Document Type

Article

Publication Date

7-1-2012

Abstract

The purpose of this study was to investigate correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while ten subjects performed a clean at 85% of 1-RM. Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body-mass normalized 1-RM. Two hip kinematic and two knee kinetic patterns were significantly correlated with relative 1-RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pull. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, as well as an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.

Comments

This is a non-final version of an article published in final form in Journal of Strength and Conditioning Research, Volume 26, Issue 7. DOI: 10.1519/JSC.0b013e318239c1d2