 pk−1,0 pk−1,1 . . . pk−1,n−k−1


then we can encode a data d = (d0, ...dk−1) into a codeword u by

u = dG = (d0, ...dk−1) [IkP] = (d0, ..., dk−1, pk, ..., pn−1)

Here the parity bits pi are:

pk = d0 · p0,0 + d1 · p1,0 + · · · dk−1 · pk−1,0

pk+1 = d0 · p0,1 + d1 · p1,1 + · · · dk−1 · pk−1,1
...

pn−1 = d0 · p0,n−k−1 + d1 · p1,n−k−1 + · · ·+ dk−1 · pk−1,n−k−1
This type of encoding is really easy to implement in hardware.

Figure 2: Simple hardware encoding for the C2 code.

Like the encoding process above, we also decode the received codeword in a par-
allel fashion by using the H matrix of the code. Suppose v = (v0, v1, ..., vn−1). Then
let

s(v) = v ·HT

be called the syndrome. If s(v) = 0 then v is a codeword and no errors are detected.
If s(v) 6= 0 then errors exist. Remember that C is the null space of H so if the
syndrome is equal to zero than we know v was a codeword. So the syndrome detects
errors. The detecting and correcting of errors is handled by the decoder. If we now
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let the actual codeword that was transmitted without errors be u = (u0, u1, ..., un−1)
and let the error word be e = (e0, e1, ..., en−1) then we can write

v = u + e

and
s(v) = v ·HT = u ·HT + e ·HT = 0 + e ·HT = e ·HT = s(e)

This means that the syndrome of v is a linear combinations of the columns
of H.

It also shows that if there is only one single bit error, in the ith position
of v, then the corresponding syndrome vector s(e) will be nonzero and will
be equal to the ith column of H, so we know what location the error occurred
in. The following example will help illustrate this.

Example 2.3. Consider the code C1 in Example 2.1, let u = (11011) ∈ C1

be a codeword and let the error be e= (01000) so that

v = u + e = (10011)

And we know H for C1 is

H =

[
0 1 1 1 0
1 0 1 0 1

]
=

[
h0,h1,h2,h3,h4

]
.

Thus the syndrome is

s(v) = v ·HT = (10011)


h0

h1

h2

h3

h4

 = h0 + h3 + h4 =

[
1
0

]
,

while

e ·HT = (01000) = h1 =

[
1
0

]
.

As seen the syndrome is not equal to zero so the code correctly detects
that the error occurred in the received word v.

Another decoding process commonly known as coset or standard array
decoding can decode not just single-bit errors but also multi-bit errors.

Remember that C (n, k) code, is a a vector subspace. In particular it’s an
additive subgroup of Vn. We know from abstract algebra that subgroups can
be used to partition the whole group [3], [5]. In this case we can use C which
has qk elements to partition Vn into qn−k cosets (|Vn/C| = qn/qk = qn−k).
We form an array where rows are the cosets in the following way.
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1. Write down all the codewords of the code in a row starting with the
zero codeword in column 1.

2. Select from the remaining unused vectors of Vn one of minimal weight,
say e. Write e in the column under the zero codeword, then add e to
each codeword in the first row and place each sum under the corre-
sponding codeword.

3. Continue the process until all vectors in Fn
q have been placed in the

array.

Each row of the array lists the elements in a coset of Vn. The first element
in each row is called a coset leader. They represent the error patterns that
can be corrected by this code and horizontal lines indicate where the error
weight of e changes.

Example 2.4. Let a (7,3) be given by the following generator matrix

G3 =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 ) 1


the code words are then

C3 = (0000000, 0111100, 1011010, 110010, 1101001, 1010101, 0110011, 0001111)

By following the steps above we can create what’s called a standard array.
We first select one of the remaining 7-tuples from F7

2 of minimal weight, say
(1000000), and build the second row. Once this row is completed, we pick the
next minimal weight 7-tuple word and repeat the process until all words are
accounted for.
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row 1 0000000 0111100 1011010 1100110 1101001 1010101 0110011 0001111
row 2 1000000 1111100 0011010 0100110 0101001 0010101 1110011 1001111
row 3 0100000 0011100 1111010 1000110 1001001 1110101 0010011 0101111
row 4 0010000 0110100 1001010 1110110 1111001 1000101 0100011 0011111
row 5 0001000 0110100 1010010 1101110 1100001 1011101 0111011 0000111
row 6 0000100 0111000 1011110 1100010 1101101 1010001 0110111 0001011
row 7 0000010 0111110 1011000 1100100 1101011 1010111 0110001 0001101
row 8 0000001 0111101 1011011 1100111 1101000 1010100 0110010 0001110
row 9 1100000 1011100 0111010 0000110 0001001 0110101 1010011 1101111
row 10 1010000 1101100 0001010 0110110 0111001 0000101 1100011 1011111
row 11 0110000 0001100 1101010 1010110 1011001 1100101 0000011 0111111
row 12 1001000 1110100 0010010 0101110 0100001 0011101 1111011 1000111
row 13 0101000 0010100 1110010 1001110 1000001 1111101 0011011 0100111
row 14 0011000 0100100 1000010 1111110 1110001 1001101 0101011 0010111
row 15 1000100 1111000 0011110 1000010 0101101 0010001 1110111 1001011
row 16 1110000 1001100 0101010 0010110 0011001 0100101 1000011 1111111

If the received codeword is v=(0011101) (shown in bold) then the coset
leader is e=(1001000) and the codeword sent is c=(1010101).

