Title

Development and Simulation of an Embedded Hydrogen Peroxide Catalyst Chamber in Low-Temperature Co-Fired Ceramics

Document Type

Article

Publication Date

10-1-2007

Abstract

Satellites in the range of 10–50 kg require small propulsion devices to perform station-keeping tasks in orbit. Low-temperature co-fired ceramic structures provide a unique platform to produce a reliable, low-cost micropropulsion system. The design uses microchannels embedded in the ceramic substrate to create a nozzle and embedded catalyst chamber. A hydrogen peroxide monopropellant is injected into a silver-coated catalyst chamber structure. The monopropellant decomposes into hot gas, which is expelled through the nozzle producing thrust. A thermal energy balance and a kinetic model is presented along with performance testing.