The standard array can be used to decode linear codes but it’s not very
efficient. It suffers from a major problem and that’s the amount of memory
required to hold the array. In our example above it’s not an issue but if our
code is say (256,200), which isn’t very big by today’s standards, it would
require 2256 ≈ 1.2 × 1077 vectors each 256 bits in width. That is a lot of
storage, not to mention a lot of entries to compare against. This table can
be reduced to just two columns by using what’s called syndrome decoding [6]
but it it can still be impractical for today’s codes.

As we have seen the decoder has two main functions. And since it doesn’t
know what u or e is it must first determine whether v has any transmission
errors. If it has errors, the decoder will take action to locate and and correct
them (if it can) or request a re-transmission of v.

2.3 Hamming Weight and Distance

We mentioned earlier that the properties of the linear codes such as Hamming
weight and Hamming distance play an important role in these codes. We also
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mentioned that the distance of a code C is referred to as dmin and it equals
the wmin, minimum weight of the linear code. This parameter determines
the error-correcting and the error-detecting capabilities of the code [3], [6].

It turns out that :

Theorem 2.2. If the Hamming weight of a linear code is at least 2t + 1,
then the code can correct any t or fewer errors, or the same code can detect
any 2t or fewer errors.

The proof may be found in [3,§31] or [6, §3.4].
If s, t are non-negative integers and dmin ≥ 2t + s + 1 then the code can

detect any s errors and correct any t errors. This means that for instance if
the dmin = 6 for a code C we would have the following options:

1. Detect any 5 errors (t = 0, s = 5).

2. Correct any one error and detect any four errors (t = 1, s = 4).

3. Correct any two errors and any detect any two errors (t = 2, s = 2).

4. Correct any 3 errors (t = 3, s = 0).

Since there are qk codewords, obtaining all the nonzero codewords and
finding their minimum weight could be tedious. However there is a simpler
way to determine the distance and that is from the H matrix. This method
is based upon the following theorems [6].

Theorem 2.3. If there is a codeword of weight d in a linear code C, then
its parity check matrix has d columns that are linearly dependent.

Proof. Let c = (c0, c1, . . . , cn−1) ∈ C and w(c) = d. This means there
are d symbols in c that are nonzero and n−k symbols that are 0’s. We know
that c ·HT = 0 so

c ·HT = (c0, c1, . . . , cn−1) · (h0,h1, . . . ,hn−1)
= c0 · h0 + c1 · h1 + · · ·+ cn−1 · hn−1,

where hi is the ith column vector of H. Since there are only d entries in
c that are nonzero the d columns of H are linearly dependent. �
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Theorem 2.4. A linear code C has a distance at least d if and only if every
d− 1 or fewer columns of its H matrix are linearly independent.

Proof. The first part of the proof follows immediately from theorem 2.3.
Meaning that a codeword of weight d implies that d columns of H are de-
pendent.

Now suppose we have d columns hi0 ,hi1 , . . . ,hid−1
of H such that

hi0 + hi1 + · · ·+ hid−1
= 0

Now if we form an n-tuple v = (v0, v1, . . . , vn−1) with nonzero components
vi0 , vi1 , . . . vid−1

, it’s Hamming weight is d. Now consider the product

v ·HT = v0 · hi0 + v1 · hi1 + · · ·+ vn−1 · hin−1

= vi0 · hi0 + vi1 · hi1 + · · ·+ vid−1
· hid−1

= hi0 + hi1 + · · ·+ hid−1

This last sum is equal to zero, so v is a codeword. �

Two important classes of linear block codes are the Hamming code and
Reed-Muller codes. The Hamming codes were discovered by Richard Ham-
ming just a couple of years after Shannon published his famous paper. The
Hamming codes have been widely used for error control in digital communica-
tion and data storage systems due to their high efficiency rates and decoding
simplicity. The Reed-Muller codes form a large class of codes for error correc-
tion. They are simple in construction and have good structural properties.
To learn more about these code see [6], [7].

3 Cyclic Codes

As mentioned earlier, cyclic codes are important for two main reasons:

1. They have considerable inherent algebraic structure.

2. Encoding and decoding computations can be implemented with shift
and feedback registers.
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These codes are a subclass of linear block codes [6] and because of the
reasons above, we can find practical methods to decode them. The codes are
often used in communications systems for detecting errors. In this section we
will examine cyclic codes in more detail. We will examine some properties of
these codes that help understand how to create a generator and parity check
matrix for such a code.

Definition 3.1. A linear code C is a cyclic code if for any codeword (vector)
c = (c0, . . . , cn−1) ∈ C, the vector c′ = (cn−1, c0 . . . , cn−2) obtained by right
logical shift of its components is also a code vector i.e., c′ ∈ C.

That is if C is a ((n, k)) linear code, then C is a cyclic code provided that
if (c0, . . . , cn−1) is a codeword then

c0 c1 c2 . . . cn−2 cn−1
cn−1 c0 c1 . . . cn−3 cn−2
cn−2 cn−1 c0 . . . cn−4 cn−3

...
...

...
...

...
c1 c2 c3 . . . cn−1 c0

are all codewords.

3.1 Cyclic Codes and Polynomial Math

Polynomial math plays an important role in cycle codes so let’s review a bit.
Consider the ring Rn[x]= GF(q)[x]/(xn − 1) of polynomials over GF(q)

modulo xn − 1. Every polynomial in this ring has the form:

r(x) = r0 + r1 ∗ x + . . . + rn−1x
n−1 ri ∈ GF (q)

Since xn ≡ 1 mod(xn − 1), we can write x · xn−1 = xn ≡ 1 in Rn[x]. So
we have

x · r(x) = a0 · x + a1 · x2 + . . . + an−2 · xn−1 + an−1 · xn

= an−1 + a0 · x + a1 · x2 + . . . + an−2 · xn−1
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So multiplying a polynomial r(x) ∈ Rn[x] by xi is equivalent to cyclically
shifting the coefficients of r(x) to the right by i places. Recall in GF(2),
−1 = 1, so Rn[x] is also called algebra of polynomials modulo xn + 1. In the
rest of this section Rn[x] will represent the polynomials modulo xn + 1 over
GF(2).

Now let’s relate a code vector c = (c0c1c2 . . . cn−1) to a code polynomial :

c(x) = c0 + c1 · x + c2 · c2 + . . . + cn−1 · xn−1

where the exponent powers correspond to the bit positions and the coeffi-
cients are 0’s and 1’s.

Example 3.1. Here are two codewords and their polynomial representation.

c = (1001) becomes 1 + x3

c = (010101) becomes x + x3 + x5

Each codeword is represented by a polynomial of degree less than or equal to
n− 1.

Why do we want to represent a code vector with a polynomial? Well, the
following will help answer this. If we let

c = (c0c1c2 . . . cn−1)
c(i) = (cn−icn−i+1 . . . cn−1c0 . . . cn−i−1)

then
c(x) = c0 + c1 · x + c2 · x2 + · · ·+ cn−1 · xn−1

c(i)(x) = cn−i + cn−1+1 · x + · · ·+ cn−1 · xi−1 + c0 · xi + · · ·+ cn−i−1 · xn−1

What is the relation between c(x) and c(i)(x)? Just like we saw above in
our polynomial math in Rn[x] a shift by one place to the right is equivalent
to multiplying by x.

xi · c(x) = c0 ·xi + c1 ·xi+1 + · · ·+ cn−i−1 ·xn−1 + cn−i ·xn + · · ·+ cn−1 ·xn−i−1

The last i terms have powers ≥ n and can’t be represented by bit locations
so let’s pull a trick out of our hat add a zero-value sum to this polynomial.
Let the zero-value sum be:

(cn−i + cn−i) + (cn−i+1 + cn−i+1) · x + · · ·+ (cn−1 + cn−1) · xi−1

14



and when we add it to xi · c(x) and arrange the terms a little differently
we get:

xi · c(x) = cn−i · (xn + 1) + cn−i+1 · x · (xn + 1) + · · ·+ cn−1 · xi−1(xn + 1)
+ cn−i + cn−i+1 · x + · · ·+ cn−1 · xi−1

+ c0 · xi + c1 · xi+1 + · · ·+ cn−i−1 · xn−1

This can reduce to :

xi · c(x) = q(x) · (xn + 1) + c(i)(x)

with c(i)(x) being the remainder from dividing xi · c(x) by (xn + 1). In other
words, c(i)(x)= xi · c(x) mod (xn + 1) which says that multiplying a code-
word c(x) by xk creates a new code word by cyclically shifting c(x) right by
k places.

The above analysis brings us to the following theorem.

Theorem 3.1. A subset C of polynomials in Rn[x] is a cyclic code if and
only if it is an ideal.

Proof. Suppose C is a cyclic code in Rn[x]. By definition C is a linear
code and therefore a subspace and it’s an additive subgroup of Rn[x]. We also
know for any code polynomial c(x) ∈ C, x · c(x) is also a code polynomial.
Since x · c(x) ∈ C, x2 · c(x) is also in C. If we use the fact that C is linear
then any linear combination of these code polynomials is a code polynomial.
So this implies that for all c(x) ∈ C and all r(x) in Rn[x].

(r0 + r1 · x + . . .) · c(x) = r(x) · c(x) ∈ C.

So by definition C is an ideal. We could also prove this by using the ideal
test as given in [3].

Conversely if C is an ideal Rn[x] then by definition it is a subgroup and
for all c(x) in C,

r(x) ∈ Rn[x], r(x) · c(x) ∈ C

By setting r(x) = a ∈ GF (q) and using the fact C is a subgroup we see that
C is linear code. Also if we set r(x) = x, we get
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x · c(x) = c′(x) ∈ C

So C is a cyclic code. �
Recall that Rn[x] is a principal ideal domain so all the properties of PIDs

apply here.
Since C is ideal in Rn[x] we know there exists a polynomial g(x) that

generates this ideal (or cyclic code). We also know that this g(x) is the
smallest degree monic polynomial in C.

3.2 Generator Polynomial

Let’s take a closer look at this generator polynomial and see what properties
it has. These properties will aid us in finding a generator and parity matrices
for cyclic codes.

Theorem 3.2. The nonzero code polynomial of minimum degree in a cyclic
code is unique.

Proof. Let g(x) = g0 + g1 · x + · · ·+ gr · xr−1 + xr in C and suppose it’s
not unique. Then there exists another g′(x) = g′0 + g′1 ·x+ · · ·+ g′r ·xr−1 +xr

of the same degree in C. Since both are codewords which means g(x) +g′(x)
is a codeword, which means

g(x) + g′(x) = (g0 + g′0) + (g1 + g′1) · x + · · ·+ (gr−1 + g′r−1) · xr−1

If g(x) + g′(x) 6= 0 then we have a contradiction since the degree of
g(x) + g′(x) is less than r. So g(x) + g′(x) = 0 so g(x) = g′(x). �

Theorem 3.3. Let g(x) = g0 + g1 · x + · · · + gr · xr−1 + xr be the nonzero
code polynomial of minimum degree that generates the (n, k) cyclic code C,
then g0 is equal to 1.

Proof. If not then one shift to the left (this is equal to n−1 shifts to the
right) of g(x) will produce another code polynomial but of smaller degree, a
contradiction. �

16



Since C is cyclic we know that x · g(x), x2 · g(x), . . . , xn−r−1 · g(x) are
also code polynomials in C. We also know that the degree of xn−r−1 · g(x)
is n − 1. With C being linear, we can form linear combinations of g(x), x ·
g(x), x2 · g(x), . . . , xn−r−1 · g(x)

c(x) = u0 · g(x) + u1 · x · g(x) + · · ·+ un−r−1 · xn−r−1 · g(x)
= (u0 + u1 · x + · · ·+ un−r−1 · xn−r−1) · g(x)

is also a code polynomial with the coefficients ui equal to 0 or 1. This brings
us to the next theorem.

Theorem 3.4. A binary polynomial of degree n− 1 or less is a code polyno-
mial if and only if it is a multiple of g(x).

Proof. We have already shown the first part of the proof. For the second
part, if a code polynomial c(x) is not a multiple of g(x) then the remainder
of c(x) divided by g(x) is a code polynomial of degree less then g(x) and
this is a contradiction. �

Since the degree of g(x) is r and we know the largest degree of a code
polynomial c(x) is n− 1. This means that since c(x) = r(x) · g(x) then the
degree of r(x) can be taken to be less than or equal to n− r− 1. This means
that there are 2n−r ways of forming r(x). We also know that an (n, k) code
C has 2k codewords so n− r = k or r = n− k.

We can summarize all the results above in the following theorem.

Theorem 3.5. If C is an (n, k) cyclic code, then there exists one and only
one code polynomial of degree n− k,

g(x) = 1 + g0 · x + g2 · x2 + · · ·+ gn−k−1 · xn−k−1 + xn−k

Every code polynomial is a multiple of g(x) and every binary polynomial of
degree n− 1 or less that is a multiple of g(x) is a codeword.

It follows from theorem 3.5 that g(x), generator polynomial, defines the
cycle code. In other words, every code polynomial c(x) in an (n, k) cyclic
code is a multiple of g(x).

Theorem 3.6. The generator polynomial g(x) of an (n,k) cyclic code is a
factor of xn + 1.
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Proof. If we multiply g(x) by xk we get a polynomial of degree n.
Dividing by xn + 1 gives

xkg(x) = (xn + 1) + r(x)

where the degree of the remainder r(x) is either less than n or is equal to
zero.

From our discussion after Example 3.1, we know that r(x) is a code poly-
nomial. Specifically, r(x) = gk(x). So r(x) = a(x)g(x) for some polynomial
a(x). Therefore

xn + 1 = xkg(x) + a(x)g(x) = (xk + a(x))g(x)

which shows that g(x) is a factor of xn + 1, as claimed. �
The following theorem (see [6] , [7] for a proof), tells us when we can

generate a cyclic code from g(x).

Theorem 3.7. If g(x) is polynomial of degree n−k and is a factor of xn + 1
then g(x) generates an (n,k) cyclic code.

An example will put all of this into perspective.

Example 3.2. Suppose we wanted to construct a cyclic code of length 7. We
know that x7 + 1 = (1 + x) · (1 + x + x3) · (1 + x2 + x3), so we can pick a
factor (or product of factors) of degree n− k as the generator polynomial of
an (n,k) cyclic code. Lets pick g(x)= 1 + x + x3 for a (7,4) code.
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Message Code Polynomial Codeword
(m0m1m2m3) (c0c1c2 . . . cn−1)

0000 0 · g(x) = 0 0000000
1000 1 · g(x) = 1 + x + x3 1101000
0100 x · g(x) = x + x2 + x4 0110100
1100 (1 + x) · g(x) = 1 + x2 + x3 + x4 1011100
0010 x2 · g(x) = x2 + x3 + x5 0011010
1010 (1 + x2) · g(x) = 1 + x + x2 + x5 1110010
0110 (x + x2) · g(x) = x + x3 + x4 + x5 0101110
1110 (1 + x + x2) · g(x) = 1 + x4 + x5 1000110
0001 x3 · g(x) = x3 + x4 + x6 0001101
1001 (1 + x3) · g(x) = 1 + x + x4 + x6 1100101
0101 (x + x3) · g(x) = x + x2 + x3 + x6 0111001
1101 (1 + x + x3) · g(x) = 1 + x2 + x6 1010001
0011 (x2 + x3) · g(x) = x2 + x4 + x5 + x6 0010111
1011 (1 + x2 + x3) · g(x) = 1 + x + x2 + x3 + x4 + x5 + x6 1111111
0111 (x + x2 + x3) · g(x) = x + x5 + x6 0100011
1111 (1 + x + x2 + x3) · g(x) = 1 + x3 + x5 + x6 1001011

Example 3.2 showed us just one g(x). There are several we could have
chosen.

g(x) Code g(x) Code
(1 + x) (7,6) (1 + x) · (1 + x + x3) (7,3)
(1 + x + x3) (7,4) (1 + x) · (1 + x2 + x3) (7,3)
(1 + x + x2 + x3) (7,4) (1 + x + x3) · (1 + x + +x3) (7,1)

We need to keep in mind that even though we were able to generate a
cyclic code by choosing a g(x), we know nothing about its minimum distance.
So, this code could be good or it could be bad. How do we select a good
generator? Well that’s a hard question to answer and beyond the scope of
this paper.

Since we now know how we can find a generating polynomial g(x) for
a cyclic code, let’s see how we can create the generator and parity-check
matrices like we did for the general linear block codes.
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3.3 Generator and Parity-Check Matrices

We know from our excursion above that given an (n, k) code C and a genera-
tor polynomial g(x) = g0+g1 ·x+ · · ·+gr ·xr that the dimension of C is n−r.
We also know that g(x), x · g(x), x2 · g(x), . . . , xn−r−1 · g(x) are codewords.
So if we combine this into a matrix (keep in mind that r = n− k),

G =


g0 g1 g2 . . . gr 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 . . . 0

0 0 g0 g1 g2 . . . gr
... 0

...
... 0

0 0 . . . 0 g0 g1 g2 . . . gr

 (3.1)

We also know that the rows of G are linearly independent since the matrix
is in echelon form [8], [10].

We know a couple of things that can help us find the parity-check matrix.
First given a g(x) we know it is a factor xn + 1, say

xn + 1 = g(x) · h(x)

and the degree of h(x) is k,

h(x) = h0 + h1 · x + · · ·+ hk−1 · xk−1 + hk · xk

We also know that codewords c(x) are exactly multiples of g(x) or c(x) =
m(x) · g(x) where m(x) is the message and has the form of m(x) = m0 +
m1 · x + · · ·+ mk−1 · xk−1. So

c(x) · h(x) = m(x) · g(x) · h(x) = m(x)(xn + 1) = m(x) + m(x) · xn

Since the degree of m(x) is k − 1 or less then xk, xk+1, ..., xn−1 terms
will not appear in this m(x) + m(x) · xn sum. Thus the coefficients of
xk, xk+1, ..., xn−1 in the product of c(x) · h(x) must be equal to zero (do
a simple example here and you will see what’s below is correct),
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c0 · hk + c1 · hk−1 + · · · + ck · h0 = 0
c1 · hk + c2 · hk−1 + · · · + ck+1 · h0 = 0

. . . . . .
...

cn−k−1 · hk + · · · + cn−1 · h0 = 0

And this can be written as

k∑
i=0

hi · cl−i = 0 for l = (k, k + 1, . . . , n− 1)

Thus we have any codeword (c0c1 . . . cn−1) is orthogonal to (hkhk−1 . . . h000 . . . 0)
(dimension = n so n− k zeros).

And we can finally express this as



hk hk−1 hk−2 . . . h0 0 0 . . . 0
0 hk hk−1 hk−2 . . . h0 0 . . . 0
0 0 hk hk−1 hk−2 . . . h0 . . . 0
0 0 0 hk hk−1 hk−2 . . . h0 0

. . . . . .

0 0 . . . 0 hk hk−1 hk−2 . . . h0





c0
c1
c2
...

cn−2
cn−1


=
[

0
]

so our parity-check matrix is

H =



hk hk−1 hk−2 . . . h0 0 0 . . . 0
0 hk hk−1 hk−2 . . . h0 0 . . . 0
0 0 hk hk−1 hk−2 . . . h0 . . . 0
0 0 0 hk hk−1 hk−2 . . . h0 0

. . . . . .

0 0 . . . 0 hk hk−1 hk−2 . . . h0


Is this parity-check matrix H cyclic? The answer is yes by Theorem 3.6

if we can show h(x) is a factor of xn + 1. So here’s how we do this. Let

h(x) = hk + hk−1 · x + · · ·+ h1 · xk−1 + h0 · xk

and then notice
h(x) = xk · h(x−1)

And if we manipulate these equations
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h(x−1) · g(x−1) = (x−1)n + 1
xk · h(x−1) · xn−k · g(x−1) = xn · (x−n − 1)

h(x) · xn−k · g(x−1) = 1− xn

= xn + 1 since +1, −1 are the same in GF(2)

So we have that h(x) is indeed a factor of xn − 1 and therefore the code
generated by H is cyclic.

Notice that the G and H matrices of cyclic codes are normally not in
systematic form so the codewords obtained from

c(x) = d(x) · g(x)

with data d(x) are non systematic as example 3.2 shows. The generator
matrix for this code in the form of 3.1 is

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


and we can use row reductions methods to create a systematic form

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 (3.2)

However, the following method of encoding messages into a systematic
form will aid us in our understanding of the next section when we see how
to implement hardware encoders and decoders.

If we have a message m and multiply its polynomial representation by
xn−k we end up with

xn−k ·m(x) = m0 · xn−k + m1 · xn−k+1 + · · ·+ mk−1 · xn−1
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(basically just shift m right by n− k places) which in vector form is

(0, 0, 0, . . . , 0︸ ︷︷ ︸
n− k

,m0,m1, . . . ,mk−1)

If we divide xn−k ·m(x) by g(x) we end up with a quotient and remainder,
xn−k ·m(x) = q(x)g(x) + d(x). And by subtracting the remainder we see
that xn−k ·m(x)− d(x) is a codeword i.e.

xn−k ·m(x)− d(x) = q(x) · g(x)

xn−k·m(x)−d(x) is equal to (−d0,−d1, . . . , dn−k−1,m0,m1, . . . ,mk−1 in vector form.

In a similar manner we can create a systematic form for the generator
matrix simply by

xn−k+i · g(x)− bi(x) = q(x) · g(x)

with i = 0, 1, . . . , k − 1. So

G =


−b0,0 −b0,1 . . . −b0,n−k−1 1 0 0 . . . 0
−b1,0 −b1,1 . . . −b1,n−k−1 0 1 0 . . . 0
−b2,0 −b2,1 . . . −b2,n−k−1 0 0 1 . . . 0

...
...

...
−bk−1,0 −b0,1 . . . −bk−1,n−k−1 0 0 0 . . . 1


Example 3.3. Consider the code generated by g(x) = 1 + x + x3,

i = 0 : x3 = g(x) + (1 + x) b0 = 1 + x
i = 1 : x4 = xg(x) + (x + x2) b1 = x + x2

i = 2 : x5 = (1 + x2))g(x) + (1 + x + x2) b2 = 1 + x + x2

i = 3 : x6 = (1 + x + x3)g(x) + (1 + x2) b3 = 1 + x2

and the generator and parity matrices are

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 H =

1 0 0 1 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


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We can clearly see that the row reduction systematic form (3.2) is the
same as the above G.

4 Hardware Implementation

We’ve seen that the memory requirements for linear block codes can make
them inefficient for decoding. One of the justifications in using cyclic codes
with polynomial representation is that they can be implemented in hard-
ware very effectively. This is where some of the beauty of cyclic codes come
through. Let’s see how this is done [6], [7].

4.1 Polynomial Multiplication and Division

We start with some simple components such as:

1. D flip flop. This a simple storage element that will hold its content
(in our case a 0, 1 in GF(2)) until a new value is clocked into it. We
don’t show the clock signal just to keep things simple. We can create a
shift register by connecting several of these together in a serial fashion.

2. An adder. This has two inputs and one output which is the sum
of the inputs.

3. A multiplier. Multiply the input by the gi to create the output.

If we want to multiply two polynomials together say a(x) = a0 + a1 · x +
. . . + ak · xk and g(x) = g0 + g1 · x + · · ·+ gr · xr we get a product of

b(x) = a(x) · g(x)
= a0 · g0 + (a0 · g1 + a1 · g0) · x
· · ·+ (ak · gr−1 + ak−1 · gr) · xr+k−1 + ak · gr · xr+k
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and it can be represented by the circuit in figure 3. The operation is
straight forward. First the registers are cleared. The most significant bit
(msb) or symbol, ak is input first. The first output is ak · gr which is the last
term in product above. Since all the other registers are 0 they contribute
nothing to the sum. The next step is to clock the registers so ak loaded
into the first register and ak−1 is presented at the input. The output is now
ak−1 · gr + ak · gr−1. This process is continued until a0 is clocked in , then the
system is clocked r times more to produce all the terms (k + r− 1 of them).

Figure 3: A polynomial multiplication circuit

Suppose on the other hand we were dividing two polynomials

d(x)/g(x)

where
d(x) = d0 + d1 · x + · · ·+ dn · xn

and the divisor
g(x) = g0 + g1 · x + · · ·+ gp · xp

Figure 4 shows how this can be done in hardware. For binary polynomials
the coefficient −g−1p has a value of 1. Some other things we know are, the
remainder must be of degree ≤ p− 1 since the divisor has degree p so,

r(x) = r0 + r1 · x + · · ·+ rp−1 · xp−1

The quotient
q(x) = q0 + q1 · x + · · ·+ qn−p · xn−p

The division circuit of figure 4 operates as follows:

1. All the memory devices (registers) are cleared to 0.

2. The coefficients of d(x) are clocked into the left registers for p steps
starting with dn. This step initializes the registers.

25



3. The coefficients of d(x) continue to be clocked in on the left. The bits
shifted to the right represent the coefficients of the quotient d(x)/g(x)
with the highest-order coefficient first.

4. After all the coefficients of d(x) have been shifted in the contents of the
register elements are the remainder of the division, with the highest
coefficient on the right.

Figure 4: A polynomial divsion circuit

The following example will help illustrate how division is accomplished
with a circuit like that in 4.

Example 4.1. Let’s divide d(x) = x8 +x7 +x5 +x+ 1 by g(x) = x5 +x+ 1,
with the polynomial long division shown below (keep in mind we are over
GF(2) so +1 = −1). The division circuit for g(x) is in figure 5.

x3+ x2+ 1

x5 + x + 1
)
x8+ x7+ x5

A+ x+ 1

x8+ x4+ x3

x7+ x5+ x4+ x3
B+ x+ 1

x7+ x3+ x2

x5+ x4+ x2
C+ x+ 1

x5+ x+ 1

x4+ x2
D

Initially the contents of the registers are zeroed out. Then after 5 shifts,
the first 5 terms of d(x) will be loaded into the registers with x8 on the right.
The corresponding entry in the long division is the line with A in the line with
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most significant terms are on the left. On the next shift g(x) is subtracted
(or added) to create the value in line B. This process continues until all the
bits of d(x) have been shifted in as shown in C and D. The remainder of
d(x)/g(x) is contained in the registers.

Figure 5: A polynomial divsion circuit for g(x) = x5 + x + 1

The following table shows how the circuit operates for each shift.

Shift Input Polynomial Register polynomial Output polynomial
j bit term bits representation bit term
0 - - 0 0 0 0 0
1 1 (x8) 1 0 0 0 0
2 1 (x7) 1 1 0 0 0
3 0 (x6) 0 1 1 0 0
4 1 (x5) 1 0 1 1 0
5 0 (x4) 0 1 0 1 1 A: x5 + x7 + x8 1 x3

6 0 (x3) 1 1 1 0 1 B: x3 + x4 + x5 + x7 1 x2

7 0 (x2) 1 0 1 1 0 C: x2 + x4 + x5 0 x1

8 1 (x1) 1 1 0 1 1 x + x2 + x4 + x5 1 x0

9 1 1 0 0 1 0 1 D: x2 + x4

We now have the building blocks to encode and decode messages.

4.2 Cyclic Encoding and Decoding

We learned in section 3.2 of a simple way to create a systematic form for a
cyclic code. There were basically three steps:

1. Calculate xn−k ·m(x).

2. Divide by g(x) to create remainder d(x).

3. Compute xn−k ·m(x)− d(x).
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Figure 6 shows a circuit that accomplishes this. The division circuit is
very similar to the one in figure 4 except that the message is fed into the
right instead of the left to reflect the shift by xn−k. This shifted signal is
then divided by the feedback structure of the circuit.

Figure 6: A circuit for systematic encoding using g(x).

The operation of the circuit is as follows:

1. With the gate open (meaning data is allow to propagate through) and
the switch on position A, the message is fed into the channel msb first
(i.e. mk−1,mk−2, . . . ,m0). When all the message bits have been sent,
the contents to the n − k registers form the remainder (they are the
parity bits).

2. The gate is then closed. This removes any feedback from entering the
circuit. The switch is then moved to the B position. Remember we
need to subtract the remainder hence the reason for multiplying by
−1. However in GF(2) it’s not needed since −1 = 1.

3. The circuit is then clocked n− k times to shift the parity symbols out
into the channel.

Example 4.2. Let g(x) = 1+x+x3, the systematic encoder is shown below.

For a message m = (0, 1, 0, 1) ↔ m(x) = x + x3, the contents of the
registers are:
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Register
Input contents

0 0 0 (initial state)
1 1 1 0
0 0 1 1
1 1 1 1
0 0 1 1 (parity bits, d(x)=x2 + x

So the output is c=(0,1,1,0,1,0,1).

We’ve been able to take simple messages and encode them with a few
simple basic hardware components. Now the question is, how do we decode
these binary cyclic codes and determine if there are any errors? We could
use the standard array decoding as we discussed in 2.2 or even the reduced
standard array by syndromes. [6] [7]. What we are going to do here is define
the syndrome in a slightly different way. We know that a codeword must be
a multiple of g(x). If we divide r(x) (the received codeword) by g(x) then the
remainder is equal to zero if r(x) is a codeword. If use the division algorithm,
we can write

r(x) = q(x) · q(x) + s(x)

where s(x) is the syndrome (and the remainder) such that

s(x) = s0 + s1 · x + · · ·+ sn−k−1 · xn−k−1

To compute the syndrome we use polynomial division and a circuit like the
one in Figure 4 will work. Remember that a syndrome can be used to de-
tect and even correct errors in received codewords. The circuit below is an
example.

The following theorem is an important one. The proof is in [6]. It will
aid us greatly in our endeavor to find decoding/correcting circuit.
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Figure 7: A syndrome generation circuit for g(x) = 1 + x + x3.

Theorem 4.1. Let s(x) be the syndrome of a received polynomial r(x) =
r0 + r1 · x + · · · + rn−1 · xn−1. Then, the remainder s1(x) resulting from
dividing x · s(x) by the generator polynomial g(x) is the syndrome of r1(x),
which is a cycle shift of r(x).

What this means is that si(x) that represents the cyclical shift of r(x) by
i places to produce ri(x) is obtained from the remainder of xi · s(x) when
divided by g(x). This can be accomplished by circuit in figure 7 by opening
the gate to shift r(x) in (n shifts), then close the gate and shift i more times.

The beauty of this is that if there is an error in a bit in r(x) say r2, the
syndrome s(x) will be non zero. And by the theorem, if we loaded a shifted
version of r(x) into the syndrome circuit, the syndrome will also be shifted
and non zero. This example will bring this to light along with giving us an
idea on how we can used for error correcting.

Example 4.3. Let’s consider the syndrome circuit in Example 7 for the code
with the generator g(x)=x3 + x + 1. The table below shows single bit error
and the syndromes associated with those errors. If the received codeword r1(x)
with an error in bit location 1 (i.e. e1(x) = 0100000) the syndrome would
tells us we have an error but not the location. Shifting s1(x) by 5 places would
produce the syndrome for r1(x) shifted by 5 places or x5 · r1(x), with x5 · s1(x)
= 101. Now suppose we get receive r2(x) with an error in the 4th bit, e2(x)
= 0000100, so s2(x) = 011, and we began to shift s2(x). The first shift would
give us x · s2(x) = 111, the second shift x2 · s2(x) = 101. Notice that the
syndrome for the two error patterns matched when we moved the error to the
msb location.
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error error polynomial syndrome syndrome polynomial
0000000 e(x) = 0 000 x(x) = 0
1000000 e(x) = 1 100 x(x) = 1
0100000 e(x) = x 010 x(x) = x
0010000 e(x) = x2 001 x(x) = x2

0001000 e(x) = x3 110 x(x) = 1 + x
0000100 e(x) = x4 011 x(x) = x + x2

0000010 e(x) = x5 111 x(x) = 1 + x + x2

0000001 e(x) = x6 101 x(x) = 1 + x2

This example which is made possible by Theorem 4.1 is very important.
It not only allows us to compute one syndrome for an error and just create
cyclic shifts to cover the other errors, but the syndrome table will only need
to store n entries instead of 2n. And we can use the same hardware to create
those syndromes.

This example also shows a way to create error correcting hardware. Figure
8 shows a decoder structure that is known as Meggitt Decoder [6], [7].

Figure 8: A cyclic decoder when r(x) is shifted in the left end of the syndrome
register

Let’s examine how this operates.

1. With Gate 1 opened and Gate 2 closed and the syndrome register
is cleared, the received vector is shifted into syndrome register and
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the buffer register. After n shifts the syndrome register will hold the
syndrome for r(x). Like we describe in Figure 4.3.

2. The error pattern detection circuit will indicate there is an error in
the most significant bit (msb) in the received word (i.e. it will output
a 1 when an error is detected). So if it outputs a 1, then the msb
in the buffer register is in error so it is complemented ( 1 is added) to
correct the error. This correction must also be fed back to the syndrome
register so it knows an error is being corrected. Now a cyclical shift
is applied and the corrected received bit is loaded into the lsb of the
buffer register.

3. The above step will be repeated for each bit in the received word (a
total of n times). When done the, the buffer register will hold the
corrected received word.

The key to decoding process is generating the correct error pattern de-
tection circuit. As we mentioned in 4.3, the syndrome for the error bit when
it was shifted to the last position is the same. So the key is to generate what
the syndrome would be if the error was in msb of the received word. If we
take g(x) as in example 4.3 the detection of error pattern is simple as shown
in the following figure.

Figure 9: A Meggitt decoder for example 4.3.

We can see the error pattern detection circuit is a simple inverter and a
3-input and gate.
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5 Conclusions

Without even knowing it, when we were kids we used error correction and
detection when we said our first “What did you say”? Often times we can’t
ask for data to be re-transmitted so we build some redundancy in the data as
it is transmitted that enables us detect and even correct errors in the received
data. We’ve seen that we can use simple linear and abstract algebra concepts
to build the idea of a linear block codes. These linear block codes have several
characteristics that made it fairly easy to construct, that of generator matrix
and parity check matrix. They also have an important property known as
the weight of the code. This feature determines how many errors the code
can detect or correct. The detection and correction is often done by standard
arrays,cosets or syndrome decoding.

We then used our extended knowledge of abstract algebra to construct a
subset of linear block codes known as cyclic codes. These codes are based
upon a generator polynomial g(x), which is a factor of xn−1 for a (n, k) code.
These codes are rich in algebraic structure and are easily implemented. Like
the basic linear block code detecting and correcting errors in cyclic codes can
also be done with syndromes. Error correction capability is inferred from
the roots of g(x) which comes from even more abstract algebra, that of finite
fields.

We have shown that syndromes are an easy way to determine if an error
occurred in the received codeword as well as correcting some of those errors.
This type of detecting and correcting errors works for the general linear block
code as well as cyclic codes. The main draw back with using the standard
array decoding is that it requires too much memory to be really practical for
large codes. Using syndromes can also be inefficient with memory. However
if we use cyclic codes, we can use hardware to efficiently generate those
syndromes. And with a little extra hardware, we can not only detect errors
but correct them as was shown by the simple Meggitt Decoder. Computer
systems and networking protocols often employ cyclic codes (known as Cyclic
Redundancy Checks, CRC) to detect errors in data packets received. The
concept of generating syndromes for CRCs is similar to the single bit at a
time that we generated but bytes are used to improve efficiency. The reader
is encouraged to see [6], [7] or other literature to see the further explore CRCs
or other block codes. We have only scratched the surface!
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